1
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
2
|
Shen J, Shentu J, Zhong C, Huang Q, Duan S. RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy. Clin Transl Med 2024; 14:e1788. [PMID: 39243148 PMCID: PMC11380049 DOI: 10.1002/ctm2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Chenming Zhong
- Medical Genetics Center, School of MedicineNingbo UniversityNingboChina
| | - Qiankai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
3
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Vögele J, Hymon D, Martins J, Ferner J, Jonker HA, Hargrove A, Weigand J, Wacker A, Schwalbe H, Wöhnert J, Duchardt-Ferner E. High-resolution structure of stem-loop 4 from the 5'-UTR of SARS-CoV-2 solved by solution state NMR. Nucleic Acids Res 2023; 51:11318-11331. [PMID: 37791874 PMCID: PMC10639051 DOI: 10.1093/nar/gkad762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023] Open
Abstract
We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally. Their distribution along the 5_SL4 stem-loop suggests a role of these non-canonical elements in retaining functionally important structural plasticity in particular with regard to the accessibility of the start codon of an upstream open reading frame located in the RNA's apical loop. The apical loop-although mostly flexible-harbors residual structural features suggesting an additional role in molecular recognition processes. 5_SL4 is highly conserved among the different variants of SARS-CoV-2 and can be targeted by small molecule ligands, which it binds with intermediate affinity in the vicinity of the non-canonical elements within the stem-loop structure.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Daniel Hymon
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jason Martins
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jan Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Hendrik R A Jonker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Julia E Weigand
- Philipps-University Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| |
Collapse
|
5
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
6
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Li Y, Vasupalli N, Cai O, Lin X, Wu H. Network of miR396-mRNA in Tissue Differentiation in Moso Bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:1103. [PMID: 36903962 PMCID: PMC10005394 DOI: 10.3390/plants12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
MiR396 plays an essential role in various developmental processes. However, the miR396-mRNA molecular network in bamboo vascular tissue differentiation during primary thickening has not been elucidated. Here, we revealed that three of the five members from the miR396 family were overexpressed in the underground thickening shoots collected from Moso bamboo. Furthermore, the predicted target genes were up/down-regulated in the early (S2), middle (S3) and late (S4) developmental samples. Mechanistically, we found that several of the genes encoding protein kinases (PKs), growth-regulating factors (GRF), transcription factors (TFs), and transcription regulators (TRs) were the potential targets of miR396 members. Moreover, we identified QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys) d omains in five PeGRF homologs and a Lipase_3 domain and a K_trans domain in another two potential targets, where the cleavage targets were identified via degradome sequencing (p < 0.05). The sequence alignment indicated many mutations in the precursor sequence of miR396d between Moso bamboo and rice. Our dual-luciferase assay revealed that ped-miR396d-5p binds to a PeGRF6 homolog. Thus, the miR396-GRF module was associated with Moso bamboo shoot development. Fluorescence in situ hybridization localized miR396 in the vascular tissues of the leaves, stems, and roots of pot Moso bamboo seedlings at the age of two months. Collectively, these experiments revealed that miR396 functions as a regulator of vascular tissue differentiation in Moso bamboo. Additionally, we propose that miR396 members are targets for bamboo improvement and breeding.
Collapse
Affiliation(s)
- Ying Li
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Naresh Vasupalli
- Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofang Lin
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Ye X, Yang W, Yi S, Zhao Y, Varani G, Jankowsky E, Yang F. Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity. Nat Commun 2023; 14:701. [PMID: 36759600 PMCID: PMC9911399 DOI: 10.1038/s41467-023-36394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Specificity of RNA-binding proteins for target sequences varies considerably. Yet, it is not understood how certain few proteins achieve markedly higher sequence specificity than most others. Here we show that the RNA Recognition Motif of RbFox accomplishes extraordinary sequence specificity by employing functionally and structurally distinct binding modes. Affinity measurements of RbFox for all binding site variants reveal the existence of two distinct binding modes. The first exclusively accommodates cognate and closely related RNAs with high affinity. The second mode accommodates all other RNAs with reduced affinity by imposing large thermodynamic penalties on non-cognate sequences. NMR studies indicate marked structural differences between the two binding modes, including large conformational rearrangements distant from the RNA-binding site. Distinct binding modes by a single RNA-binding module explain extraordinary sequence selectivity and reveal an unknown layer of functional diversity, cross talk and regulation in RNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, USA.
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
9
|
Zhang L, Lu C, Zeng M, Li Y, Wang J. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Brief Bioinform 2023; 24:6889442. [PMID: 36511222 DOI: 10.1093/bib/bbac530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are reverse-spliced and covalently closed RNAs. Their interactions with RNA-binding proteins (RBPs) have multiple effects on the progress of many diseases. Some computational methods are proposed to identify RBP binding sites on circRNAs but suffer from insufficient accuracy, robustness and explanation. In this study, we first take the characteristics of both RNA and RBP into consideration. We propose a method for discriminating circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features, called CRMSS. For circRNAs, we use sequence ${k}\hbox{-}{mer}$ embedding and the forming probabilities of local secondary structures as features. For RBPs, we combine sequence and structure frequencies of RNA-binding domain regions to generate features. We capture binding patterns with multi-scale residual blocks. With BiLSTM and attention mechanism, we obtain the contextual information of high-level representation for circRNA-RBP binding. To validate the effectiveness of CRMSS, we compare its predictive performance with other methods on 37 RBPs. Taking the properties of both circRNAs and RBPs into account, CRMSS achieves superior performance over state-of-the-art methods. In the case study, our model provides reliable predictions and correctly identifies experimentally verified circRNA-RBP pairs. The code of CRMSS is freely available at https://github.com/BioinformaticsCSU/CRMSS.
Collapse
Affiliation(s)
- Lishen Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Chengqian Lu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Yaohang Li
- Department of Computer Science at Old Dominion University, USA
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| |
Collapse
|
10
|
Ma S, Kotar A, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519659. [PMID: 36711709 PMCID: PMC9881868 DOI: 10.1101/2023.01.03.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As an essential post-transcriptional regulator of gene expression, microRNA (miR) levels must be strictly maintained. The biogenesis of many, but not all, miRs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers and interestingly, its biogenesis is not known to be regulated by protein binding partners. Therefore, the intrinsic structural properties of pre-miR-31 can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of the precursor element of miR-31 (pre-miR-31) to investigate the role of distinct structural elements in regulating Dicer processing. We found that the presence or absence of mismatches within the helical stem do not strongly influence Dicer processing of the pre-miR. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by Dicer. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influence both Dicer binding and processing. Our results enrich our understanding of the active role that RNA structure plays in regulating Dicer processing which has direct implications for control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
12
|
Choi S, Cho N, Kim KK. Non-canonical splice junction processing increases the diversity of RBFOX2 splicing isoforms. Int J Biochem Cell Biol 2022; 144:106172. [PMID: 35124219 DOI: 10.1016/j.biocel.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
The underlying mechanisms of splicing regulation through non-canonical splice junction processing remain largely unknown. Here, we identified two RBFOX2 splicing isoforms by alternative 3' splice site selection of exon 9; the non-canonical splice junction processed RBFOX2 transcript (RBFOX2-N.C.) was expressed by the selection of the 3' splice GG acceptor sequence. The cytoplasmic localization of RBFOX2-C., a canonical splice junction-processed RBFOX2 transcript, was different from that of RBFOX2-N.C., which showed nuclear localization. In addition, we confirmed that RBFOX2-C. showed a significantly stronger localization into stress granules than RBFOX2-N.C. upon sodium arsenite treatment. Next, we investigated the importance of non-canonical 3' splice GG sequence selection of specific cis-regulatory elements using minigene constructs of the RBFOX2 gene. We found that the non-canonical 3' splice GG sequence and suboptimal branch point site adjacent region were critical for RBFOX2-N.C. expression through a non-canonical 3' splice selection. Our results suggest a regulatory mechanism for the non-canonical 3' splice selection in the RBFOX2 gene, providing a basis for studies related to the regulation of alternative pre-mRNA splicing through non-canonical splice junction processing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
13
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
14
|
Götze M, Sarnowski CP, de Vries T, Knörlein A, Allain FHT, Hall J, Aebersold R, Leitner A. Single Nucleotide Resolution RNA-Protein Cross-Linking Mass Spectrometry: A Simple Extension of the CLIR-MS Workflow. Anal Chem 2021; 93:14626-14634. [PMID: 34714631 PMCID: PMC8581962 DOI: 10.1021/acs.analchem.1c02384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
RNA–protein
interactions mediate many intracellular processes.
CLIR-MS (cross-linking of isotope-labeled RNA and tandem mass spectrometry)
allows the identification of RNA–protein interaction sites
at single nucleotide/amino acid resolution in a single experiment.
Using isotopically labeled RNA segments for UV-light-induced cross-linking
generates characteristic isotope patterns that constrain the sequence
database searches, increasing spatial resolution. Whereas the use
of segmentally isotopically labeled RNA is effective, it is technically
involved and not applicable in some settings, e.g., in cell or tissue
samples. Here we introduce an extension of the CLIR-MS workflow that
uses unlabeled RNA during cross-linking and subsequently adds an isotopic
label during sample preparation for MS analysis. After RNase and protease
digests of a cross-linked complex, the nucleic acid part of a peptide–RNA
conjugate is labeled using the enzyme T4 polynucleotide kinase and
a 1:1 mixture of heavy 18O4-γ-ATP and
light ATP. In this simple, one-step reaction, three heavy oxygen atoms
are transferred from the γ-phosphate to the 5′-end of
the RNA, introducing an isotopic shift of 6.01 Da that is detectable
by mass spectrometry. We applied this approach to the RNA recognition
motif (RRM) of the protein FOX1 in complex with its cognate binding
substrate, FOX-binding element (FBE) RNA. We also labeled a single
phosphate within an RNA and unambiguously determined the cross-linking
site of the FOX1-RRM binding to FBE at single residue resolution on
the RNA and protein level and used differential ATP labeling for relative
quantification based on isotope dilution. Data are available via ProteomeXchange
with the identifier PXD024010.
Collapse
Affiliation(s)
- Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Chris P Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| |
Collapse
|
15
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
16
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2021; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient’s survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
17
|
Farboud B, Novak CS, Nicoll M, Quiogue A, Meyer BJ. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex. eLife 2020; 9:62963. [PMID: 33372658 PMCID: PMC7787662 DOI: 10.7554/elife.62963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.
Collapse
Affiliation(s)
- Behnom Farboud
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Catherine S Novak
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Monique Nicoll
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Alyssa Quiogue
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Barbara J Meyer
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
20
|
Jolma A, Zhang J, Mondragón E, Morgunova E, Kivioja T, Laverty KU, Yin Y, Zhu F, Bourenkov G, Morris Q, Hughes TR, Maher LJ, Taipale J. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Genome Res 2020; 30:962-973. [PMID: 32703884 PMCID: PMC7397871 DOI: 10.1101/gr.258848.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism at multiple levels by affecting splicing of nascent transcripts, RNA folding, base modification, transport, localization, translation, and stability. Despite their central role in RNA function, the RNA-binding specificities of most RBPs remain unknown or incompletely defined. To address this, we have assembled a genome-scale collection of RBPs and their RNA-binding domains (RBDs) and assessed their specificities using high-throughput RNA-SELEX (HTR-SELEX). Approximately 70% of RBPs for which we obtained a motif bound to short linear sequences, whereas ∼30% preferred structured motifs folding into stem-loops. We also found that many RBPs can bind to multiple distinctly different motifs. Analysis of the matches of the motifs in human genomic sequences suggested novel roles for many RBPs. We found that three cytoplasmic proteins-ZC3H12A, ZC3H12B, and ZC3H12C-bound to motifs resembling the splice donor sequence, suggesting that these proteins are involved in degradation of cytoplasmic viral and/or unspliced transcripts. Structural analysis revealed that the RNA motif was not bound by the conventional C3H1 RNA-binding domain of ZC3H12B. Instead, the RNA motif was bound by the ZC3H12B's PilT N terminus (PIN) RNase domain, revealing a potential mechanism by which unconventional RBDs containing active sites or molecule-binding pockets could interact with short, structured RNA molecules. Our collection containing 145 high-resolution binding specificity models for 86 RBPs is the largest systematic resource for the analysis of human RBPs and will greatly facilitate future analysis of the various biological roles of this important class of proteins.
Collapse
Affiliation(s)
- Arttu Jolma
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Estefania Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Teemu Kivioja
- Genome-Scale Biology Program, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kaitlin U Laverty
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, Canada
| | - Yimeng Yin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Fangjie Zhu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, D-22603 Hamburg, Germany
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, Canada
- Donnelly Centre, University of Toronto, M5S 3E1, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, M5S 3G4, Toronto, Canada
- Department of Computer Science, University of Toronto, M5S 2E4, Toronto, Canada
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, Canada
- Donnelly Centre, University of Toronto, M5S 3E1, Toronto, Canada
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Solna, Sweden
- Genome-Scale Biology Program, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, CB2 1QW, Cambridge, United Kingdom
| |
Collapse
|
21
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
22
|
Xie J, Zhang K, Frank AT. PyShifts: A PyMOL Plugin for Chemical Shift-Based Analysis of Biomolecular Ensembles. J Chem Inf Model 2020; 60:1073-1078. [PMID: 32011127 DOI: 10.1021/acs.jcim.9b01039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present PyShifts-a PyMOL plugin for chemical shift-based analysis of biomolecular ensembles. With PyShifts, users can compare and visualize differences between experimentally measured and computationally predicted chemical shifts. When analyzing multiple conformations of a biomolecule with PyShifts, users can also sort a set of conformations based on chemical shift differences and identify the conformers that exhibit the best agreement between measured and predicted chemical shifts. Although we have integrated PyShifts with the chemical shift predictors LARMORD and LARMORCα, PyShifts can read in chemical shifts from any source, and so, users can employ PyShifts to analyze biomolecular structures using chemical shifts computed by any chemical shift predictor. We envision, therefore, that PyShifts (https://github.com/atfrank/PyShifts) will find utility as a general-purpose tool for exploring chemical shift-structure relationships in biomolecular ensembles.
Collapse
Affiliation(s)
- Jingru Xie
- Physics Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kexin Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Departments of Biophysics and Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Chen Y, Chan J, Chen W, Li J, Sun M, Kannan GS, Mok YK, Yuan YA, Jobichen C. SYNCRIP, a new player in pri-let-7a processing. RNA (NEW YORK, N.Y.) 2020; 26:290-305. [PMID: 31907208 PMCID: PMC7025501 DOI: 10.1261/rna.072959.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jingru Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jianwei Li
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Meng Sun
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Gayathiri Sathyamoorthy Kannan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
24
|
|
25
|
Zhang K, Frank AT. Conditional Prediction of Ribonucleic Acid Secondary Structure Using Chemical Shifts. J Phys Chem B 2019; 124:470-478. [DOI: 10.1021/acs.jpcb.9b09814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Differentially Expressed miRNAs Influence Metabolic Processes in Pituitary Oncocytoma. Neurochem Res 2019; 44:2360-2371. [PMID: 30945144 PMCID: PMC6776564 DOI: 10.1007/s11064-019-02789-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Spindle cell oncocytomas (SCO) of the pituitary are rare tumors accounting for 0.1–0.4% of all sellar tumors. Due to their rarity, little information is available regarding their pathogenesis. Our aim was to investigate miRNA expression profile of pituitary oncocytomas. Total RNA was extracted from 9 formalin-fixed paraffin embedded pituitary samples (4 primary, 3 recurrent oncocytomas and 2 normal tissues). Next-generation sequencing was performed for miRNA profiling. Transcriptome data of additional 6 samples’ were obtained from NBCI GEO database for gene expression reanalysis and tissue-specific target prediction. Bioinformatical analysis, in vitro miRNA mimics transfection, luciferase reporter system and AlamarBlue assay were applied to characterize miRNA’s function. 54 differentially expressed miRNAs and 485 genes in pituitary SCO vs. normal tissue and 8 miRNAs in recurrent vs. primary SCO were determined. Global miRNA downregulation and decreased level of DROSHA were detected in SCO samples vs. normal tissue. Transcriptome analysis revealed cell cycle alterations while miRNAs influenced mainly metabolic processes (tricarboxylic acid cycle-TCA, carbohydrate, lipid metabolism). Through miRNA-target interaction network the overexpressed Aconitase 2 potentially targeted by two downregulated miRNAs (miR-744-5p, miR-127-3p) was revealed. ACO2 and miR-744-5p interaction was validated by luciferase assay. MiR-127-3p and miR-744-5p significantly decreased cell proliferation in vitro. Our study firstly reported miRNA profile of pituitary oncocytoma. Our results suggest that tumor suppressor miRNAs may have an essential role in the pathogenesis of pituitary oncocytoma. Earlier reports showed downregulated TCA cycle in SCO which is extended by our results adding the role of miR-744-5p targeting ACO2.
Collapse
|
27
|
RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proc Natl Acad Sci U S A 2019; 116:6172-6180. [PMID: 30867288 DOI: 10.1073/pnas.1822176116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heart performance relies on highly coordinated excitation-contraction (EC) coupling, and defects in this critical process may be exacerbated by additional genetic defects and/or environmental insults to cause eventual heart failure. Here we report a regulatory pathway consisting of the RNA binding protein RBFox2, a stress-induced microRNA miR-34a, and the essential EC coupler JPH2. In this pathway, initial cardiac defects diminish RBFox2 expression, which induces transcriptional repression of miR-34a, and elevated miR-34a targets Jph2 to impair EC coupling, which further manifests heart dysfunction, leading to progressive heart failure. The key contribution of miR-34a to this process is further established by administrating its mimic, which is sufficient to induce cardiac defects, and by using its antagomir to alleviate RBFox2 depletion-induced heart dysfunction. These findings elucidate a potential feed-forward mechanism to account for a critical transition to cardiac decompensation and suggest a potential therapeutic avenue against heart failure.
Collapse
|
28
|
Sun YT, Shortridge MD, Varani G. A Small Cyclic β-Hairpin Peptide Mimics the Rbfox2 RNA Recognition Motif and Binds to the Precursor miRNA 20b. Chembiochem 2019; 20:931-939. [PMID: 30537200 DOI: 10.1002/cbic.201800645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The RNA recognition motif (RRM), which is the most abundant RNA-binding motif in eukaryotes, is a well-structured domain of about 90 amino acids, yet the β2β3 hairpin, corresponding to strands 2 and 3 of the β-sheet, and the intervening loop make essential interactions with RNA in many RRM complexes. A series of small cyclic peptide mimics of the β2β3 hairpin of Rbfox2 protein that recognize the terminal loop of precursor miR-20b have been designed to investigate whether the full RNA-binding protein can be mimicked with a minimal structurally preorganized peptide. Within a small library of seven cyclic peptides, a peptide with low-micromolar affinity for the miR-20b precursor was found. NMR spectroscopy titration data suggest that this peptide specifically targets the apical loop of pre-miR-20b. This work shows that it is possible to mimic RNA-binding proteins with designed stable peptides, which provide a starting point for designing or evolving small peptide mimetics of RRM proteins.
Collapse
Affiliation(s)
- Yi-Ting Sun
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Bagley Hall, Seattle, WA, 98195-1700, USA
| | - Matthew D Shortridge
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Bagley Hall, Seattle, WA, 98195-1700, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Bagley Hall, Seattle, WA, 98195-1700, USA
| |
Collapse
|
29
|
Loughlin FE, Lukavsky PJ, Kazeeva T, Reber S, Hock EM, Colombo M, Von Schroetter C, Pauli P, Cléry A, Mühlemann O, Polymenidou M, Ruepp MD, Allain FHT. The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Mol Cell 2019; 73:490-504.e6. [DOI: 10.1016/j.molcel.2018.11.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
|
30
|
Nussbacher JK, Yeo GW. Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels. Mol Cell 2019; 69:1005-1016.e7. [PMID: 29547715 DOI: 10.1016/j.molcel.2018.02.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/26/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Molecular Engineering Laboratory, A★STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
32
|
Urbanek-Trzeciak MO, Jaworska E, Krzyzosiak WJ. miRNAmotif-A Tool for the Prediction of Pre-miRNA⁻Protein Interactions. Int J Mol Sci 2018; 19:ijms19124075. [PMID: 30562930 PMCID: PMC6321451 DOI: 10.3390/ijms19124075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding post-transcriptional gene regulators. In mammalian cells, mature miRNAs are produced from primary precursors (pri-miRNAs) using canonical protein machinery, which includes Drosha/DGCR8 and Dicer, or the non-canonical mirtron pathway. In plant cells, mature miRNAs are excised from pri-miRNAs by the DICER-LIKE1 (DCL1) protein complex. The involvement of multiple regulatory proteins that bind directly to distinct miRNA precursors in a sequence- or structure-dependent manner adds to the complexity of the miRNA maturation process. Here, we present a web server that enables searches for miRNA precursors that can be recognized by diverse RNA-binding proteins based on known sequence motifs to facilitate the identification of other proteins involved in miRNA biogenesis. The database used by the web server contains known human, murine, and Arabidopsis thaliana pre-miRNAs. The web server can also be used to predict new RNA-binding protein motifs based on a list of user-provided sequences. We show examples of miRNAmotif applications, presenting precursors that contain motifs recognized by Lin28, MCPIP1, and DGCR8 and predicting motifs within pre-miRNA precursors that are recognized by two DEAD-box helicases—DDX1 and DDX17. miRNAmotif is released as an open-source software under the MIT License. The code is available at GitHub (www.github.com/martynaut/mirnamotif). The webserver is freely available at http://mirnamotif.ibch.poznan.pl.
Collapse
Affiliation(s)
- Martyna O Urbanek-Trzeciak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Edyta Jaworska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
33
|
Bochicchio A, Krepl M, Yang F, Varani G, Sponer J, Carloni P. Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study. PLoS Comput Biol 2018; 14:e1006642. [PMID: 30521520 PMCID: PMC6307825 DOI: 10.1371/journal.pcbi.1006642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/27/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox·pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations. Free energy calculations suggest that further improvements in affinity and selectivity are achieved by the S151T replacement. RNA is an outstanding target for oncological intervention. Engineering the most common RNA binding motif in human proteins (called RRM) so as to bind to a specific RNA has an enormous pharmacological potential. Yet, it is highly non trivial to design RRM-bearing protein variants with RNA selectivity and affinity sufficiently high for clinical applications. Here we present an extensive molecular simulation study which shed light on the exquisite molecular recognition of the empirically-engineered complex between the RRM-bearing protein Rbfox and its RNA target pre-miR21. The simulations allow predicting a variant, the S151T, which may lead to further enhancement of selectivity and affinity for pre-miR21.
Collapse
Affiliation(s)
- Anna Bochicchio
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- * E-mail: (MK); (PC)
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (MK); (PC)
| |
Collapse
|
34
|
Tian X, Liu T, Fang B, Wang A, Zhang M, Hussain S, Luo L, Zhang R, Zhang Q, Wu J, Battaglia G, Li L, Zhang Z, Tian Y. NeuN-Specific Fluorescent Probe Revealing Neuronal Nuclei Protein and Nuclear Acids Association in Living Neurons under STED Nanoscopy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31959-31964. [PMID: 30130086 DOI: 10.1021/acsami.8b11102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuronal nuclei (NeuN) protein is a key RNA-associated protein to guide the transcription of RNA and regulate mRNA splicing in neurons. However, the lack of effective labeling and tracking method has hindered the elucidation of the biological mechanism of NeuN operation in living neurons to understand correlated central nervous system disorders. Here, we report a molecular probe that can be inserted into a neighboring hydrophobic-hydrophilic region in NeuN, which upon binding becomes capable of emitting light in red region. The NeuN specificity enables the probe imaging neuronal cells in primary brain regions including hippocampus, cerebellum, midbrain, and cingulate gyrus. The probes' optical properties are such to enable stimulated emission depletion imaging showing for the first time the 3D structure of RNA tangling into NeuN in a living neuron with tens of nanometer resolution.
Collapse
Affiliation(s)
| | | | | | - Aidong Wang
- School of Chemistry and Chemical Engineering , Huangshan University , Huangshan 245041 , P. R. China
| | | | | | - Lei Luo
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , P. R. China
| | | | | | | | - Giuseppe Battaglia
- Department of Chemistry , University College London , London WC1H 0AJ , U.K
| | - Lin Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Zhongping Zhang
- CAS Center for Excellence in Nanoscience , Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei 230000 , P. R. China
| | | |
Collapse
|
35
|
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2018; 20:5-20. [DOI: 10.1038/s41580-018-0059-1] [Citation(s) in RCA: 628] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 2018; 17:547-558. [PMID: 29977051 PMCID: PMC6420209 DOI: 10.1038/nrd.2018.93] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have indicated the potential to develop small-molecule drugs that act on RNA targets, leading to burgeoning interest in the field. This article discusses general principles for discovering small-molecule drugs that target RNA and argues that the overarching challenge is to identify appropriate target structures in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. RNA molecules are essential for cellular information transfer and gene regulation, and RNAs have been implicated in many human diseases. Messenger and non-coding RNAs contain highly structured elements, and evidence suggests that many of these structures are important for function. Targeting these RNAs with small molecules offers opportunities to therapeutically modulate numerous cellular processes, including those linked to 'undruggable' protein targets. Despite this promise, there is currently only a single class of human-designed small molecules that target RNA used clinically — the linezolid antibiotics. However, a growing number of small-molecule RNA ligands are being identified, leading to burgeoning interest in the field. Here, we discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures — namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. If focus is placed on such druggable binding sites in RNA, extensive knowledge of the typical physicochemical properties of drug-like small molecules could then enable small-molecule drug discovery for RNA targets to become (only) roughly as difficult as for protein targets.
Collapse
Affiliation(s)
| | | | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nat Commun 2018; 9:2479. [PMID: 29946118 PMCID: PMC6018666 DOI: 10.1038/s41467-018-04871-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional mechanisms play a predominant role in the control of microRNA (miRNA) production. Recognition of the terminal loop of precursor miRNAs by RNA-binding proteins (RBPs) influences their processing; however, the mechanistic basis for how levels of individual or subsets of miRNAs are regulated is mostly unexplored. We previously showed that hnRNP A1, an RBP implicated in many aspects of RNA processing, acts as an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a. Here, by using an integrative structural biology approach, we show that hnRNP A1 forms a 1:1 complex with pri-mir-18a where both RNA recognition motifs (RRMs) bind to cognate RNA sequence motifs in the terminal loop of pri-mir-18a. Terminal loop binding induces an allosteric destabilization of base-pairing in the pri-mir-18a stem that promotes its downstream processing. Our results highlight terminal loop RNA recognition by RBPs as a potential general principle of miRNA biogenesis and regulation. hnRNP A1 is an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a, of the oncomiR-1 cluster. Here the authors employ an integrative structural biology approach and provide insights into the molecular mechanism of how hnRNP A1 facilitates pri-mir-18a biogenesis.
Collapse
|
38
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
39
|
Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. Nat Commun 2018; 9:312. [PMID: 29358748 PMCID: PMC5778076 DOI: 10.1038/s41467-017-02757-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Upon stress, profound post-transcriptional adjustments of gene expression occur in spatially restricted, subcellular, membraneless compartments, or ribonucleoprotein (RNP) granules, which are formed by liquid phase separation of RNA-binding proteins with low complexity sequence domains (LCDs). Here, we show that Rbfox1 is an LCD-containing protein that aggregates into liquid droplets and amyloid-like fibers and promiscuously joins different nuclear and cytoplasmic RNP granules. Using Drosophila oogenesis as an in vivo system for stress response, we demonstrate a mechanism by which Rbfox1 promotes cell survival. The stress-dependent miRNA miR-980 acts to buffer Rbfox1 levels, since it targets only those Rbfox1 transcripts that contain extended 3′UTRs. Reduced miR-980 expression during stress leads to increased Rbfox1 levels, widespread formation of various RNP granules, and increased cell viability. We show that human RBFOX proteins also contain multiple LCDs and form membraneless compartments, suggesting that the RNP granule-linked control of cellular adaptive responses may contribute to a wide range of RBFOX-associated pathologies in humans. Rbfox1, a pro-survival RNA-binding protein, is expressed in a complex manner and mediates diverse developmental processes. Here, the authors observe alternative splicing of Rbfox1 and stress-dependent regulation by miR-980 in Drosophila ovaries and Rbfox1 localisation in ribonucleoprotein granules in human cells.
Collapse
|
40
|
Nutter CA, Kuyumcu-Martinez MN. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29280295 DOI: 10.1002/wrna.1459] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
Diabetes is a debilitating health care problem affecting 422 million people around the world. Diabetic patients suffer from multisystemic complications that can cause mortality and morbidity. Recent advancements in high-throughput next-generation RNA-sequencing and computational algorithms led to the discovery of aberrant posttranscriptional gene regulatory programs in diabetes. However, very little is known about how these regulatory programs are mis-regulated in diabetes. RNA-binding proteins (RBPs) are important regulators of posttranscriptional RNA networks, which are also dysregulated in diabetes. Human genetic studies provide new evidence that polymorphisms and mutations in RBPs are linked to diabetes. Therefore, we will discuss the emerging roles of RBPs in abnormal posttranscriptional gene expression in diabetes. Questions that will be addressed are: Which posttranscriptional mechanisms are disrupted in diabetes? Which RBPs are responsible for such changes under diabetic conditions? How are RBPs altered in diabetes? How does dysregulation of RBPs contribute to diabetes? Can we target RBPs using RNA-based methods to restore gene expression profiles in diabetic patients? Studying the evolving roles of RBPs in diabetes is critical not only for a comprehensive understanding of diabetes pathogenesis but also to design RNA-based therapeutic approaches for diabetic complications. WIREs RNA 2018, 9:e1459. doi: 10.1002/wrna.1459 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
41
|
Cornella N, Tebaldi T, Gasperini L, Singh J, Padgett RA, Rossi A, Macchi P. The hnRNP RALY regulates transcription and cell proliferation by modulating the expression of specific factors including the proliferation marker E2F1. J Biol Chem 2017; 292:19674-19692. [PMID: 28972179 DOI: 10.1074/jbc.m117.795591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression. However, the RALY's role in regulating RNA levels remains elusive. Here, we show that numerous genes coding for factors involved in transcription and cell cycle regulation exhibit an altered expression in RALY-down-regulated HeLa cells, consequently causing impairments in transcription, cell proliferation, and cell cycle progression. Interestingly, by comparing the list of RALY targets with the list of genes affected by RALY down-regulation, we found an enrichment of RALY mRNA targets in the down-regulated genes upon RALY silencing. The affected genes include the E2F transcription factor family. Given its role as proliferation-promoting transcription factor, we focused on E2F1. We demonstrate that E2F1 mRNA stability and E2F1 protein levels are reduced in cells lacking RALY expression. Finally, we also show that RALY interacts with transcriptionally active chromatin in both an RNA-dependent and -independent manner and that this association is abolished in the absence of active transcription. Taken together, our results highlight the importance of RALY as an indirect regulator of transcription and cell cycle progression through the regulation of specific mRNA targets, thus strengthening the possibility of a direct gene expression regulation exerted by RALY.
Collapse
Affiliation(s)
- Nicola Cornella
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Toma Tebaldi
- the Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lisa Gasperini
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | | | | | - Annalisa Rossi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| | - Paolo Macchi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| |
Collapse
|
42
|
Stress Granules Contain Rbfox2 with Cell Cycle-related mRNAs. Sci Rep 2017; 7:11211. [PMID: 28894257 PMCID: PMC5593835 DOI: 10.1038/s41598-017-11651-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Rbfox RNA-binding proteins play important roles in the regulation of alternative pre-mRNA splicing, but their role in other gene regulatory mechanisms is not well understood. Here, we show that Rbfox2 is a novel constituent of cytoplasmic stress granules, the translational silencing machinery assembled in response to cellular stress. We also show that the RNA binding activity of the Rbfox family protein is crucial for its localization into stress granules. To investigate the role of Rbfox2 in stress granules we used RNA-immunoprecipitation sequencing to identify cytoplasmic transcriptome-wide targets of Rbfox2. We report that a subset of cell cycle-related genes including retinoblastoma 1 is the target of Rbfox2 in cytoplasmic stress granules, and Rbfox2 regulates the retinoblastoma 1 mRNA and protein expression levels during and following stress exposure. Our study proposes a novel function for Rbfox2 in cytoplasmic stress granules.
Collapse
|
43
|
Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, Ogata J, Yamamoto H, Mohamad Alba S, Azhim A, Kitajima T, Inoue S, Morishita K, Ono K, Koyama-Nasu R, Kotani A. Imbalanced expression of polycistronic miRNA in acute myeloid leukemia. Int J Hematol 2017; 106:811-819. [PMID: 28831750 DOI: 10.1007/s12185-017-2314-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Higuchi
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Yasuhiro Katahira
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Natsumi Kurosaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Naoko Yukihira
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Jun Ogata
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Haruna Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Syakira Mohamad Alba
- Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, University of Technology Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Azran Azhim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Tatsuo Kitajima
- Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, University of Technology Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kazuhiro Morishita
- Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Koyama-Nasu
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan. .,Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
44
|
Cheng Y, Geng L, Zhao L, Zuo P, Wang J. Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol Med Rep 2017; 16:5464-5470. [PMID: 28849054 PMCID: PMC5647092 DOI: 10.3892/mmr.2017.7231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) infection alone is not sufficient for development of cervical cancer and further risk factors are involved, however, the underlying mechanism remains to be elucidated. The authors previously used a microarray assay to reveal microR‑20b (miR‑20b) as a key node in the miRNA‑mRNA network of cervical carcinoma. The present study demonstrated an increased expression of miR‑20b in cervical carcinoma tissue. MiR‑20b was regulated by HPV E6 oncoprotein in cervical cancer. Furthermore, miR‑20b overexpression with mimics induced cell morphological alterations and the epithelial‑mesenchymal transition. Treating cervical cancer cells with the miR‑20b inhibitor decreased the migration and invasion of cervical cancer cells. Tissue inhibitor of metalloproteinase 2 (TIMP‑2), a possible antagonist of matrix metalloproteinase 2, is a metastasis suppressor and predicted to be a potential target of miR‑20b. Fluorescence signals were decreased on transducing HeLa cells with a TIMP‑2 3'‑untranslated region plasmid and miR‑20b mimics compared with control. Finally, TIMP‑2 was identified as a novel target of miR‑20b and was demonstrated to be regulated by the HPV oncoprotein. In addition, miR‑20b and TIMP‑2 were involved in cell invasion regulated by HPV E6. The present study demonstrated a novel pathway of HPV/miR‑20b/TIMP‑2 during the process of invasion in cervical cancer cells.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 10004, P.R. China
| | - Li Geng
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lijun Zhao
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 10004, P.R. China
| | - Peng Zuo
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 10004, P.R. China
| | - Jianliu Wang
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 10004, P.R. China
| |
Collapse
|
45
|
Dysregulation of mRNA Localization and Translation in Genetic Disease. J Neurosci 2017; 36:11418-11426. [PMID: 27911744 DOI: 10.1523/jneurosci.2352-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) acting at various steps in the post-transcriptional regulation of gene expression play crucial roles in neuronal development and synaptic plasticity. Genetic mutations affecting several RBPs and associated factors lead to diverse neurological symptoms, as characterized by neurodevelopmental and neuropsychiatric disorders, neuromuscular and neurodegenerative diseases, and can often be multisystemic diseases. We will highlight the physiological roles of a few specific proteins in molecular mechanisms of cytoplasmic mRNA regulation, and how these processes are dysregulated in genetic disease. Recent advances in computational biology and genomewide analysis, integrated with diverse experimental approaches and model systems, have provided new insights into conserved mechanisms and the shared pathobiology of mRNA dysregulation in disease. Progress has been made to understand the pathobiology of disease mechanisms for myotonic dystrophy, spinal muscular atrophy, and fragile X syndrome, with broader implications for other RBP-associated genetic neurological diseases. This gained knowledge of underlying basic mechanisms has paved the way to the development of therapeutic strategies targeting disease mechanisms.
Collapse
|
46
|
Shortridge MD, Walker MJ, Pavelitz T, Chen Y, Yang W, Varani G. A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS Chem Biol 2017; 12:1611-1620. [PMID: 28437065 DOI: 10.1021/acschembio.7b00180] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) help orchestrate cellular growth and survival through post-transcriptional mechanisms. The dysregulation of miRNA biogenesis can lead to cellular growth defects and chemotherapeutic resistance and plays a direct role in the development of many chronic diseases. Among these RNAs, miR-21 is consistently overexpressed in most human cancers, leading to the down-regulation of key tumor-suppressing and pro-apoptotic factors, suggesting that inhibition of miR-21 biogenesis could reverse these negative effects. However, targeted inhibition of miR-21 using small molecules has had limited success. To overcome difficulties in targeting RNA secondary structure with small molecules, we developed a class of cyclic β-hairpin peptidomimetics which bind to RNA stem-loop structures, such as miRNA precursors, with potent affinity and specificity. We screened an existing cyclic peptide library and discovered a lead structure which binds to pre-miR21 with KD = 200 nM and prefers it over other pre-miRNAs. The NMR structure of the complex shows that the peptide recognizes the Dicer cleavage site and alters processing of the precursor to the mature miRNA in vitro and in cultured cells. The structure provides a rationale for the peptide binding activity and clear guidance for further improvements in affinity and targeting.
Collapse
Affiliation(s)
- Matthew D. Shortridge
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Matthew J. Walker
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Tom Pavelitz
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Yu Chen
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 2017; 628:42-56. [PMID: 28600200 DOI: 10.1016/j.abb.2017.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the structure and dynamics of RNA, because many biologically important RNAs have conformationally flexible structures, which makes them difficult to crystallize. Functional, independently folded RNA domains, range in size between simple stem-loops of as few as 10-20 nucleotides, to 50-70 nucleotides, the size of tRNA and many small ribozymes, to a few hundred nucleotides, the size of more complex RNA enzymes and of the functional domains of non-coding transcripts. In this review, we discuss new methods for sample preparation, assignment strategies and structure determination for independently folded RNA domains of up to 100 kDa in molecular weight.
Collapse
|
48
|
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 2017; 118-119:119-136. [PMID: 28315749 DOI: 10.1016/j.ymeth.2017.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies.
Collapse
|
49
|
Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 2017; 424:162-180. [PMID: 28279710 DOI: 10.1016/j.ydbio.2017.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/24/2022]
Abstract
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.
Collapse
Affiliation(s)
- Michael A Berberoglu
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Thomas L Gallagher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Zachary T Morrow
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Kimberly J Hromowyk
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Inês M Tenente
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Wenzel M, Schüle M, Casanovas S, Strand D, Strand S, Winter J. Identification of a classic nuclear localization signal at the N terminus that regulates the subcellular localization of Rbfox2 isoforms during differentiation of NMuMG and P19 cells. FEBS Lett 2016; 590:4453-4460. [PMID: 27859055 DOI: 10.1002/1873-3468.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023]
Abstract
Nuclear localization of the alternative splicing factor Rbfox2 is achieved by a C-terminal nuclear localization signal (NLS) which can be excluded from some Rbfox2 isoforms by alternative splicing. While this predicts nuclear and cytoplasmic localization, Rbfox2 is exclusively nuclear in some cell types. Here, we identify a second NLS in the N terminus of Rbfox2 isoform 1A that is not included in Rbfox2 isoform 1F. Rbfox2 1A isoforms lacking the C-terminal NLS are nuclear, whereas equivalent 1F isoforms are cytoplasmic. A shift in Rbfox2 expression toward cytoplasmic 1F isoforms occurs during epithelial to mesenchymal transition (EMT) and could be important in regulating the activity and function of Rbfox2.
Collapse
Affiliation(s)
- Manuel Wenzel
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Martin Schüle
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| | - Sonia Casanovas
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Susanne Strand
- First Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|