1
|
Zhou G, Nan N, Li N, Li M, Ma A, Ye Q, Wang J, Xu ZY. Active DNA Demethylation Mediated by OsGADD45a2 Regulates Growth, Development, and Blast ( Magnaporthe oryzea) Resistance in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24300-24310. [PMID: 39465494 DOI: 10.1021/acs.jafc.4c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OsGADD45a1, a member of the growth arrest and DNA damage-inducible 45 (GADD45) family in rice, has a newly identified homologue, OsGADD45a2, which differs from OsGADD45a1 in only three amino acids. The role and function of the OsGADD45a2 in DNA demethylation are not well-understood and were investigated in this study. Osgadd45a2 mutants exhibited reduced height, shorter panicle length, fewer grains per panicle, and a lower seed setting rate compared with wild-type plants. Moreover, the results showed that OsGADD45a2 negatively regulates rice blast fungus resistance and exhibited high expression in various tissues. Using the 3000 Rice Genomes Project database, we identified four major haplotypes (each with over 100 cultivars) based on single-nucleotide polymorphisms in the coding sequence of OsGADD45a2. Among these, Hap4 was associated with a significantly greater plant height than Hap1-3, possibly due to a functional alteration of OsGADD45a2 linked to the SNP at position 2614993. In OsGADD45a2 overexpression lines, significant decreases in CG and CHG methylation levels were observed in protein-coding genes, leading to their upregulation. Overall, our findings indicate that OsGADD45a2 acts as a methylation regulator, mediating the expression of genes essential for plant growth and development and blast resistance.
Collapse
Affiliation(s)
- Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Qixin Ye
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Palomer X, Salvador JM, Griñán-Ferré C, Barroso E, Pallàs M, Vázquez-Carrera M. GADD45A: With or without you. Med Res Rev 2024; 44:1375-1403. [PMID: 38264852 DOI: 10.1002/med.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Zhang XJ, Han BB, Shao ZY, Yan R, Gao J, Liu T, Jin ZY, Lai W, Xu ZM, Wang CH, Zhang F, Gu C, Wang Y, Wang H, Walsh CP, Guo F, Xu GL, Du YR. Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation. Nat Struct Mol Biol 2024; 31:42-53. [PMID: 38177668 DOI: 10.1038/s41594-023-01125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/14/2023] [Indexed: 01/06/2024]
Abstract
DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-Bin Han
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Yu Shao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Juan Gao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Liu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zi-Yang Jin
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Mei Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Han Wang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengjuan Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chan Gu
- Changping Laboratory, Beijing, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guo-Liang Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China.
| | - Ya-Rui Du
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Panayiotou T, Eftychiou M, Patera E, Promponas VJ, Strati K. A paradigm for post-embryonic Oct4 re-expression: E7-induced hydroxymethylation regulates Oct4 expression in cervical cancer. J Med Virol 2023; 95:e29264. [PMID: 38054553 DOI: 10.1002/jmv.29264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The Octamer-binding transcription factor-4 (Oct4) is upregulated in different malignancies, yet a paradigm for mechanisms of Oct4 post-embryonic re-expression is inadequately understood. In cervical cancer, Oct4 expression is higher in human papillomavirus (HPV)-related than HPV-unrelated cervical cancers and this upregulation correlates with the expression of the E7 oncogene. We have reported that E7 affects the Oct4-transcriptional output and Oct4-related phenotypes in cervical cancer, however, the underlying mechanism remains elusive. Here, we characterize the Oct4-protein interactions in cervical cancer cells via computational analyses and Mass Spectrometry and reveal that Methyl-binding proteins (MBD2 and MBD3), are determinants of Oct4-driven transcription. E7 triggers MBD2 downregulation and TET1 upregulation, thereby disrupting the methylation status of the Oct4 gene. This coincides with an increase in the total DNA hydroxymethylation leading to the re-expression of Oct4 in cervical cancer and likely affecting broader transcriptional patterns. Our findings reveal a previously unreported mechanism by which the E7 oncogene can regulate Oct4 re-expression and global transcriptional patterns by increasing DNA hydroxymethylation and lowering the barrier to cellular plasticity during carcinogenesis.
Collapse
Affiliation(s)
| | - Marios Eftychiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Leuven Statistics Research Centre (LStat), KU Leuven, Leuven, Belgium
| | - Eleutherios Patera
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
You W, Liu S, Li J, Tu Y, Shan T. GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1. BMC Biol 2023; 21:212. [PMID: 37807064 PMCID: PMC10561432 DOI: 10.1186/s12915-023-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Obesity, characterized by excessive white adipose tissue expansion, is associated with several metabolic complications. Identifying new adipogenesis regulators may lead to effective therapies for obesity-induced metabolic disorders. RESULTS Here, we identified the growth arrest and DNA damage-inducible A (GADD45A), a stress-inducible histone-folding protein, as a novel regulator of subcutaneous adipose metabolism. We found that GADD45A expression was positively correlated with subcutaneous fat deposition and obesity in humans and fatty animals. In vitro, the gain or loss function of GADD45A promoted or inhibited subcutaneous adipogenic differentiation and lipid accumulation, respectively. Using a Gadd45a-/- mouse model, we showed that compared to wild-type (WT) mice, knockout (KO) mice exhibited subcutaneous fat browning and resistance to high-fat diet (HFD)-induced obesity. GADD45A deletion also upregulated the expression of mitochondria-related genes. Importantly, we further revealed that the interaction of GADD45A with Stat1 prevented phosphorylation of Stat1, resulting in the impaired expression of Lkb1, thereby regulating subcutaneous adipogenesis and lipid metabolism. CONCLUSIONS Overall, our results reveal the critical regulatory roles of GADD45A in subcutaneous fat deposition and lipid metabolism. We demonstrate that GADD45A deficiency induces the inguinal white adipose tissue (iWAT) browning and protects mice against HFD-induced obesity. Our findings provide new potential targets for combating obesity-related metabolic diseases and improving human health.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Zhi W, Wang Y, Jiang C, Gong Y, Chen Q, Mao X, Deng W, Zhao S. PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma. Front Immunol 2023; 14:1128244. [PMID: 37818357 PMCID: PMC10560889 DOI: 10.3389/fimmu.2023.1128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.
Collapse
Affiliation(s)
- Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chenyu Jiang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Gong
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyan Chen
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Mao
- Institute of Hygiene Toxicology, Wuhan Centre for Disease Prevention and Control, Wuhan, Hubei, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhu D, Liu S, Huang K, Li J, Mei X, Li Z, Cheng K. Intrapericardial long non-coding RNA-Tcf21 antisense RNA inducing demethylation administration promotes cardiac repair. Eur Heart J 2023; 44:1748-1760. [PMID: 36916305 PMCID: PMC10411945 DOI: 10.1093/eurheartj/ehad114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
AIMS Epicardium and epicardium-derived cells are critical players in myocardial fibrosis. Mesenchymal stem cell-derived extracellular vesicles (EVs) have been studied for cardiac repair to improve cardiac remodelling, but the actual mechanisms remain elusive. The aim of this study is to investigate the mechanisms of EV therapy for improving cardiac remodelling and develop a promising treatment addressing myocardial fibrosis. METHODS AND RESULTS Extracellular vesicles were intrapericardially injected for mice myocardial infarction treatment. RNA-seq, in vitro gain- and loss-of-function experiments, and in vivo studies were performed to identify targets that can be used for myocardial fibrosis treatment. Afterward, a lipid nanoparticle-based long non-coding RNA (lncRNA) therapy was prepared for mouse and porcine models of myocardial infarction treatment. Intrapericardial injection of EVs improved adverse myocardial remodelling in mouse models of myocardial infarction. Mechanistically, Tcf21 was identified as a potential target to improve cardiac remodelling. Loss of Tcf21 function in epicardium-derived cells caused increased myofibroblast differentiation, whereas forced Tcf21 overexpression suppressed transforming growth factor-β signalling and myofibroblast differentiation. LncRNA-Tcf21 antisense RNA inducing demethylation (TARID) that enriched in EVs was identified to up-regulate Tcf21 expression. Formulated lncRNA-TARID-laden lipid nanoparticles up-regulated Tcf21 expression in epicardium-derived cells and improved cardiac function and histology in mouse and porcine models of myocardial infarction. CONCLUSION This study identified Tcf21 as a critical target for improving cardiac fibrosis. Up-regulating Tcf21 by using lncRNA-TARID-laden lipid nanoparticles could be a promising way to treat myocardial fibrosis. This study established novel mechanisms underlying EV therapy for improving adverse remodelling and proposed a lncRNA therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Dashuai Zhu
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Shuo Liu
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Ke Huang
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Xuan Mei
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways. DNA Repair (Amst) 2023; 123:103448. [PMID: 36657260 DOI: 10.1016/j.dnarep.2023.103448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.
Collapse
|
9
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
10
|
Zhou X, Wu X, Deng M, Qiu Y, Zhou S, Li Y. Levels of base excision repair proteins in CD4 + T cells in patients with systemic lupus erythematosus. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1655-1662. [PMID: 36748375 PMCID: PMC10930274 DOI: 10.11817/j.issn.1672-7347.2022.210485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-systemic disease with the unknown pathogenic mechanism. DNA demethylation is involved in SLE pathogenesis. Growth arrest and DNA damage inducible 45 alpha (Gadd45a) takes part in the process of DNA demethylation. Gadd45a is a DNA repair-related protein. This study aims to investigate the expressions of some proteins [including activation-induced cytidine deaminase (AID), thymine DNA glycosylase (TDG), and methyl-CpG-binding domain protein 4 (MBD4)] involving in base excision repair (BER) process in CD4+ T cells in patients with SLE, and to analyze the correlations between the above BER proteins and lupus disease. METHODS From January 2019 to September 2020, 12 SLE patients and 12 healthy controls were recruited from Second Xiangya Hospital of Central South University. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll-Hypaque density gradient centrifugation and then CD4+ T cells were isolated via positive selection using Miltenyi beads. We measured the messenger RNA (mRNA) and protein expressions of AID, TDG, and MBD4 by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, respectively. RESULTS In contrast to controls, in SLE CD4+ T cells, the mRNA and protein expressions of AID were elevated (P=0.003, P=0.022, respectively); TDG protein expression was increased (P=0.017); and MBD4 protein level was reduced (P<0.001). No visible distinctions was found in the mRNA expressions of either TDG or MBD4 between the 2 groups (both P>0.05). The mRNA and protein expressions of AID and the protein levels of TDG were positively correlated with SLE disease activity index (SLEDAI). And the mRNA and protein expressions of MBD4 were negatively correlated with SLEDAI. CONCLUSIONS In SLE CD4+ T cells, the increased expressions of AID and TDG and the decreased MBD4 expression may participate in SLE pathogenic mechanism.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics; Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xiaoqi Wu
- Department of Dermatology, Changsha Central Hospital, University of South China, Changsha 410000, China
| | - Min Deng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics; Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yueqi Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics; Second Xiangya Hospital, Central South University, Changsha 410011
| | - Shengnan Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics; Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yaping Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics; Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
11
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
12
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
14
|
The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer. Cancers (Basel) 2022; 14:cancers14030765. [PMID: 35159032 PMCID: PMC8833622 DOI: 10.3390/cancers14030765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Thymine DNA Glycosylase (TDG) is a DNA repair protein that plays an important role in gene regulation. Recent studies have shown that TDG interacts with various transcription factors to activate target genes. TDG also functions in a pathway known as active DNA demethylation, which removes 5-mC from DNA and replaces it with unmethylated cytosine. In this review, we summarize the various functions of TDG in gene regulation as well as the physiological relevance of TDG in cancer. Abstract DNA methylation is an essential covalent modification that is required for growth and development. Once considered to be a relatively stable epigenetic mark, many studies have established that DNA methylation is dynamic. The 5-methylcytosine (5-mC) mark can be removed through active DNA demethylation in which 5-mC is converted to an unmodified cytosine through an oxidative pathway coupled to base excision repair (BER). The BER enzyme Thymine DNA Glycosylase (TDG) plays a key role in active DNA demethylation by excising intermediates of 5-mC generated by this process. TDG acts as a key player in transcriptional regulation through its interactions with various nuclear receptors and transcription factors, in addition to its involvement in classical BER and active DNA demethylation, which serve to protect the stability of the genome and epigenome, respectively. Recent animal studies have identified a connection between the loss of Tdg and the onset of tumorigenesis. In this review, we summarize the recent findings on TDG’s function as a transcriptional regulator as well as the physiological relevance of TDG and active DNA demethylation in cancer.
Collapse
|
15
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
17
|
Ravel-Godreuil C, Massiani-Beaudoin O, Mailly P, Prochiantz A, Joshi RL, Fuchs J. Perturbed DNA methylation by Gadd45b induces chromatin disorganization, DNA strand breaks and dopaminergic neuron death. iScience 2021; 24:102756. [PMID: 34278264 PMCID: PMC8264156 DOI: 10.1016/j.isci.2021.102756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Age is a major risk factor for neurodegenerative diseases like Parkinson's disease, but few studies have explored the contribution of key hallmarks of aging, namely DNA methylation changes and heterochromatin destructuration, in the neurodegenerative process. Here, we investigated the consequences of viral overexpression of Gadd45b, a multifactorial protein involved in DNA demethylation, in the mouse midbrain. Gadd45b overexpression induced global and stable changes in DNA methylation, particularly in introns of genes related to neuronal functions, as well as on LINE-1 transposable elements. This was paralleled by disorganized heterochromatin, increased DNA damage, and vulnerability to oxidative stress. LINE-1 de-repression, a potential source of DNA damage, preceded Gadd45b-induced neurodegeneration, whereas prolonged Gadd45b expression deregulated expression of genes related to heterochromatin maintenance, DNA methylation, or Parkinson's disease. Our data indicates that aging-related alterations contribute to dopaminergic neuron degeneration with potential implications for Parkinson's disease.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivia Massiani-Beaudoin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Orion Imaging Facility, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L. Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
18
|
Wang F, Kong L, Pu Y, Chao F, Zang C, Qin W, Zhao F, Cai S. Long Noncoding RNA DICER1-AS1 Functions in Methylation Regulation on the Multi-Drugresistance of Osteosarcoma Cells via miR-34a-5p and GADD45A. Front Oncol 2021; 11:685881. [PMID: 34307152 PMCID: PMC8299526 DOI: 10.3389/fonc.2021.685881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that commonly occurs in children and adolescents. Long noncoding RNAs (lncRNAs) are recognized as a novel class of regulators of gene expression associated with tumorigenesis. However, the effect and mechanism of lncRNAs in OS tumorigenesis and drug resistance have not been characterized. The purpose of the study is to screen potential biomarker and therapeutic target against OS. We compared the lncRNA expression profiles between OS cell lines with different drug resistance levels using RNA-seq analysis and found that lncRNA DICER1-AS1 was significantly differentially expressed in multi-drugresistant OS cells SJSA-1 versus multi-drugsensitive OS cells G-292. Bisulfite Sequencing PCR (BSP) assay was performed to analyze the differential methylation status of the promoter region of DICER1-AS1 in four OS cells. Subsequently, in vitro gain- and loss-of-function experiments demonstrated the roles of DICER1-AS1 and miR-34a-5p in the multi-drugresistance of OS cells. The main findings is that DICER1-AS1 directly binds to miR-34a-5p, and their expression has a negative correlation with each other. The hypermethylation of the promoter region of DICER1-AS1 silenced its expression in the drugresistant cells SJSA-1 and MNNG/HOS. Moreover, we found that growth arrest and DNA damage-inducible alpha (GADD45A) participates in the DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, probably via the cell cycle/pRb-E2F pathway. Our results revealed DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, a new lncRNA-regulated network in OS tumorigenesis, suggested that DICER1-AS1 can be considered as a potential biomarker and therapeutic target against OS cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, West district of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbao Zang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Qin
- Department of Science and Education Section, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Zhao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Ehmsen JT, Kawaguchi R, Kaval D, Johnson AE, Nachun D, Coppola G, Höke A. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight 2021; 6:e149381. [PMID: 34128833 PMCID: PMC8410074 DOI: 10.1172/jci.insight.149381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurogenic muscle atrophy is the loss of skeletal muscle mass and function that occurs with nerve injury and in denervating diseases, such as amyotrophic lateral sclerosis. Aside from prompt restoration of innervation and exercise where feasible, there are currently no effective strategies for maintaining skeletal muscle mass in the setting of denervation. We conducted a longitudinal analysis of gene expression changes occurring in atrophying skeletal muscle and identified growth arrest and DNA damage-inducible A (Gadd45a) as a gene that shows one of the earliest and most sustained increases in expression in skeletal muscle after denervation. We evaluated the role of this induction using genetic mouse models and found that mice lacking GADD45A showed accelerated and exacerbated neurogenic muscle atrophy, as well as loss of fiber type identity. Our genetic analyses demonstrate that, rather than directly contributing to muscle atrophy as proposed in earlier studies, GADD45A induction likely represents a protective negative feedback response to denervation. Establishing the downstream effectors that mediate this protective effect and the pathways they participate in may yield new opportunities to modify the course of muscle atrophy.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Riki Kawaguchi
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Damlanur Kaval
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna E Johnson
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel Nachun
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ahmet Höke
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Wang XX, Jia HJ, Lv YR, Sun HH, Wei XL, Tan JY, Jing ZZ. A Luciferase-EGFP Reporter System for the Evaluation of DNA Methylation in Mammalian Cells. Mol Biol 2021; 55:742-751. [PMID: 34226765 PMCID: PMC8244672 DOI: 10.1134/s0026893321040099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in numerous biological processes. Here, we present a cell-based system pLTR-Luc2P-EGFP for evaluation of DNA methylation in mammalian cells. In this system, the expression of reporter gene luciferase2P (Luc2P)-EGFP is under the control of HIV-1 promoter 5' long terminal repeat (LTR), which contains multiple CpG sites. Once these sites are methylated, the expression of Luc2P-EGFP is turned off, which may be visualized under fluorescence microscopy, with quantification performed in luciferase activity assay. As a proof of principle, pLTR-Luc2P-EGFP was methylated in vitro, and transfected into 293T cells, where the reduction of Luc2P-EGFP expression was confirmed. Premixed reporter DNA samples with the methylation levels varying from 0 to 100% were used for quantitative measurements of DNA methylation. The resulting standard curves indicated the accuracy of luciferase activity exceeding that of the Western blotting against EGFP. The Bland–Altman analysis showed that data from luciferase activity assay were in good agreement with the actual DNA methylation levels. In summary, we have established a reporter system coupled with reliable detection technique capable of efficient quantifying the changes in methylation in mammalian cells. This system may be utilized as a high throughput screening tool for identifying molecules that modulate DNA methylation.
Collapse
Affiliation(s)
- X X Wang
- School of Public Health, Lanzhou University, 730000 Lanzhou, China
| | - H J Jia
- State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - Y R Lv
- School of Public Health, Lanzhou University, 730000 Lanzhou, China.,State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - H H Sun
- School of Public Health, Lanzhou University, 730000 Lanzhou, China.,State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - X L Wei
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, China
| | - J Y Tan
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, China
| | - Z Z Jing
- State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| |
Collapse
|
21
|
Making it or breaking it: DNA methylation and genome integrity. Essays Biochem 2021; 64:687-703. [PMID: 32808652 DOI: 10.1042/ebc20200009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.
Collapse
|
22
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
Wu L, Jiao Y, Li Y, Jiang J, Zhao L, Li M, Li B, Yan Z, Chen X, Li X, Lu Y. Hepatic Gadd45β promotes hyperglycemia and glucose intolerance through DNA demethylation of PGC-1α. J Exp Med 2021; 218:e20201475. [PMID: 33688917 PMCID: PMC7953268 DOI: 10.1084/jem.20201475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Although widely used for their potent anti-inflammatory and immunosuppressive properties, the prescription of glucocorticoid analogues (e.g., dexamethasone) has been associated with deleterious glucose metabolism, compromising their long-term therapeutic use. However, the molecular mechanism remains poorly understood. In the present study, through transcriptomic and epigenomic analysis of two mouse models, we identified a growth arrest and DNA damage-inducible β (Gadd45β)-dependent pathway that stimulates hepatic glucose production (HGP). Functional studies showed that overexpression of Gadd45β in vivo or in cultured hepatocytes activates gluconeogenesis and increases HGP. In contrast, liver-specific Gadd45β-knockout mice were resistant to high-fat diet- or steroid-induced hyperglycemia. Of pathophysiological significance, hepatic Gadd45β expression is up-regulated in several mouse models of obesity and diabetic patients. Mechanistically, Gadd45β promotes DNA demethylation of PGC-1α promoter in conjunction with TET1, thereby stimulating PGC-1α expression to promote gluconeogenesis and hyperglycemia. Collectively, these findings unveil an epigenomic signature involving Gadd45β/TET1/DNA demethylation in hepatic glucose metabolism, enabling the identification of pathogenic factors in diabetes.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Deckard CE, Sczepanski JT. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 2021; 49:2450-2459. [PMID: 33733652 PMCID: PMC7969020 DOI: 10.1093/nar/gkab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG’s disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification ‘readers’ in controlling chromatin organization.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
25
|
Zipperly ME, Sultan FA, Graham GE, Brane AC, Simpkins NA, Carullo NVN, Ianov L, Day JJ. Regulation of dopamine-dependent transcription and cocaine action by Gadd45b. Neuropsychopharmacology 2021; 46:709-720. [PMID: 32927466 PMCID: PMC8027017 DOI: 10.1038/s41386-020-00828-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Exposure to drugs of abuse produces robust transcriptional and epigenetic reorganization within brain reward circuits that outlives the direct effects of the drug and may contribute to addiction. DNA methylation is a covalent epigenetic modification that is altered following stimulant exposure and is critical for behavioral and physiological adaptations to drugs of abuse. Although activity-related loss of DNA methylation requires the Gadd45 (Growth arrest and DNA-damage-inducible) gene family, very little is known about how this family regulates activity within the nucleus accumbens or behavioral responses to drugs of abuse. Here, we combined genome-wide transcriptional profiling, pharmacological manipulations, electrophysiological measurements, and CRISPR tools with traditional knockout and behavioral approaches in rodent model systems to dissect the role of Gadd45b in dopamine-dependent epigenetic regulation and cocaine reward. We show that acute cocaine administration induces rapid upregulation of Gadd45b mRNA in the rat nucleus accumbens, and that knockout or site-specific CRISPR/Cas9 gene knockdown of Gadd45b blocks cocaine conditioned place preference. In vitro, dopamine treatment in primary striatal neurons increases Gadd45b mRNA expression through a dopamine receptor type 1 (DRD1)-dependent mechanism. Moreover, shRNA-induced Gadd45b knockdown decreases expression of genes involved in psychostimulant addiction, blocks induction of immediate early genes by DRD1 stimulation, and prevents DRD1-mediated changes in DNA methylation. Finally, we demonstrate that Gadd45b knockdown decreases striatal neuron action potential burst duration in vitro, without altering other electrophysiological characteristics. These results suggest that striatal Gadd45b functions as a dopamine-induced gene that is necessary for cocaine reward memory and DRD1-mediated transcriptional activity.
Collapse
Affiliation(s)
- Morgan E. Zipperly
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Faraz A. Sultan
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Guan-En Graham
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Andrew C. Brane
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Natalie A. Simpkins
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nancy V. N. Carullo
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Lara Ianov
- grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Jeremy J. Day
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA ,grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
26
|
Sharapova T, Talaty N, Buck WR, Fossey S, Liguori MJ, Van Vleet TR. Reduced hepatic global hydroxymethylation in mice treated with non-genotoxic carcinogens is transiently reversible with a methyl supplemented diet. Toxicol Appl Pharmacol 2021; 415:115439. [PMID: 33549593 DOI: 10.1016/j.taap.2021.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/05/2023]
Abstract
Non-genotoxic carcinogens (NGCs) are known to cause perturbations in DNA methylation, which can be an early event leading to changes in gene expression and the onset of carcinogenicity. Phenobarbital (PB) has been shown to alter liver DNA methylation and hydroxymethylation patterns in mice in a time dependent manner. The goals of this study were to assess if clofibrate (CFB), a well-studied rodent NGC, would produce epigenetic changes in mice similar to PB, and if a methyl donor supplementation (MDS) would modulate epigenetic and gene expression changes induced by phenobarbital. CByB6F1 mice were treated with 0.5% clofibrate or 0.14% phenobarbital for 7 and 28 days. A subgroup of PB treated and control mice were also fed MDS diet. Liquid Chromatography-Ionization Mass Spectrometry (LC-MS) was used to quantify global liver 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels. Gene expression analysis was conducted using Affymetrix microarrays. A decrease in liver 5hmC but not 5mC levels was observed upon treatment with both CFB and PB with varying time of onset. We observed moderate increases in 5hmC levels in PB-treated mice when exposed to MDS diet and lower expression levels of several phenobarbital induced genes involved in cell proliferation, growth, and invasion, suggesting an early modulating effect of methyl donor supplementation. Overall, epigenetic profiling can aid in identifying early mechanism-based biomarkers of non-genotoxic carcinogenicity and increases the quality of cancer risk assessment for candidate drugs. Global DNA methylation assessment by LC-MS is an informative first step toward understanding the risk of carcinogenicity.
Collapse
Affiliation(s)
- T Sharapova
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States.
| | - N Talaty
- Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, United States
| | - W R Buck
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - S Fossey
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - M J Liguori
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - T R Van Vleet
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| |
Collapse
|
27
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
28
|
Cao P, Li H, Zuo Y, Nashun B. Characterization of DNA Methylation Patterns and Mining of Epigenetic Markers During Genomic Reprogramming in SCNT Embryos. Front Cell Dev Biol 2020; 8:570107. [PMID: 32984351 PMCID: PMC7492385 DOI: 10.3389/fcell.2020.570107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT), also known as somatic cell cloning, is a commonly used technique to study epigenetic reprogramming. Although SCNT has the advantages of being safe and able to obtain pluripotent cells, early developmental arrest happens in most SCNT embryos. Overcoming epigenetic barriers is currently the primary strategy for improving reprogramming efficiency and improving developmental rate in SCNT embryos. In this study, we analyzed DNA methylation profiles of in vivo fertilized embryos and SCNT embryos with different developmental fates. Overall DNA methylation level was higher in SCNT embryos during global de-methylation process compared to in vivo fertilized embryos. In addition, promoter region, first intron and 3′UTR were found to be the major genomic regions that were hyper-methylated in SCNT embryos. Surprisingly, we found the length of re-methylated region was directly related to the change of methylation level. Furthermore, a number of genes including Dppa2 and Dppa4 which are important for early zygotic genome activation (ZGA) were not properly activated in SCNT embryos. This study comprehensively analyzed genome-wide DNA methylation patterns in SCNT embryos and provided candidate target genes for improving efficiency of genomic reprogramming in SCNT embryos. Since SCNT technology has been widely used in agricultural and pastoral production, protection of endangered animals, and therapeutic cloning, the findings of this study have significant importance for all these fields.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
29
|
Devesa-Guerra I, Morales-Ruiz T, Pérez-Roldán J, Parrilla-Doblas JT, Dorado-León M, García-Ortiz MV, Ariza RR, Roldán-Arjona T. DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine. J Mol Biol 2020; 432:2204-2216. [PMID: 32087201 DOI: 10.1016/j.jmb.2020.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Tools for actively targeted DNA demethylation are required to increase our knowledge about regulation and specific functions of this important epigenetic modification. DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5-meC), which may promote its replication-dependent dilution and/or active removal through base excision repair (BER). However, it is still unclear whether oxidized derivatives of 5-meC are simply DNA demethylation intermediates or rather epigenetic marks on their own. Unlike animals, plants have evolved enzymes that directly excise 5-meC without previous modification. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5-meC DNA glycosylase to a CRISPR-associated null-nuclease (dCas9) and analyzed its capacity for targeted reactivation of methylation-silenced genes, in comparison to other dCas9-effectors. We found that dCas9-ROS1, but not dCas9-TET1, is able to reactivate methylation-silenced genes and induce partial demethylation in a replication-independent manner. We also found that reactivation induced by dCas9-ROS1, as well as that achieved by two different CRISPR-based chromatin effectors (dCas9-VP160 and dCas9-p300), generally decreases with methylation density. Our results suggest that plant 5-meC DNA glycosylases are a valuable addition to the CRISPR-based toolbox for epigenetic editing.
Collapse
Affiliation(s)
- Iván Devesa-Guerra
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Juan Pérez-Roldán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Macarena Dorado-León
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain.
| |
Collapse
|
30
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
31
|
Li H, Song M, Yang W, Cao P, Zheng L, Zuo Y. A Comparative Analysis of Single-Cell Transcriptome Identifies Reprogramming Driver Factors for Efficiency Improvement. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1053-1064. [PMID: 32045876 PMCID: PMC7015826 DOI: 10.1016/j.omtn.2019.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Terminally differentiated somatic cells can be reprogrammed into a totipotent state through somatic cell nuclear transfer (SCNT). The incomplete reprogramming is the major reason for developmental arrest of SCNT embryos at early stages. In our studies, we found that pathways for autophagy, endocytosis, and apoptosis were incompletely activated in nuclear transfer (NT) 2-cell arrest embryos, whereas extensively inhibited pathways for stem cell pluripotency maintenance, DNA repair, cell cycle, and autophagy may result in NT 4-cell embryos arrest. As for NT normal embryos, a significant shift in expression of developmental transcription factors (TFs) Id1, Pou6f1, Cited1, and Zscan4c was observed. Compared with pluripotent gene Ascl2 being activated only in NT 2-cell, Nanog, Dppa2, and Sall4 had major expression waves in normal development of both NT 2-cell and 4-cell embryos. Additionally, Kdm4b/4d and Kdm5b had been confirmed as key markers in NT 2-cell and 4-cell embryos, respectively. Histone acetylases Kat8, Elp6, and Eid1 were co-activated in NT 2-cell and 4-cell embryos to facilitate normal development. Gadd45a as a key driver functions with Tet1 and Tet2 to improve the efficiency of NT reprogramming. Taken together, our findings provided an important theoretical basis for elucidating the potential molecular mechanisms and identified reprogramming driver factor to improve the efficiency of SCNT reprogramming.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Mingmin Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
32
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
33
|
Taghbalout A, Du M, Jillette N, Rosikiewicz W, Rath A, Heinen CD, Li S, Cheng AW. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat Commun 2019; 10:4296. [PMID: 31541098 PMCID: PMC6754513 DOI: 10.1038/s41467-019-12339-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Here we develop a methylation editing toolbox, Casilio-ME, that enables not only RNA-guided methylcytosine editing by targeting TET1 to genomic sites, but also by co-delivering TET1 and protein factors that couple methylcytosine oxidation to DNA repair activities, and/or promote TET1 to achieve enhanced activation of methylation-silenced genes. Delivery of TET1 activity by Casilio-ME1 robustly alters the CpG methylation landscape of promoter regions and activates methylation-silenced genes. We augment Casilio-ME1 to simultaneously deliver the TET1-catalytic domain and GADD45A (Casilio-ME2) or NEIL2 (Casilio-ME3) to streamline removal of oxidized cytosine intermediates to enhance activation of targeted genes. Using two-in-one effectors or modular effectors, Casilio-ME2 and Casilio-ME3 remarkably boost gene activation and methylcytosine demethylation of targeted loci. We expand the toolbox to enable a stable and expression-inducible system for broader application of the Casilio-ME platforms. This work establishes a platform for editing DNA methylation to enable research investigations interrogating DNA methylomes.
Collapse
Affiliation(s)
- Aziz Taghbalout
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Menghan Du
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Nathaniel Jillette
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Wojciech Rosikiewicz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Abhijit Rath
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Christopher D Heinen
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Albert W Cheng
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health, 400 Farmington Avenue, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, UConn Health Science Center, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
34
|
Ku KH, Subramaniam N, Marsden PA. Epigenetic Determinants of Flow-Mediated Vascular Endothelial Gene Expression. Hypertension 2019; 74:467-476. [PMID: 31352815 DOI: 10.1161/hypertensionaha.119.13342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kyung Ha Ku
- From the Department of Laboratory Medicine and Pathobiology (K.H.K., P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| | - Noeline Subramaniam
- Institute of Medical Science (N.S., P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| | - Philip A Marsden
- From the Department of Laboratory Medicine and Pathobiology (K.H.K., P.A.M.), University of Toronto, Ontario, Canada.,Institute of Medical Science (N.S., P.A.M.), University of Toronto, Ontario, Canada.,Department of Medicine (P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| |
Collapse
|
35
|
Cheng T, Xu M, Qin B, Wu J, Tu Y, Kang L, Wang Y, Guan H. lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/TDG axis. J Cell Mol Med 2019; 23:6131-6139. [PMID: 31282110 PMCID: PMC6714223 DOI: 10.1111/jcmm.14489] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Age‐related cataract (ARC) is caused by the exposure of the lens to UVB which promotes oxidative damage and cell death. This study aimed to explore the role of lncRNA H19 in oxidative damage repair in early ARC. lncRNAs sequencing technique was used to identify different lncRNAs in the lens of early ARC patients. Human lens epithelial cells (HLECs) were exposed to ultraviolet irradiation; and 8‐OHdG ELISA, Cell counting kit 8 (CCK8), EDU, flow cytometry and TUNEL assays were used to detect DNA damage, cell viability, proliferation and apoptosis. Luciferase assay was used to examine the interaction among H19, miR‐29a and thymine DNA glycosylase (TDG) 3'UTR. We found that lncRNA H19 and TDG were highly expressed while miR‐29a was down‐regulated in the three types of early ARC and HLECs exposed to ultraviolet irradiation, compared to respective controls. lncRNA H19 knockdown aggravated oxidative damage, reduced cell viability and proliferation, and promoted apoptosis in HLECs, while lncRNA H19 overexpression led to opposite effects in HLECs. Mechanistically, miR‐29a bound TDG 3'UTR to repress TDG expression. lncRNA H19 up‐regulated the expression of TDG by repressing miR‐29a because it acted as ceRNA through sponging miR‐29a. In conclusion, the interaction among lncRNA H19, miR‐29a and TDG is involved in early ARC. lncRNA H19 could be a useful marker of early ARC and oxidative damage repair pathway of lncRNA H19/miR‐29a/TDG may be a promising target for the treatment of ARC.
Collapse
Affiliation(s)
- Tianyu Cheng
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mudong Xu
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bai Qin
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Wu
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Tu
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lihua Kang
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Wang
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Huaijin Guan
- The Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Schüle KM, Leichsenring M, Andreani T, Vastolo V, Mallick M, Musheev MU, Karaulanov E, Niehrs C. GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells. Genes Dev 2019; 33:782-798. [PMID: 31171699 PMCID: PMC6601511 DOI: 10.1101/gad.325696.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
In this study, Schüle et al. report an unexpected role of GADD45 proteins in regulation of the cycling of ESCs in the 2C state. Using methylome analysis of Gadd45 triple-mutant ESCs, they found a role for GADD45 in demethylation of specific TET targets and partial deregulation of ZGA genes at the two-cell stage. Mouse embryonic stem cell (ESC) cultures contain a rare cell population of “2C-like” cells resembling two-cell embryos, the key stage of zygotic genome activation (ZGA). Little is known about positive regulators of the 2C-like state and two-cell stage embryos. Here we show that GADD45 (growth arrest and DNA damage 45) proteins, regulators of TET (TET methylcytosine dioxygenase)-mediated DNA demethylation, promote both states. Methylome analysis of Gadd45a,b,g triple-knockout (TKO) ESCs reveal locus-specific DNA hypermethylation of ∼7000 sites, which are enriched for enhancers and loci undergoing TET–TDG (thymine DNA glycosylase)-mediated demethylation. Gene expression is misregulated in TKOs, notably upon differentiation, and displays signatures of DNMT (DNA methyltransferase) and TET targets. TKOs manifest impaired transition into the 2C-like state and exhibit DNA hypermethylation and down-regulation of 2C-like state-specific genes. Gadd45a,b double-mutant mouse embryos display embryonic sublethality, deregulated ZGA gene expression, and developmental arrest. Our study reveals an unexpected role of GADD45 proteins in embryonic two-cell stage regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center (DKFZ), Division of Molecular Embryology, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Wang X, Bhandari RK. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 2019; 14:611-622. [PMID: 31010368 DOI: 10.1080/15592294.2019.1605816] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Post-fertilization epigenome reprogramming erases epigenetic marks transmitted through gametes and establishes new marks during mid-blastula stages. The mouse embryo undergoes dynamic DNA methylation reprogramming after fertilization, while in zebrafish, the paternal DNA methylation pattern is maintained throughout the early embryogenesis and the maternal genome is reprogrammed in a pattern similar to that of sperm during the mid-blastula transition. Here, we show DNA methylation dynamics in medaka embryos, the biomedical model fish, during epigenetic reprogramming of embryonic genome. The sperm genome was hypermethylated and the oocyte genome hypomethylated prior to fertilization. After fertilization, the methylation marks of sperm genome were erased within the first cell cycle and embryonic genome remained hypomethylated from the zygote until 16-cell stage. The DNA methylation level gradually increased from 16-cell stage through the gastrula. The 5-hydroxymethylation (5hmC) levels showed an opposite pattern to DNA methylation (5-mC). The mRNA levels for DNA methyltransferase (DNMT) 1 remained high in oocytes and maintained the same level through late blastula stage and was reduced thereafter. DNMT3BB.1 mRNA levels increased prior to remethylation. The mRNA levels for ten-eleven translocation methylcytosine dioxygenases (TET2 & TET3) were detected in sperm and embryos at cleavage stages, whereas TET1 and TET3 mRNAs decreased during gastrulation. The pattern of genome methylation in medaka was identical to mammalian genome methylation but not to zebrafish. The present study suggests that a medaka embryo resets its DNA methylation pattern by active demethylation and by a gradual remethylation similar to mammals.
Collapse
Affiliation(s)
- Xuegeng Wang
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| | - Ramji Kumar Bhandari
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| |
Collapse
|
38
|
Farooqi AA, Qureshi MZ, Khalid S, Attar R, Martinelli C, Sabitaliyevich UY, Nurmurzayevich SB, Taverna S, Poltronieri P, Xu B. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040478. [PMID: 30987378 PMCID: PMC6521278 DOI: 10.3390/cancers11040478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
There has been a renewed interest in the identification of natural products having premium pharmacological properties and minimum off-target effects. In accordance with this approach, natural product research has experienced an exponential growth in the past two decades and has yielded a stream of preclinical and clinical insights which have deeply improved our knowledge related to the multifaceted nature of cancer and strategies to therapeutically target deregulated signaling pathways in different cancers. In this review, we have set the spotlight on the scientifically proven ability of berberine to effectively target a myriad of deregulated pathways.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan.
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, 34755 Istanbul, Turkey.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, 56025 Pisa, Italy.
| | | | | | - Simona Taverna
- Department of Biomedical Science, Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, 90146 Palermo, Italy.
| | - Palmiro Poltronieri
- Department of Agrifood, National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA) Via Lecce-Monteroni km 7, 73100 Lecce, Italy.
| | - Baojun Xu
- Food Science and Technology Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
39
|
Machado ART, Aissa AF, Ribeiro DL, Ferreira RS, Sampaio SV, Antunes LMG. BjussuLAAO-II induces cytotoxicity and alters DNA methylation of cell-cycle genes in monocultured/co-cultured HepG2 cells. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147618. [PMID: 31131003 PMCID: PMC6527400 DOI: 10.1590/1678-9199-jvatitd-1476-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The use of animal venoms and their toxins as material sources for
biotechnological applications has received much attention from the
pharmaceutical industry. L-amino acid oxidases from snake venoms (SV-LAAOs)
have demonstrated innumerous biological effects and pharmacological
potential against different cancer types. Hepatocellular carcinoma has
increased worldwide, and the aberrant DNA methylation of liver cells is a
common mechanism to promote hepatic tumorigenesis. Moreover, tumor
microenvironment plays a major role in neoplastic transformation. To
elucidate the molecular mechanisms responsible for the cytotoxic effects of
SV-LAAO in human cancer cells, this study aimed to evaluate the cytotoxicity
and the alterations in DNA methylation profiler in the promoter regions of
cell-cycle genes induced by BjussuLAAO-II, an LAAO from Bothrops
jaracussu venom, in human hepatocellular carcinoma (HepG2)
cells in monoculture and co-culture with endothelial (HUVEC) cells. Methods: BjussuLAAO-II concentrations were 0.25, 0.50, 1.00 and 5.00 μg/mL. Cell
viability was assessed by MTT assay and DNA methylation of the promoter
regions of 22 cell-cycle genes by EpiTect Methyl II PCR array. Results: BjussuLAAO-II decreased the cell viability of HepG2 cells in monoculture at
all concentrations tested. In co-culture, 1.00 and 5.00 μg/mL induced
cytotoxicity (p < 0.05). BjussuLAAO-II increased the
methylation of CCND1 and decreased the methylation of
CDKN1A in monoculture and GADD45A in
both cell-culture models (p < 0.05). Conclusion: Data showed BjussuLAAO-II induced cytotoxicity and altered DNA methylation of
the promoter regions of cell-cycle genes in HepG2 cells in monoculture and
co-culture models. We suggested the analysis of DNA methylation profile of
GADD45A as a potential biomarker of the cell cycle
effects of BjussuLAAO-II in cancer cells. The tumor microenvironment should
be considered to comprise part of biotechnological strategies during the
development of snake-toxin-based novel drugs.
Collapse
Affiliation(s)
- Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Alexandre Ferro Aissa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
40
|
Arab K, Karaulanov E, Musheev M, Trnka P, Schäfer A, Grummt I, Niehrs C. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet 2019; 51:217-223. [PMID: 30617255 PMCID: PMC6420098 DOI: 10.1038/s41588-018-0306-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
R-loops are DNA:RNA hybrids enriched at CpG islands (CGIs), which can regulate chromatin states1–8. How R-loops are recognized and interpreted by specific epigenetic readers is unknown. Here we show that GADD45A (Growth Arrest and DNA Damage Protein 45A) directly binds to R-loops and mediates local DNA demethylation by recruiting TET1 (Ten-Eleven Translocation). Studying the tumor suppressor TCF219, we find that antisense lncRNA TARID forms an R-loop at the TCF21 promoter. Binding of GADD45A to the R-loop triggers local DNA demethylation and TCF21 expression. TARID transcription, R-loop formation, DNA demethylation, and TCF21 expression proceed sequentially during the cell cycle. Oxidized DNA demethylation intermediates are enriched at genomic R-loops and their levels increase upon RNase H1 depletion. Genomic profiling in embryonic stem cells identifies thousands of R-loop-dependent TET1 binding sites at CGIs. We propose that GADD45A is an epigenetic R-loop reader, which recruits the demethylation machinery to promoter CGIs.
Collapse
Affiliation(s)
- Khelifa Arab
- Institute of Molecular Biology (IMB), Mainz, Germany. .,Division of Molecular Biology of the Cell II, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany. .,Division of Molecular Embryology, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | | | - Philipp Trnka
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany. .,Division of Molecular Embryology, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
41
|
Diao D, Wang H, Li T, Shi Z, Jin X, Sperka T, Zhu X, Zhang M, Yang F, Cong Y, Shen L, Zhan Q, Yan J, Song Z, Ju Z. Telomeric epigenetic response mediated by Gadd45a regulates stem cell aging and lifespan. EMBO Rep 2018; 19:embr.201745494. [PMID: 30126922 DOI: 10.15252/embr.201745494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Progressive attrition of telomeres triggers DNA damage response (DDR) and limits the regenerative capacity of adult stem cells during mammalian aging. Intriguingly, telomere integrity is not only determined by telomere length but also by the epigenetic status of telomeric/sub-telomeric regions. However, the functional interplay between DDR induced by telomere shortening and epigenetic modifications in aging remains unclear. Here, we show that deletion of Gadd45a improves the maintenance and function of intestinal stem cells (ISCs) and prolongs lifespan of telomerase-deficient mice (G3Terc -/-). Mechanistically, Gadd45a facilitates the generation of a permissive chromatin state for DDR signaling by inducing base excision repair-dependent demethylation of CpG islands specifically at sub-telomeric regions of short telomeres. Deletion of Gadd45a promotes chromatin compaction in sub-telomeric regions and attenuates DDR initiation at short telomeres of G3Terc -/- ISCs. Treatment with a small molecule inhibitor of base excision repair reduces DDR and improves the maintenance and function of G3Terc -/- ISCs. Taken together, our study proposes a therapeutic approach to enhance stem cell function and prolong lifespan by targeting epigenetic modifiers.
Collapse
Affiliation(s)
- Daojun Diao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Hu Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhencan Shi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | | | - Tobias Sperka
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Meimei Zhang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yusheng Cong
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yan
- Zhejiang Hospital, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital affiliated to Zhejiang University, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China .,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
42
|
Schäfer A, Mekker B, Mallick M, Vastolo V, Karaulanov E, Sebastian D, von der Lippen C, Epe B, Downes DJ, Scholz C, Niehrs C. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev 2018; 32:742-762. [PMID: 29884649 PMCID: PMC6049513 DOI: 10.1101/gad.311969.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Here, Schäfer et al. investigated whether DNA methylation alterations are involved in aging. Using knockout mice for adapter proteins for site-specific demethylation by TET methylcytosine dioxygenases Gadd45a and Ing1, they show that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPβ/δ-dependent superenhancers and, cooperatively with ING1, promotes local DNA demethylation via long-range chromatin loops to permit C/EBPβ recruitment. The results indicate that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Our study suggests a causal nexus between DNA demethylation, metabolism, and organismal aging.
Collapse
Affiliation(s)
- Andrea Schäfer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | | | | | - Carina von der Lippen
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Damien J Downes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Carola Scholz
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center, Division of Molecular Embryology, German Cancer Research Center-Center for Molecular Biology (DKFZ-ZMBH) Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Wang B, Fu X, Zhu MJ, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2018; 9:338-349. [PMID: 28992291 DOI: 10.1093/jmcb/mjx026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.
Collapse
Affiliation(s)
- B Wang
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
44
|
Bayraktar G, Kreutz MR. The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders. Front Mol Neurosci 2018; 11:169. [PMID: 29875631 PMCID: PMC5975432 DOI: 10.3389/fnmol.2018.00169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, an increasing number of reports underscored the importance of epigenetic regulations in brain plasticity. Epigenetic elements such as readers, writers and erasers recognize, establish, and remove the epigenetic tags in nucleosomes, respectively. One such regulation concerns DNA-methylation and demethylation, which are highly dynamic and activity-dependent processes even in the adult neurons. It is nowadays widely believed that external stimuli control the methylation marks on the DNA and that such processes serve transcriptional regulation in neurons. In this mini-review, we cover the current knowledge on the regulatory mechanisms controlling in particular DNA demethylation as well as the possible functional consequences in health and disease.
Collapse
Affiliation(s)
- Gonca Bayraktar
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
45
|
Capece D, D'Andrea D, Verzella D, Tornatore L, Begalli F, Bennett J, Zazzeroni F, Franzoso G. Turning an old GADDget into a troublemaker. Cell Death Differ 2018; 25:642-644. [PMID: 29511335 PMCID: PMC5864189 DOI: 10.1038/s41418-018-0087-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
46
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
47
|
Nagalakshmi B., Sagarkar S, Sakharkar AJ. Epigenetic Mechanisms of Traumatic Brain Injuries. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:263-298. [DOI: 10.1016/bs.pmbts.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Carpenter BL, Liu J, Qi L, Wang C, O'Connor KL. Integrin α6β4 Upregulates Amphiregulin and Epiregulin through Base Excision Repair-Mediated DNA Demethylation and Promotes Genome-wide DNA Hypomethylation. Sci Rep 2017; 7:6174. [PMID: 28733611 PMCID: PMC5522472 DOI: 10.1038/s41598-017-06351-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Aberrant DNA methylation patterns are a common theme across all cancer types. Specific DNA demethylation of regulatory sequences can result in upregulation of genes that are critical for tumor development and progression. Integrin α6β4 is highly expressed in pancreatic carcinoma and contributes to cancer progression, in part, through the specific DNA demethylation and upregulation of epidermal growth factor receptor (EGFR) ligands amphiregulin (AREG) and epiregulin (EREG). Whole genome bisulfite sequencing (WGBS) revealed that integrin α6β4 signaling promotes an overall hypomethylated state and site specific DNA demethylation of enhancer elements within the proximal promoters of AREG and EREG. Additionally, we find that the base excision repair (BER) pathway is required to maintain expression of AREG and EREG, as blocking DNA repair molecules, TET1 GADD45A, TDG, or PARP-1 decreased gene expression. Likewise, we provide the novel finding that integrin α6β4 confers an enhanced ability on cells to repair DNA lesions and survive insult. Therefore, while many known signaling functions mediated by integrin α6β4 that promote invasive properties have been established, this study demonstrates that integrin α6β4 can dramatically impact the epigenome of cancer cells, direct global DNA methylation levels toward a hypomethylated state, and impact DNA repair and subsequent cell survival.
Collapse
Affiliation(s)
- Brittany L Carpenter
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Biostatistics, Division of Cancer Biostatistics, University of Kentucky, Lexington, 40506-0509, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA. .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA.
| |
Collapse
|
49
|
Growth Arrest and DNA-damage–inducible Protein 45β-mediated DNA Demethylation of Voltage-dependent T-type Calcium Channel 3.2 Subunit Enhances Neuropathic Allodynia after Nerve Injury in Rats. Anesthesiology 2017; 126:1077-1095. [DOI: 10.1097/aln.0000000000001610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Background
Growth arrest and DNA-damage–inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage–inducible protein 45β–dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear.
Methods
Adult male Sprague–Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage–inducible protein 45β messenger RNA–targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage–inducible protein 45β, Ro 25–6981 (an NR2B-bearing N-methyl-d-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings.
Results
Nerve ligation-enhanced growth arrest and DNA-damage–inducible protein 45β expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage–inducible protein 45β expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage–inducible protein 45β to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-d-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage–inducible protein 45β expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T-type calcium channel 3.2 subunit expression. Intrathecal administration of Ro 25–6981, KN-93, or a growth arrest and DNA-damage–inducible protein 45β–targeting small interfering RNA (n = 6) reversed the ligation-induced enrichment of unmodified cytosine at the voltage-dependent T-type calcium channel 3.2 subunit promoter by increasing the associated 5-formylcytosine and 5-carboxylcytosine levels.
Conclusions
By converting 5-formylcytosine or 5-carboxylcytosine to unmodified cytosine, the NR2B-bearing N-methyl-d-aspartate receptor, calmodulin-dependent protein kinase II, or growth arrest and DNA-damage–inducible protein 45β pathway facilitates voltage-dependent T-type calcium channel 3.2 subunit gene demethylation to mediate neuropathic allodynia.
Collapse
|
50
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|