1
|
Bao K, Jiang X, Hu HM, Liu T, Zhang J. DEPICT-seq: Single-Cell Transcriptomic Analysis of Rare Cell Subsets Isolated via Nucleic Acid Cytometry. Anal Chem 2024; 96:16236-16243. [PMID: 39287475 PMCID: PMC11483345 DOI: 10.1021/acs.analchem.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The ability to dive deep into specific rare cell populations is critical for understanding tissue physiology and pathology across various biological domains. As single-cell RNA-seq flourishes, many newly discovered cell subtypes are defined by their transcriptomic markers. However, our ability to retrieve and analyze cells based on their nucleic acid markers remains underdeveloped. Here, we present Double Emulsion PCR-Initiated Cell sorting and Transcriptomic Sequencing (DEPICT-seq), a high-throughput droplet nucleic acid cytometry method that integrates batch cell fixation for cellular information preservation, double emulsion digital PCR-based cell sorting to target nucleic acid markers of interest, and in-depth full-length transcriptomic analyses at single-cell resolution. We utilize DEPICT-seq to isolate and characterize T cell receptor (TCR)-engineered T cells within a mixed population and also demonstrate a variation of the workflow by incorporating an RNase H-dependent PCR step to enrich full-length TCR sequences for paired single-cell TCR sequencing and transcriptomic profiling.
Collapse
Affiliation(s)
- Kaixuan Bao
- State
Key Laboratory of Genetic Engineering, Human Phenome Institute, Department
of Endocrinology and Metabolism, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | | | - Hong-min Hu
- ImmuXell
Biotech Ltd., Shanghai 201315, China
| | - Tiemin Liu
- State
Key Laboratory of Genetic Engineering, Human Phenome Institute, Department
of Endocrinology and Metabolism, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
- School
of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China
| | - Jingwei Zhang
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- School
of Exercise and Health, Shanghai University
of Sport, Shanghai 200438, China
- Zhejiang
Lab, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
2
|
Padhy P, Zaman MA, Jensen MA, Cheng YT, Huang Y, Wu M, Galambos L, Davis RW, Hesselink L. Dielectrophoretic bead-droplet reactor for solid-phase synthesis. Nat Commun 2024; 15:6159. [PMID: 39039069 PMCID: PMC11263596 DOI: 10.1038/s41467-024-49284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Solid-phase synthesis underpins many advances in synthetic and combinatorial chemistry, biology, and material science. The immobilization of a reacting species on the solid support makes interfacing of reagents an important challenge in this approach. In traditional synthesis columns, this leads to reaction errors that limit the product yield and necessitates excess consumption of the mobile reagent phase. Although droplet microfluidics can mitigate these problems, its adoption is fundamentally limited by the inability to controllably interface microbeads and reagent droplets. Here, we introduce Dielectrophoretic Bead-Droplet Reactor as a physical method to implement solid-phase synthesis on individual functionalized microbeads by encapsulating and ejecting them from microdroplets by tuning the supply voltage. Proof-of-concept demonstration of the enzymatic coupling of fluorescently labeled nucleotides onto the bead using this reactor yielded a 3.2-fold higher fidelity over columns through precise interfacing of individual microreactors and beads. Our work combines microparticle manipulation and droplet microfluidics to address a long-standing problem in solid-phase synthesis with potentially wide-ranging implications.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael Anthony Jensen
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Yao-Te Cheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yogi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mo Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ronald Wayne Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Liu Y, Cui X, Lu R, Yang D, Ai Y, Cheow LF. Digital Sort-Enabled Counting Allows Absolute Electrical Quantification of Target Nucleic Acid. ACS Sens 2024; 9:2695-2702. [PMID: 38747895 DOI: 10.1021/acssensors.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Quantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid. This is achieved by provoking a pH change in droplets through a loop-mediated isothermal amplification (LAMP) reaction, followed by using sorting by interfacial tension (SIFT) to direct positive and negative droplets to different outlets. With the use of on-chip electrodes at both outlets, we demonstrate that the digital electrical counting of target DNA and RNA can be realized. DISCO is a promising approach for realizing sensitive nucleic acid quantification in point-of-care settings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Ri Lu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Dahou Yang
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Ye Ai
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 387372, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
4
|
Mettler M, Dewandre A, Tumanov N, Wouters J, Septavaux J. Single crystal formation in core-shell capsules. Chem Commun (Camb) 2023; 59:12739-12742. [PMID: 37801289 DOI: 10.1039/d3cc03727d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This work extends the scope of microfluidic-based crystallization methods by introducing solid microcapsules. Hundreds of perfectly similar microcapsules were generated per second, allowing a fast screening of crystallization conditions. XRD analyses were performed directly on encapsulated single crystals demonstrating the potential of this process for the characterization of compounds, including screening polymorphism.
Collapse
Affiliation(s)
- Marie Mettler
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| | - Adrien Dewandre
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| | - Nikolay Tumanov
- Namur Institute of Structured Matter (NISM) Université de Namur, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter (NISM) Université de Namur, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Jean Septavaux
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
5
|
Yiannacou K, Sharma V, Sariola V. Programmable Droplet Microfluidics Based on Machine Learning and Acoustic Manipulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11557-11564. [PMID: 36099548 PMCID: PMC9520974 DOI: 10.1021/acs.langmuir.2c01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Typical microfluidic devices are application-specific and have to be carefully designed to implement the necessary functionalities for the targeted application. Programmable microfluidic chips try to overcome this by offering reconfigurable functionalities, allowing the same chip to be used in multiple different applications. In this work, we demonstrate a programmable microfluidic chip for the two-dimensional manipulation of droplets, based on ultrasonic bulk acoustic waves and a closed-loop machine-learning-based control algorithm. The algorithm has no prior knowledge of the acoustic fields but learns to control the droplets on the fly. The manipulation is based on switching the frequency of a single ultrasonic transducer. Using this method, we demonstrate 2D transportation and merging of water droplets in oil and oil droplets in water, and we performed the chemistry that underlies the basis of a colorimetric glucose assay. We show that we can manipulate drops with volumes ranging from ∼200 pL up to ∼30 nL with our setup. We also demonstrate that our method is robust, by changing the system parameters and showing that the machine learning algorithm can still complete the manipulation tasks. In short, our method uses ultrasonics to flexibly manipulate droplets, enabling programmable droplet microfluidic devices.
Collapse
|
6
|
Guess T, Potts CR, Bhat P, Cartailler JA, Brooks A, Holt C, Yenamandra A, Wheeler FC, Savona MR, Cartailler JP, Ferrell PB. Distinct Patterns of Clonal Evolution Drive Myelodysplastic Syndrome Progression to Secondary Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:316-329. [PMID: 35522837 PMCID: PMC9610896 DOI: 10.1158/2643-3230.bcd-21-0128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal evolution in myelodysplastic syndrome (MDS) can result in clinical progression and secondary acute myeloid leukemia (sAML). To dissect changes in clonal architecture associated with this progression, we performed single-cell genotyping of paired MDS and sAML samples from 18 patients. Analysis of single-cell genotypes revealed patient-specific clonal evolution and enabled the assessment of single-cell mutational cooccurrence. We discovered that changes in clonal architecture proceed via distinct patterns, classified as static or dynamic, with dynamic clonal architectures having a more proliferative phenotype by blast count fold change. Proteogenomic analysis of a subset of patients confirmed that pathogenic mutations were primarily confined to primitive and mature myeloid cells, though we also identify rare but present mutations in lymphocyte subsets. Single-cell transcriptomic analysis of paired sample sets further identified gene sets and signaling pathways involved in two cases of progression. Together, these data define serial changes in the MDS clonal landscape with clinical and therapeutic implications. SIGNIFICANCE Precise clonal trajectories in MDS progression are made possible by single-cell genomic sequencing. Here we use this technology to uncover the patterns of clonal architecture and clonal evolution that drive the transformation to secondary AML. We further define the phenotypic and transcriptional changes of disease progression at the single-cell level. See related article by Menssen et al., p. 330 (31). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Tiffany Guess
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Chad R. Potts
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Pawan Bhat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin A. Cartailler
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Austin Brooks
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Clinton Holt
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Ferrin C. Wheeler
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Michael R. Savona
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Jean-Philippe Cartailler
- Creative Data Solutions Shared Resource, Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Corresponding Author: P. Brent Ferrell Jr, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232. Phone: 615-875-8619; E-mail:
| |
Collapse
|
7
|
|
8
|
Hatori MN, Modavi C, Xu P, Weisgerber D, Abate AR. Dual-layered hydrogels allow complete genome recovery with nucleic acid cytometry. Biotechnol J 2022; 17:e2100483. [PMID: 35088927 PMCID: PMC9208836 DOI: 10.1002/biot.202100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Targeting specific cells for sequencing is important for applications in cancer, microbiology, and infectious disease. Nucleic acid cytometry is a powerful approach for accomplishing this because it allows specific cells to be isolated based on sequence biomarkers that are otherwise impossible to detect. However, existing methods require specialized microfluidic devices, limiting adoption. Here, we describe a modified workflow that uses particle-templated emulsification and flow cytometry to conduct the essential steps of cell detection and sorting normally accomplished by microfluidics. Our microfluidic-free workflow allows facile isolation and sequencing of cells, viruses, and nucleic acids and thus provides a powerful enrichment approach for targeted sequencing applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Makiko N Hatori
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Peng Xu
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Daniel Weisgerber
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
9
|
Abstract
![]()
Targeted
sequencing enables sensitive and cost-effective analysis
by focusing resources on molecules of interest. Existing methods,
however, are limited in enrichment power and target capture length.
Here, we present a novel method that uses compound nucleic acid cytometry
to achieve million-fold enrichments of molecules >10 kbp in length
using minimal prior target information. We demonstrate the approach
by sequencing HIV proviruses in infected individuals. Our method is
useful for rare target sequencing in research and clinical applications,
including for identifying cancer-associated mutations or sequencing
viruses infecting cells.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W. One cell at a time: droplet-based microbial cultivation, screening and sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:169-188. [PMID: 37073344 PMCID: PMC10077293 DOI: 10.1007/s42995-020-00082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Microbes thrive and, in turn, influence the earth's environment, but most are poorly understood because of our limited capacity to reveal their natural diversity and function. Developing novel tools and effective strategies are critical to ease this dilemma and will help to understand their roles in ecology and human health. Recently, droplet microfluidics is emerging as a promising technology for microbial studies with value in microbial cultivating, screening, and sequencing. This review aims to provide an overview of droplet microfluidics techniques for microbial research. First, some critical points or steps in the microfluidic system are introduced, such as droplet stabilization, manipulation, and detection. We then highlight the recent progress of droplet-based methods for microbiological applications, from high-throughput single-cell cultivation, screening to the targeted or whole-genome sequencing of single cells.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Liang Ma
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Saucedo-Espinosa MA, Dittrich PS. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules. Anal Chem 2020; 92:8414-8421. [DOI: 10.1021/acs.analchem.0c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mario A. Saucedo-Espinosa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Zhang J, Hassan MR, Rallabandi B, Wang C. Migration of ferrofluid droplets in shear flow under a uniform magnetic field. SOFT MATTER 2019; 15:2439-2446. [PMID: 30801084 DOI: 10.1039/c8sm02522c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulation of droplets based on physical properties (e.g., size, interfacial tension, electrical, and mechanical properties) is a critical step in droplet microfluidics. Manipulations based on magnetic fields have several benefits compared to other active methods. While traditional magnetic manipulations require spatially inhomogeneous fields to apply forces, the fast spatial decay of the magnetic field strength from the source makes these techniques difficult to scale up. In this work, we report the observation of lateral migration of ferrofluid (or magnetic) droplets under the combined action of a uniform magnetic field and a pressure-driven flow in a microchannel. While the uniform magnetic field exerts negligible net force on the droplet, the Maxwell stresses deform the droplet to achieve elongated shapes and modulate the orientation relative to the fluid flow. Hydrodynamic interactions between the droplets and the channel walls result in a directional lateral migration. We experimentally study the effects of field strength and direction, and interfacial tension, and use analytical and numerical modeling to understand the lateral migration mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th St., Rolla, Missouri 65409, USA.
| | | | | | | |
Collapse
|
13
|
Demaree B, Weisgerber D, Lan F, Abate AR. An Ultrahigh-throughput Microfluidic Platform for Single-cell Genome Sequencing. J Vis Exp 2018. [PMID: 29889211 PMCID: PMC6101372 DOI: 10.3791/57598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sequencing technologies have undergone a paradigm shift from bulk to single-cell resolution in response to an evolving understanding of the role of cellular heterogeneity in biological systems. However, single-cell sequencing of large populations has been hampered by limitations in processing genomes for sequencing. In this paper, we describe a method for single-cell genome sequencing (SiC-seq) which uses droplet microfluidics to isolate, amplify, and barcode the genomes of single cells. Cell encapsulation in microgels allows the compartmentalized purification and tagmentation of DNA, while a microfluidic merger efficiently pairs each genome with a unique single-cell oligonucleotide barcode, allowing >50,000 single cells to be sequenced per run. The sequencing data is demultiplexed by barcode, generating groups of reads originating from single cells. As a high-throughput and low-bias method of single-cell sequencing, SiC-seq will enable a broader range of genomic studies targeted at diverse cell populations.
Collapse
Affiliation(s)
- Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco
| | - Daniel Weisgerber
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco
| | - Freeman Lan
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; Chan Zuckerberg Biohub;
| |
Collapse
|
14
|
Caen O, Schütz S, Jammalamadaka MSS, Vrignon J, Nizard P, Schneider TM, Baret JC, Taly V. High-throughput multiplexed fluorescence-activated droplet sorting. MICROSYSTEMS & NANOENGINEERING 2018; 4:33. [PMID: 31057921 PMCID: PMC6220162 DOI: 10.1038/s41378-018-0033-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 05/02/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) is one of the most important features provided by droplet-based microfluidics. However, to date, it does not allow to compete with the high-throughput multiplexed sorting capabilities offered by flow cytometery. Here, we demonstrate the use of a dielectrophoretic-based FADS, allowing to sort up to five different droplet populations simultaneously. Our system provides means to select droplets of different phenotypes in a single experimental run to separate initially heterogeneous populations. Our experimental results are rationalized with the help of a numerical model of the actuation of droplets in electric fields providing guidelines for the prediction of sorting designs for upscaled or downscaled microsystems.
Collapse
Affiliation(s)
- Ouriel Caen
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Simon Schütz
- Emergent Complexity in Physical Systems Laboratory (ECPS), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - M. S. Suryateja Jammalamadaka
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Jérémy Vrignon
- CNRS, University Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Philippe Nizard
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Tobias M. Schneider
- Emergent Complexity in Physical Systems Laboratory (ECPS), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Christophe Baret
- CNRS, University Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Valérie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| |
Collapse
|
15
|
Bai Y, Gao M, Wen L, He C, Chen Y, Liu C, Fu X, Huang S. Applications of Microfluidics in Quantitative Biology. Biotechnol J 2017; 13:e1700170. [PMID: 28976637 DOI: 10.1002/biot.201700170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/03/2017] [Indexed: 01/15/2023]
Abstract
Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future.
Collapse
Affiliation(s)
- Yang Bai
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Meng Gao
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lingling Wen
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Caiyun He
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuan Chen
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chenli Liu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiongfei Fu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Shuqiang Huang
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
16
|
Clark IC, Abate AR. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. LAB ON A CHIP 2017; 17:2032-2045. [PMID: 28540956 PMCID: PMC6005652 DOI: 10.1039/c7lc00241f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nucleic acids encode the information of life, programming cellular functions and dictating many biological outcomes. Differentiating between cells based on their nucleic acid programs is, thus, a powerful way to unravel the genetic bases of many phenotypes. This is especially important considering that most cells exist in heterogeneous populations, requiring them to be isolated before they can be studied. Existing flow cytometry techniques, however, are unable to reliably recover specific cells based on nucleic acid content. Nucleic acid cytometry is a new field built on droplet microfluidics that allows robust identification, sorting, and sequencing of cells based on specific nucleic acid biomarkers. This review highlights applications that immediately benefit from the approach, biological questions that can be addressed for the first time with it, and considerations for building successful workflows.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
17
|
Dressler OJ, Casadevall I Solvas X, deMello AJ. Chemical and Biological Dynamics Using Droplet-Based Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:1-24. [PMID: 28375703 DOI: 10.1146/annurev-anchem-061516-045219] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
Collapse
Affiliation(s)
- Oliver J Dressler
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| | | | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
18
|
Zhu Q, Xu Y, Qiu L, Ma C, Yu B, Song Q, Jin W, Jin Q, Liu J, Mu Y. A scalable self-priming fractal branching microchannel net chip for digital PCR. LAB ON A CHIP 2017; 17:1655-1665. [PMID: 28418438 DOI: 10.1039/c7lc00267j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As an absolute quantification method at the single-molecule level, digital PCR has been widely used in many bioresearch fields, such as next generation sequencing, single cell analysis, gene editing detection and so on. However, existing digital PCR methods still have some disadvantages, including high cost, sample loss, and complicated operation. In this work, we develop an exquisite scalable self-priming fractal branching microchannel net digital PCR chip. This chip with a special design inspired by natural fractal-tree systems has an even distribution and 100% compartmentalization of the sample without any sample loss, which is not available in existing chip-based digital PCR methods. A special 10 nm nano-waterproof layer was created to prevent the solution from evaporating. A vacuum pre-packaging method called self-priming reagent introduction is used to passively drive the reagent flow into the microchannel nets, so that this chip can realize sequential reagent loading and isolation within a couple of minutes, which is very suitable for point-of-care detection. When the number of positive microwells stays in the range of 100 to 4000, the relative uncertainty is below 5%, which means that one panel can detect an average of 101 to 15 374 molecules by the Poisson distribution. This chip is proved to have an excellent ability for single molecule detection and quantification of low expression of hHF-MSC stem cell markers. Due to its potential for high throughput, high density, low cost, lack of sample and reagent loss, self-priming even compartmentalization and simple operation, we envision that this device will significantly expand and extend the application range of digital PCR involving rare samples, liquid biopsy detection and point-of-care detection with higher sensitivity and accuracy.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vervoort Y, Linares AG, Roncoroni M, Liu C, Steensels J, Verstrepen KJ. High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 2017; 46:120-125. [PMID: 28346890 DOI: 10.1016/j.copbio.2017.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Genetic engineering and screening of large number of cells or populations is a crucial bottleneck in today's systems biology and applied (micro)biology. Instead of using standard methods in bottles, flasks or 96-well plates, scientists are increasingly relying on high-throughput strategies that miniaturize their experiments to the nanoliter and picoliter scale and the single-cell level. In this review, we summarize different high-throughput system-wide genome engineering and screening strategies for microbes. More specifically, we will emphasize the use of multiplex automated genome evolution (MAGE) and CRISPR/Cas systems for high-throughput genome engineering and the application of (lab-on-chip) nanoreactors for high-throughput single-cell or population screening.
Collapse
Affiliation(s)
- Yannick Vervoort
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Alicia Gutiérrez Linares
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Chengxun Liu
- Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
| |
Collapse
|
20
|
Xi HD, Zheng H, Guo W, Gañán-Calvo AM, Ai Y, Tsao CW, Zhou J, Li W, Huang Y, Nguyen NT, Tan SH. Active droplet sorting in microfluidics: a review. LAB ON A CHIP 2017; 17:751-771. [PMID: 28197601 DOI: 10.1039/c6lc01435f] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to manipulate and sort droplets is a fundamental issue in droplet-based microfluidics. Various lab-on-a-chip applications can only be realized if droplets are systematically categorized and sorted. These micron-sized droplets act as ideal reactors which compartmentalize different biological and chemical reagents. Array processing of these droplets hinges on the competence of the sorting and integration into the fluidic system. Recent technological advances only allow droplets to be actively sorted at the rate of kilohertz or less. In this review, we present state-of-the-art technologies which are implemented to efficiently sort droplets. We classify the concepts according to the type of energy implemented into the system. We also discuss various key issues and provide insights into various systems.
Collapse
Affiliation(s)
- Heng-Dong Xi
- School of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Rd., Xi'an, Shaanxi, China
| | - Hao Zheng
- School of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Rd., Xi'an, Shaanxi, China
| | - Wei Guo
- School of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Rd., Xi'an, Shaanxi, China and Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| | - Alfonso M Gañán-Calvo
- Depto. de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, No. 300, Zhongda Rd, Taoyuan, Taiwan
| | - Jun Zhou
- School of Information and Communication Technology, Griffith University, Nathan, QLD 4111, Australia
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanyi Huang
- Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| |
Collapse
|
21
|
Sequence specific sorting of DNA molecules with FACS using 3dPCR. Sci Rep 2017; 7:39385. [PMID: 28051104 PMCID: PMC5209659 DOI: 10.1038/srep39385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Genetic heterogeneity is an important feature of many biological systems, but introduces technical challenges to their characterization. Even with the best modern instruments, only a small fraction of DNA molecules present in a sample can be read, and they are recovered in the form of short, hundred-base reads. In this paper, we introduce 3dPCR, a method to sort DNA molecules with sequence specificity. 3dPCR allows heterogeneous populations of DNA to be sorted to recover long targets for deep sequencing. It is valuable whenever a target sequence is rare in a mixed population, such as for characterizing mutations in heterogeneous cancer cell populations or identifying cells containing a specific genetic sequence or infected with a target virus.
Collapse
|
22
|
Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2016; 90:459-474. [PMID: 27818047 DOI: 10.1016/j.bios.2016.09.082] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingye Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Ying Hui
- Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
23
|
Schütt J, Ibarlucea B, Illing R, Zörgiebel F, Pregl S, Nozaki D, Weber WM, Mikolajick T, Baraban L, Cuniberti G. Compact Nanowire Sensors Probe Microdroplets. NANO LETTERS 2016; 16:4991-5000. [PMID: 27417510 DOI: 10.1021/acs.nanolett.6b01707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.
Collapse
Affiliation(s)
- Julian Schütt
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
| | - Bergoi Ibarlucea
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Rico Illing
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Felix Zörgiebel
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Sebastian Pregl
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Daijiro Nozaki
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
| | - Walter M Weber
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
- Namlab GmbH, Nöthnitzerstraße 64, 01187 Dresden, Germany
| | - Thomas Mikolajick
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
- Namlab GmbH, Nöthnitzerstraße 64, 01187 Dresden, Germany
| | - Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| |
Collapse
|
24
|
Abstract
Digital PCR (dPCR) is an emerging technology for genetic analysis and clinical diagnostics. To facilitate the widespread application of dPCR, here we developed a new micropatterned superporous absorbent array chip (μSAAC) which consists of an array of microwells packed with highly porous agarose microbeads. The packed beads construct a hierarchically porous microgel which confers superior water adsorption capacity to enable spontaneous filling of PDMS microwells for fluid compartmentalization without the need of sophisticated microfluidic equipment and operation expertise. Using large λ-DNA as the model template, we validated the μSAAC for stochastic partitioning and quantitative digital detection of DNA molecules. Furthermore, as a proof-of-concept, we conducted dPCR detection and single-molecule sequencing of a mutation prevalent in blood cancer, the chromosomal translocation t(14;18), demonstrating the feasibility of the μSAAC for analysis of disease-associated mutations. These experiments were carried out using the standard molecular biology techniques and instruments. Because of its low cost, ease of fabrication, and equipment-free liquid partitioning, the μSAAC is readily adaptable to general lab settings, which could significantly facilitate the widespread application of dPCR technology in basic research and clinical practice.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
25
|
Pellegrino M, Sciambi A, Yates JL, Mast JD, Silver C, Eastburn DJ. RNA-Seq following PCR-based sorting reveals rare cell transcriptional signatures. BMC Genomics 2016; 17:361. [PMID: 27189161 PMCID: PMC4869385 DOI: 10.1186/s12864-016-2694-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Rare cell subtypes can profoundly impact the course of human health and disease, yet their presence within a sample is often missed with bulk molecular analysis. Single-cell analysis tools such as FACS, FISH-FC and single-cell barcode-based sequencing can investigate cellular heterogeneity; however, they have significant limitations that impede their ability to identify and transcriptionally characterize many rare cell subpopulations. RESULTS PCR-activated cell sorting (PACS) is a novel cytometry method that uses single-cell TaqMan PCR reactions performed in microfluidic droplets to identify and isolate cell subtypes with high-throughput. Here, we extend this method and demonstrate that PACS enables high-dimensional molecular profiling on TaqMan-targeted cells. Using a random priming RNA-Seq strategy, we obtained high-fidelity transcriptome measurements following PACS sorting of prostate cancer cells from a heterogeneous population. The sequencing data revealed prostate cancer gene expression profiles that were obscured in the unsorted populations. Single-cell expression analysis with PACS was subsequently used to confirm a number of the differentially expressed genes identified with RNA sequencing. CONCLUSIONS PACS requires minimal sample processing, uses readily available TaqMan assays and can isolate cell subtypes with high sensitivity. We have now validated a method for performing next-generation sequencing on mRNA obtained from PACS isolated cells. This capability makes PACS well suited for transcriptional profiling of rare cells from complex populations to obtain maximal biological insight into cell states and behaviors.
Collapse
Affiliation(s)
| | - Adam Sciambi
- Mission Bio, Inc., 953 Indiana St., San Francisco, California, 94107, USA
| | - Jamie L Yates
- Mission Bio, Inc., 953 Indiana St., San Francisco, California, 94107, USA
| | - Joshua D Mast
- Mission Bio, Inc., 953 Indiana St., San Francisco, California, 94107, USA
| | - Charles Silver
- Mission Bio, Inc., 953 Indiana St., San Francisco, California, 94107, USA
| | - Dennis J Eastburn
- Mission Bio, Inc., 953 Indiana St., San Francisco, California, 94107, USA.
| |
Collapse
|
26
|
Shembekar N, Chaipan C, Utharala R, Merten CA. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. LAB ON A CHIP 2016; 16:1314-31. [PMID: 27025767 DOI: 10.1039/c6lc00249h] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet-based microfluidics enables assays to be carried out at very high throughput (up to thousands of samples per second) and enables researchers to work with very limited material, such as primary cells, patient's biopsies or expensive reagents. An additional strength of the technology is the possibility to perform large-scale genotypic or phenotypic screens at the single-cell level. Here we critically review the latest developments in antibody screening, drug discovery and highly multiplexed genomic applications such as targeted genetic workflows, single-cell RNAseq and single-cell ChIPseq. Starting with a comprehensive introduction for non-experts, we pinpoint current limitations, analyze how they might be overcome and give an outlook on exciting future applications.
Collapse
Affiliation(s)
- Nachiket Shembekar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Chawaree Chaipan
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Ramesh Utharala
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| |
Collapse
|
27
|
Abstract
The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.
Collapse
Affiliation(s)
- Songzi Kou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Danhui Cheng
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fei Sun
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - I-Ming Hsing
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|