1
|
Lorenzana GP, Figueiró HV, Coutinho LL, Villela PMS, Eizirik E. Comparative assessment of genotyping-by-sequencing and whole-exome sequencing for estimating genetic diversity and geographic structure in small sample sizes: insights from wild jaguar populations. Genetica 2024:10.1007/s10709-024-00212-5. [PMID: 39322785 DOI: 10.1007/s10709-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Collapse
Affiliation(s)
- Gustavo P Lorenzana
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil.
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Henrique V Figueiró
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, Brazil
| | | | - Priscilla M S Villela
- Centro de Genômica Funcional, ESALQ-USP, Piracicaba, Brazil
- EcoMol Consultoria e Projetos, Piracicaba, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
2
|
Veltman MA, Anthoons B, Schrøder-Nielsen A, Gravendeel B, de Boer HJ. Orchidinae-205: A new genome-wide custom bait set for studying the evolution, systematics, and trade of terrestrial orchids. Mol Ecol Resour 2024; 24:e13986. [PMID: 38899721 DOI: 10.1111/1755-0998.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Terrestrial orchids are a group of genetically understudied, yet culturally and economically important plants. The Orchidinae tribe contains many species that produce edible tubers that are used for the production of traditional delicacies collectively called 'salep'. Overexploitation of wild orchids in the Eastern Mediterranean and Western Asia threatens to drive many of these species to extinction, but cost-effective tools for monitoring their trade are currently lacking. Here we present a custom bait kit for target enrichment and sequencing of 205 novel genetic markers that are tailored to phylogenomic applications in Orchidinae s.l. A subset of 31 markers capture genes putatively involved in the production of glucomannan, a water-soluble polysaccharide that gives salep its distinctive properties. We tested the kit on 73 taxa native to the area, demonstrating universally high locus recovery irrespective of species identity, that exceeds the total sequence length obtained with alternative kits currently available. Phylogenetic inference with concatenation and coalescent approaches was robust and showed high levels of support for most clades, including some which were previously unresolved. Resolution for hybridizing and recently radiated lineages remains difficult, but could be further improved by analysing multiple haplotypes and the non-exonic sequences captured by our kit, with the promise to shed new light on the evolution of enigmatic taxa with a complex speciation history. Offering a step-up from traditional barcoding and universal markers, the genome-wide custom loci targeted by Orchidinae-205 are a valuable new resource to study the evolution, systematics and trade of terrestrial orchids.
Collapse
Affiliation(s)
- Margaretha A Veltman
- Natural History Museum, Oslo, Norway
- Naturalis Biodiversity Center, Leiden, Netherlands
| | | | | | - Barbara Gravendeel
- Naturalis Biodiversity Center, Leiden, Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
3
|
Endelman JB, Kante M, Lindqvist-Kreuze H, Kilian A, Shannon LM, Caraza-Harter MV, Vaillancourt B, Mailloux K, Hamilton JP, Buell CR. Targeted genotyping-by-sequencing of potato and data analysis with R/polyBreedR. THE PLANT GENOME 2024:e20484. [PMID: 38887158 DOI: 10.1002/tpg2.20484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Mid-density targeted genotyping-by-sequencing (GBS) combines trait-specific markers with thousands of genomic markers at an attractive price for linkage mapping and genomic selection. A 2.5K targeted GBS assay for potato (Solanum tuberosum L.) was developed using the DArTag technology and later expanded to 4K targets. Genomic markers were selected from the potato Infinium single nucleotide polymorphism (SNP) array to maximize genome coverage and polymorphism rates. The DArTag and SNP array platforms produced equivalent dendrograms in a test set of 298 tetraploid samples, and 83% of the common markers showed good quantitative agreement, with RMSE (root mean squared error) <0.5. DArTag is suited for genomic selection candidates in the clonal evaluation trial, coupled with imputation to a higher density platform for the training population. Using the software polyBreedR, an R package for the manipulation and analysis of polyploid marker data, the RMSE for imputation by linkage analysis was 0.15 in a small half-diallel population (N = 85), which was significantly lower than the RMSE of 0.42 with the random forest method. Regarding high-value traits, the DArTag markers for resistance to potato virus Y, golden cyst nematode, and potato wart appeared to track their targets successfully, as did multi-allelic markers for maturity and tuber shape. In summary, the potato DArTag assay is a transformative and publicly available technology for potato breeding and genetics.
Collapse
Affiliation(s)
- Jeffrey B Endelman
- Department of Plant & Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Moctar Kante
- Genetics, Genomics and Crop Improvement, International Potato Center, Lima, Peru
| | | | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd., University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, Saint Paul, Minnesota, USA
| | - Maria V Caraza-Harter
- Department of Plant & Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - Kathrine Mailloux
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Ferro dos Santos MR, Giuili E, De Koker A, Everaert C, De Preter K. Computational deconvolution of DNA methylation data from mixed DNA samples. Brief Bioinform 2024; 25:bbae234. [PMID: 38762790 PMCID: PMC11102637 DOI: 10.1093/bib/bbae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
In this review, we provide a comprehensive overview of the different computational tools that have been published for the deconvolution of bulk DNA methylation (DNAm) data. Here, deconvolution refers to the estimation of cell-type proportions that constitute a mixed sample. The paper reviews and compares 25 deconvolution methods (supervised, unsupervised or hybrid) developed between 2012 and 2023 and compares the strengths and limitations of each approach. Moreover, in this study, we describe the impact of the platform used for the generation of methylation data (including microarrays and sequencing), the applied data pre-processing steps and the used reference dataset on the deconvolution performance. Next to reference-based methods, we also examine methods that require only partial reference datasets or require no reference set at all. In this review, we provide guidelines for the use of specific methods dependent on the DNA methylation data type and data availability.
Collapse
Affiliation(s)
- Maísa R Ferro dos Santos
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Edoardo Giuili
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Andries De Koker
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Katleen De Preter
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
6
|
Featherstone LA, McGaughran A. The effect of missing data on evolutionary analysis of sequence capture bycatch, with application to an agricultural pest. Mol Genet Genomics 2024; 299:11. [PMID: 38381254 PMCID: PMC10881687 DOI: 10.1007/s00438-024-02097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.
Collapse
Affiliation(s)
- Leo A Featherstone
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Angela McGaughran
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia.
- Te Aka Mātuatua, School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| |
Collapse
|
7
|
Ceballos-Garzon A, Comtet-Marre S, Peyret P. Applying targeted gene hybridization capture to viruses with a focus to SARS-CoV-2. Virus Res 2024; 340:199293. [PMID: 38101578 PMCID: PMC10767490 DOI: 10.1016/j.virusres.2023.199293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Although next-generation sequencing technologies are advancing rapidly, many research topics often require selective sequencing of genomic regions of interest. In addition, sequencing low-titre viruses is challenging, especially for coronaviruses, which are the largest RNA viruses. Prior to sequencing, enrichment of viral particles can help to significantly increase target sequence information as well as avoid large sequencing efforts and, consequently, can increase sensitivity and reduce sequencing costs. Targeting nucleic acids using capture by hybridization is another efficient method that can be performed by applying complementary probes (DNA or RNA baits) to directly enrich genetic information of interest while removing background non-target material. In studies where sequence capture by hybridization has been applied to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, most authors agree that this technique is useful to easily access sequence targets in complex samples. Furthermore, this approach allows for complete or near-complete sequencing of the viral genome, even in samples with low viral load or poor nucleic acid integrity. In addition, this strategy is highly efficient at discovering new variants by facilitating downstream investigations, such as phylogenetics, epidemiology, and evolution. Commercial kits, as well as in-house protocols, have been developed for enrichment of viral sequences. However, these kits have multiple variations in procedure, with differences in performance. This review compiles and describes studies in which hybridization capture has been applied to SARS-CoV-2 variant genomes.
Collapse
Affiliation(s)
| | | | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDiS, 63000, Clermont-Ferrand, France.
| |
Collapse
|
8
|
White LC. Shallow sequencing can mislead when evaluating hybridization capture methods. CONSERV GENET RESOUR 2023. [DOI: 10.1007/s12686-023-01298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Chow S, Kis O, Mulder DT, Danesh A, Bruce J, Wang TT, Reece D, Bhalis N, Neri P, Sabatini PJ, Keats J, Trudel S, Pugh TJ. Myeloma immunoglobulin rearrangement and translocation detection through targeted capture sequencing. Life Sci Alliance 2023; 6:e202201543. [PMID: 36328595 PMCID: PMC9644417 DOI: 10.26508/lsa.202201543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma is a plasma cell neoplasm characterized by clonal immunoglobulin V(D)J signatures and oncogenic immunoglobulin gene translocations. Additional subclonal genomic changes are acquired with myeloma progression and therapeutic selection. PCR-based methods to detect V(D)J rearrangements can have biases introduced by highly multiplexed reactions and primers undermined by somatic hypermutation, and are not readily extended to include mutation detection. Here, we report a hybrid-capture approach (CapIG-seq) targeting the 3' and 5' ends of the V and J segments of all immunoglobulin loci that enable the efficient detection of V(D)J rearrangements. We also included baits for oncogenic translocations and mutation detection. We demonstrate complete concordance with matched whole-genome sequencing and/or PCR clonotyping of 24 cell lines and report the clonal sequences for 41 uncharacterized cell lines. We also demonstrate the application to patient specimens, including 29 bone marrow and 39 cell-free DNA samples. CapIG-seq shows concordance between bone marrow and cfDNA blood samples (both contemporaneous and follow-up) with regard to the somatic variant, V(D)J, and translocation detection. CapIG-seq is a novel, efficient approach to examining genomic alterations in myeloma.
Collapse
Affiliation(s)
- Signy Chow
- University Health Network, Toronto, Canada
- Sunnybrook Health Sciences Centre, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Olena Kis
- University Health Network, Toronto, Canada
| | | | | | - Jeff Bruce
- University Health Network, Toronto, Canada
| | - Ting Ting Wang
- University Health Network, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Donna Reece
- University Health Network, Toronto, Canada
- University of Toronto, Toronto, Canada
| | | | | | - Peter Jb Sabatini
- University Health Network, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Jonathan Keats
- Translational Genomics Research Institute, City of Hope, AZ, USA
| | - Suzanne Trudel
- University Health Network, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Trevor J Pugh
- University Health Network, Toronto, Canada
- University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
11
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
12
|
Comtet-Marre S, Chakoory O, Peyret P. Targeted 16S rRNA Gene Capture by Hybridization and Bioinformatic Analysis. Methods Mol Biol 2022; 2605:187-208. [PMID: 36520395 DOI: 10.1007/978-1-0716-2871-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Next-generation sequencing technologies have impressively unlocked capacities to depict the complexity of microbial communities. Microbial community structure is for now routinely monitored by sequencing of 16S rRNA gene, a phylogenetic marker almost conserved among bacteria and archaea. Nevertheless, amplicon sequencing, the most popular used approach, suffers from several biases impacting the picture of microbial communities. Here, we describe an innovative method based on gene capture by hybridization for the targeted enrichment of 16S rDNA biomarker from metagenomic samples. Coupled to near full-length 16S rDNA reconstruction, this approach enables an exhaustive and accurate description of microbial communities by enhancing taxonomic and phylogenetic resolutions. Furthermore, access of captured 16S flanking regions opens link between structure and function in microbial communities.
Collapse
Affiliation(s)
| | - Oshma Chakoory
- Université Clermont-Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont-Auvergne, INRAE, MEDiS, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Chakoory O, Comtet-Marre S, Peyret P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genom Bioinform 2022; 4:lqac070. [PMID: 36159175 PMCID: PMC9492272 DOI: 10.1093/nargab/lqac070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.
Collapse
Affiliation(s)
- Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
15
|
Kearns AM, Campana MG, Slikas B, Berry L, Saitoh T, Cibois A, Fleischer RC. Conservation genomics and systematics of a near-extinct island radiation. Mol Ecol 2022; 31:1995-2012. [PMID: 35119154 DOI: 10.1111/mec.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
Abstract
Conservation benefits from incorporating genomics to explore the impacts of population declines, inbreeding, loss of genetic variation and hybridization. Here we use the near-extinct Mariana Islands reedwarbler radiation to showcase how ancient DNA approaches can allow insights into the population dynamics of extinct species and threatened populations for which historical museum specimens or material with low DNA yield (e.g., scats, feathers) are the only sources for DNA. Despite their having paraphyletic mtDNA, nuclear SNPs support the distinctiveness of critically endangered Acrocephalus hiwae and the other three species in the radiation that went extinct between the 1960s and 1990s. Two extinct species, A. yamashinae and A. luscinius, were deeply divergent from each other and from a third less differentiated lineage containing A. hiwae and extinct A. nijoi. Both mtDNA and SNPs suggest that the two isolated populations of A. hiwae from Saipan and Alamagan Islands are sufficiently distinct to warrant subspecies recognition and separate conservation management. We detected no significant differences in genetic diversity or inbreeding between Saipan and Alamagan, nor strong signatures of geographic structuring within either island. However, the implications of possible signatures of inbreeding in both Saipan and Alamagan, and long-term population declines in A. hiwae that predate modern anthropogenic threats require further study with denser population sampling. Our study highlights the value conservation genomics studies of island radiations have as windows onto the possible future for the world's biota as climate change and habitat destruction increasingly fragments their ranges and contributes to rapid declines in population abundances.
Collapse
Affiliation(s)
- Anna M Kearns
- Center for Conservation Genomics, Smithsonian's National Zoological Park and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoological Park and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Beth Slikas
- Center for Conservation Genomics, Smithsonian's National Zoological Park and Conservation Biology Institute, Washington, DC, 20008, USA.,Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lainie Berry
- Department of Lands and Natural Resources, Commonwealth of the Northern Mariana Islands, Saipan, MP, 96950, USA.,Hawaii Department of Land and Natural Resources-Division of Forestry and Wildlife, Honolulu, HI, 96813, USA
| | - Takema Saitoh
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba, 270-1145, Japan
| | - Alice Cibois
- Natural History Museum of Geneva, CP, 6434, 1211, Geneva, Switzerland
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoological Park and Conservation Biology Institute, Washington, DC, 20008, USA
| |
Collapse
|
16
|
Marre S, Gasc C, Forest C, Lebbaoui Y, Mosoni P, Peyret P. Revealing microbial species diversity using sequence capture by hybridization. Microb Genom 2021; 7. [PMID: 34882529 PMCID: PMC8767324 DOI: 10.1099/mgen.0.000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales, 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.
Collapse
Affiliation(s)
- Sophie Marre
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Cyrielle Gasc
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France.,Present address: MaaT Pharma, F-69007 LYON, France
| | - Camille Forest
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Yacine Lebbaoui
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Pascale Mosoni
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
17
|
Massini Espino M, Mychajliw AM, Almonte JN, Allentoft ME, Van Dam AR. Raptor roosts as invasion archives: insights from the first black rat mitochondrial genome sequenced from the Caribbean. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
19
|
Günther B, Marre S, Defois C, Merzi T, Blanc P, Peyret P, Arnaud-Haond S. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol Ecol Resour 2021; 22:623-637. [PMID: 34486815 DOI: 10.1111/1755-0998.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Biodiversity inventory of marine systems remains limited due to unbalanced access to the three ocean dimensions. The use of environmental DNA (eDNA) for metabarcoding allows fast and effective biodiversity inventory and is forecast as a future biodiversity research and biomonitoring tool. However, in poorly understood ecosystems, eDNA results remain difficult to interpret due to large gaps in reference databases and PCR bias limiting the detection of some major phyla. Here, we aimed to circumvent these limitations by avoiding PCR and recollecting larger DNA fragments to improve assignment of detected taxa through phylogenetic reconstruction. We applied capture by hybridization (CBH) to enrich DNA from deep-sea sediment samples and compared the results with those obtained through an up-to-date metabarcoding PCR-based approach (MTB). Originally developed for bacterial communities and targeting 16S rDNA, the CBH approach was applied to 18S rDNA to improve the detection of species forming benthic communities of eukaryotes, with a particular focus on metazoans. The results confirmed the possibility of extending CBH to metazoans with two major advantages: (i) CBH revealed a broader spectrum of prokaryotic, eukaryotic, and particularly metazoan diversity, and (ii) CBH allowed much more robust phylogenetic reconstructions of full-length barcodes with up to 1900 base pairs. This is particularly important for taxa whose assignment is hampered by gaps in reference databases. This study provides a database and probes to apply 18S CBH to diverse marine systems, confirming this promising new tool to improve biodiversity assessments in data-poor ecosystems such as those in the deep sea.
Collapse
Affiliation(s)
- Babett Günther
- MARBEC, Universite of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sophie Marre
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Thomas Merzi
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Philippe Blanc
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
20
|
Damavandi F, Wang W, Shen WZ, Cetinel S, Jordan T, Jovel J, Montemagno C, Wong GKS. Enrichment of low abundance DNA/RNA by oligonucleotide-clicked iron oxide nanoparticles. Sci Rep 2021; 11:13053. [PMID: 34158543 PMCID: PMC8219684 DOI: 10.1038/s41598-021-92376-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Detection of low abundance target DNA/RNA for clinical or research purposes is challenging because the target sequences can be hidden under a large background of human genomic or non-human metagenomic sequences. We describe a probe-based capture method to enrich for target sequences with DNA-clicked iron oxide nanoparticles. Our method was tested against commercial capture assays using streptavidin beads, on a set of probes derived from a common genotype of the hepatitis C virus. We showed that our method is more specific and sensitive, most likely due to the combination of an inert silica coating and a high density of DNA probes clicked to the nanoparticles. This facilitates target capture below the limits of detection for TaqMan qPCR, and we believe that this method has the potential to transform management of infectious diseases.
Collapse
Affiliation(s)
- Fereshte Damavandi
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, Edmonton, AB, T6G 2M9, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Geneis Inc., Bldg A, 5 Guangshun North Street, Beijing, China
| | - Wei-Zheng Shen
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, Edmonton, AB, T6G 2M9, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Sibel Cetinel
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, Edmonton, AB, T6G 2M9, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.,Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tracy Jordan
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, Edmonton, AB, T6G 2M9, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
21
|
McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Struebig M, Deaville R, Jepson PD, Jarman S, Polanowski A, Morin PA, Rossiter SJ. Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Syst Biol 2020; 69:479-501. [PMID: 31633766 PMCID: PMC7164366 DOI: 10.1093/sysbio/syz068] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.]
Collapse
Affiliation(s)
- Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Ave. NW, Washington DC 20560, USA
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Álvarez-Carretero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Simon Jarman
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| | - Andrea Polanowski
- Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla CA 92037 USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
22
|
Hiltbrunner M, Heckel G. Assessing Genome-Wide Diversity in European Hantaviruses through Sequence Capture from Natural Host Samples. Viruses 2020; 12:v12070749. [PMID: 32664593 PMCID: PMC7412162 DOI: 10.3390/v12070749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Research on the ecology and evolution of viruses is often hampered by the limitation of sequence information to short parts of the genomes or single genomes derived from cultures. In this study, we use hybrid sequence capture enrichment in combination with high-throughput sequencing to provide efficient access to full genomes of European hantaviruses from rodent samples obtained in the field. We applied this methodology to Tula (TULV) and Puumala (PUUV) orthohantaviruses for which analyses from natural host samples are typically restricted to partial sequences of their tri-segmented RNA genome. We assembled a total of ten novel hantavirus genomes de novo with very high coverage (on average >99%) and sequencing depth (average >247×). A comparison with partial Sanger sequences indicated an accuracy of >99.9% for the assemblies. An analysis of two common vole (Microtus arvalis) samples infected with two TULV strains each allowed for the de novo assembly of all four TULV genomes. Combining the novel sequences with all available TULV and PUUV genomes revealed very similar patterns of sequence diversity along the genomes, except for remarkably higher diversity in the non-coding region of the S-segment in PUUV. The genomic distribution of polymorphisms in the coding sequence was similar between the species, but differed between the segments with the highest sequence divergence of 0.274 for the M-segment, 0.265 for the S-segment, and 0.248 for the L-segment (overall 0.258). Phylogenetic analyses showed the clustering of genome sequences consistent with their geographic distribution within each species. Genome-wide data yielded extremely high node support values, despite the impact of strong mutational saturation that is expected for hantavirus sequences obtained over large spatial distances. We conclude that genome sequencing based on capture enrichment protocols provides an efficient means for ecological and evolutionary investigations of hantaviruses at an unprecedented completeness and depth.
Collapse
Affiliation(s)
- Melanie Hiltbrunner
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland;
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland;
- Swiss Institute of Bioinformatics, Quartier Sorge, 1011 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
23
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
24
|
Lavretsky P, McInerney NR, Mohl JE, Brown JI, James HF, McCracken KG, Fleischer RC. Assessing changes in genomic divergence following a century of human-mediated secondary contact among wild and captive-bred ducks. Mol Ecol 2020; 29:578-595. [PMID: 31872482 DOI: 10.1111/mec.15343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Nancy Rotzel McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | - Jonathon E Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Joshua I Brown
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.,Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Institute of Arctic Biology, University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
25
|
Bernardo A, St. Amand P, Le HQ, Su Z, Bai G. Multiplex restriction amplicon sequencing: a novel next-generation sequencing-based marker platform for high-throughput genotyping. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:254-265. [PMID: 31199572 PMCID: PMC6920337 DOI: 10.1111/pbi.13192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 05/31/2023]
Abstract
To enable rapid selection of traits in marker-assisted breeding, markers must be technically simple, low-cost, high-throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3'-ends, preceded by 6-10 bases of specific or degenerate nucleotide sequences and then by a unique M13-tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next-generation sequencing-based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.
Collapse
Affiliation(s)
- Amy Bernardo
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
| | - Ha Quang Le
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Zhenqi Su
- Department of AgronomyKansas State UniversityManhattanKSUSA
- China Agricultural UniversityBeijingChina
| | - Guihua Bai
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
- Department of AgronomyKansas State UniversityManhattanKSUSA
| |
Collapse
|
26
|
Leong KW, Yu F, Adalsteinsson VA, Reed S, Gydush G, Ladas I, Li J, Tantisira KG, Makrigiorgos GM. A nuclease-polymerase chain reaction enables amplification of probes used for capture-based DNA target enrichment. Nucleic Acids Res 2019; 47:e147. [PMID: 31598677 PMCID: PMC6902007 DOI: 10.1093/nar/gkz870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
DNA target enrichment via hybridization capture is a commonly adopted approach which remains expensive due in-part to using biotinylated-probe panels. Here we provide a novel isothermal amplification reaction to amplify rapidly existing probe panels without knowledge of the sequences involved, thereby decreasing a major portion of the overall sample preparation cost. The reaction employs two thermostable enzymes, BST-polymerase and duplex-specific nuclease DSN. DSN initiates random ‘nicks’ on double-stranded-DNA which enable BST to polymerize DNA by displacing the nicked-strand. Displaced strands re-hybridize and the process leads to an exponential chain-reaction generating biotinylated DNA fragments within minutes. When starting from single-stranded-DNA, DNA is first converted to double-stranded-DNA via terminal-deoxynucleotidyl-transferase (TdT) prior to initiation of BST–DSN reaction. Biotinylated probes generated by TdT–BST–DSN (TBD) reactions using panels of 33, 190 or 7186 DNA targets are used for hybrid-capture-based target enrichment from amplified circulating-DNA, followed by targeted re-sequencing. Polymerase-nuclease isothermal-chain-reactions generate random amplified probes with no apparent sequence dependence. One round of target-capture using TBD probes generates a modest on-target sequencing ratio, while two successive rounds of capture generate >80% on-target reads with good sequencing uniformity. TBD-reactions generate enough capture-probes to increase by approximately two to three orders-of-magnitude the target-enrichment experiments possible from an initial set of probes.
Collapse
Affiliation(s)
- Ka Wai Leong
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sarah Reed
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gregory Gydush
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ioannis Ladas
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medicine School, Boston, MA 02142, USA
| | - Kelan G Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medicine School, Boston, MA 02142, USA
| | - Gerassimos Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Liu C, Li Y, Liu BF. Micromixers and their applications in kinetic analysis of biochemical reactions. Talanta 2019; 205:120136. [DOI: 10.1016/j.talanta.2019.120136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023]
|
28
|
Abstract
The purpose of this Milankovitch review is to explain the significance of Quaternary DNA studies and the importance of the recent methodological advances that have enabled the study of late Quaternary remains in more detail, and the testing of new assumptions in evolutionary biology and phylogeography to reconstruct the past. The topic is wide, and this review is not intended to be an exhaustive account of all the aDNA work performed in the last three decades on late-Quaternary remains. Instead, it is a selection of relevant studies aimed at illustrating how aDNA has been used to reconstruct not only environments of the past, but also the history of many species including our own.
Collapse
|
29
|
Simon C, Gordon ERL, Moulds MS, Cole JA, Haji D, Lemmon AR, Lemmon EM, Kortyna M, Nazario K, Wade EJ, Meister RC, Goemans G, Chiswell SM, Pessacq P, Veloso C, McCutcheon JP, Łukasik P. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric R L Gordon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - M S Moulds
- Australian Museum Research Institute, Sydney, NSW, Australia
| | - Jeffrey A Cole
- Natural Sciences Division, Pasadena City College, Pasadena, CA, USA
| | - Diler Haji
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katherine Nazario
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth J Wade
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Department of Natural Sciences and Mathematics, Curry College, Milton, MA, USA
| | - Russell C Meister
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Geert Goemans
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, Esquel, Chubut, Argentina
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
30
|
Seeber PA, McEwen GK, Löber U, Förster DW, East ML, Melzheimer J, Greenwood AD. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes. Mol Ecol Resour 2019; 19:1486-1496. [PMID: 31349392 DOI: 10.1111/1755-0998.13069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Determining species distributions can be extremely challenging but is crucial to ecological and conservation research. Environmental DNA (eDNA) approaches have shown particular promise in aquatic systems for several vertebrate and invertebrate species. For terrestrial animals, however, eDNA-based surveys are considerably more difficult due to the lack of or difficulty in obtaining appropriate sampling substrate. In water-limited ecosystem where terrestrial mammals are often forced to congregate at waterholes, water and sediment from shared water sources may be a suitable substrate for noninvasive eDNA approaches. We characterized mitochondrial DNA sequences from a broad range of terrestrial mammal species in two different African ecosystems (in Namibia and Tanzania) using eDNA isolated from native water, sediment and water filtered through glass fibre filters. A hybridization capture enrichment with RNA probes targeting the mitochondrial genomes of 38 mammal species representing the genera/families expected at the respective ecosystems was employed, and 16 species were identified, with a maximum mitogenome coverage of 99.8%. Conventional genus-specific PCRs were tested on environmental samples for two genera producing fewer positive results than hybridization capture enrichment. An experiment with mock samples using DNA from non-African mammals showed that baits covering 30% of nontarget mitogenomes produced 91% mitogenome coverage after capture. In the mock samples, over-representation of DNA of one species still allowed for the detection of DNA of other species that was at a 100-fold lower concentration. Hybridization capture enrichment of eDNA is therefore an effective method for monitoring terrestrial mammal species from shared water sources.
Collapse
Affiliation(s)
- Peter Andreas Seeber
- Department of Wildlife Diseases, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gayle K McEwen
- Department of Wildlife Diseases, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Daniel W Förster
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marion Linda East
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jörg Melzheimer
- Department of Evolutionary Ecology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Asandei A, Mereuta L, Park J, Seo CH, Park Y, Luchian T. Nonfunctionalized PNAs as Beacons for Nucleic Acid Detection in a Nanopore System. ACS Sens 2019; 4:1502-1507. [PMID: 31119934 DOI: 10.1021/acssensors.9b00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, single-channel current recordings were used to selectively detect individual ssDNA strands in the vestibule of the α-hemolysin (α-HL) protein nanopore. The sensing mechanism was based on the detection of the intrinsic topological change of target ssDNA molecules after the hybridization with complementary PNA fragments. The readily distinguishable current signatures of PNA-DNA duplexes reversible association with the α-HL's vestibule, in terms of blockade amplitudes and kinetic features, allows specific detection of nucleic acid hybridization.
Collapse
Affiliation(s)
| | | | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea, 32588
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea, 32588
| | - Yoonkyung Park
- Department of Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, South Korea, 61452
| | | |
Collapse
|
32
|
Cruaud A, Nidelet S, Arnal P, Weber A, Fusu L, Gumovsky A, Huber J, Polaszek A, Rasplus JY. Optimized DNA extraction and library preparation for minute arthropods: Application to target enrichment in chalcid wasps used for biocontrol. Mol Ecol Resour 2019; 19:702-710. [PMID: 30758892 DOI: 10.1111/1755-0998.13006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Target enrichment is increasingly used for genotyping of plant and animal species or to better understand the evolutionary history of important lineages through the inference of statistically robust phylogenies. Limitations to routine target enrichment are both the complexity of current protocols and low input DNA quantity. Thus, working with tiny organisms such as microarthropods can be challenging. Here, we propose easy to set up optimizations for DNA extraction and library preparation prior to target enrichment. Prepared libraries were used to capture 1,432 ultraconserved elements (UCEs) from microhymenoptera (Chalcidoidea), which are among the tiniest insects on Earth and the most commercialized worldwide for biological control purposes. Results show no correlation between input DNA quantities (1.8-250 ng, 0.4 ng with an extra whole genome amplification step) and the number of sequenced UCEs on an Illumina MiSeq. Phylogenetic inferences highlight the potential of UCEs to solve relationships within the families of chalcid wasps, which has not been achieved so far. The protocol (library preparation + target enrichment) allows processing 96 specimens in five working days, by a single person, without requiring the use of expensive robotic molecular biology platforms, which could help to generalize the use of target enrichment for minute specimens.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Sabine Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Pierre Arnal
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France.,ISYEB-UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Audrey Weber
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Lucian Fusu
- Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alex Gumovsky
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - John Huber
- Natural Resources Canada, c/o Canadian National Collection of Insects, Ottawa, Canada
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Forman TE, Niemi AK, Prahalad P, Shi RZ, Nally LM. Cinacalcet therapy in an infant with an R185Q calcium-sensing receptor mutation causing hyperparathyroidism: a case report and review of the literature. J Pediatr Endocrinol Metab 2019; 32:305-310. [PMID: 30730839 DOI: 10.1515/jpem-2018-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022]
Abstract
Background Neonatal severe hyperparathyroidism (NSHPT) is commonly treated with either parathyroidectomy or pharmacologic agents with varying efficacy and numerous side effects. Reports of using cinacalcet for NSHPT have increased, however, the effective dose for pediatric patients from the onset of symptoms through infancy has not been established. Case presentation We describe the clinical course of a newborn with a de novo R185Q mutation in the calcium-sensing receptor (CASR) gene, causing NSHPT. The infant received cinacalcet from the first days of life until 1 year of age. Conclusions Cinacalcet therapy effectively controlled the patient's serum calcium, phosphorus, and parathyroid hormone (PTH) levels without side effects.
Collapse
Affiliation(s)
- Thomas E Forman
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna-Kaisa Niemi
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priya Prahalad
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Run Zhang Shi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Laura M Nally
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Endocrinology, Yale School of Medicine, 333 Cedar Street, LMP 3103E, P.O. Box 208064, New Haven, CT 06520, USA, Phone: 203-785-5809, Fax: 203-764-9149
| |
Collapse
|
34
|
Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG. Design and evaluation of a sequence capture system for genome-wide SNP genotyping in highly heterozygous plant genomes: a case study with a keystone Neotropical hardwood tree genome. DNA Res 2019; 25:535-545. [PMID: 30020434 PMCID: PMC6191306 DOI: 10.1093/dnares/dsy023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Targeted sequence capture coupled to high-throughput sequencing has become a powerful method for the study of genome-wide sequence variation. Following our recent development of a genome assembly for the Pink Ipê tree (Handroanthus impetiginosus), a widely distributed Neotropical timber species, we now report the development of a set of 24,751 capture probes for single-nucleotide polymorphisms (SNPs) characterization and genotyping across 18,216 distinct loci, sampling more than 10 Mbp of the species genome. This system identifies nearly 200,000 SNPs located inside or in close proximity to almost 14,000 annotated protein-coding genes, generating quality genotypic data in populations spanning wide geographic distances across the species native range. To provide recommendations for future developments of similar systems for highly heterozygous plant genomes we investigated issues such as probe design, sequencing coverage and bioinformatics, including the evaluation of the capture efficiency and a reassessment of the technical reproducibility of the assay for SNPs recall and genotyping precision. Our results highlight the value of a detailed probe screening on a preliminary genome assembly to produce reliable data for downstream genetic studies. This work should inspire and assist the development of similar genomic resources for other orphan crops and forest trees with highly heterozygous genomes.
Collapse
Affiliation(s)
- Orzenil Bonfim Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, Brazil.,Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, Brazil.,Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
35
|
Pericard P, Dufresne Y, Couderc L, Blanquart S, Touzet H. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics 2018; 34:585-591. [PMID: 29040406 DOI: 10.1093/bioinformatics/btx644] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Motivation Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is essential to understanding even the most elementary ecosystems. However, current high-throughput sequencing technologies generate short reads which partially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy identification at high resolution. Results We designed MATAM, a software dedicated to the fast and accurate targeted assembly of short reads sequenced from a genomic marker of interest. The method implements a stepwise process based on construction and analysis of a read overlap graph. It is applied to the assembly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We show that MATAM outperforms other available methods in terms of low error rates and recovered fractions and is suitable to provide improved assemblies for precise taxonomic assignments. Availability and implementation https://github.com/bonsai-team/matam. Contact pierre.pericard@gmail.com or helene.touzet@univ-lille1.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pierre Pericard
- CRIStAL (UMR CNRS 9189, Université Lille 1).,Inria Lille Nord-Europe
| | - Yoann Dufresne
- CRIStAL (UMR CNRS 9189, Université Lille 1).,Inria Lille Nord-Europe
| | - Loïc Couderc
- CRIStAL (UMR CNRS 9189, Université Lille 1).,Bilille, 59650 Villeneuve d'Ascq, France
| | - Samuel Blanquart
- CRIStAL (UMR CNRS 9189, Université Lille 1).,Inria Lille Nord-Europe
| | - Hélène Touzet
- CRIStAL (UMR CNRS 9189, Université Lille 1).,Inria Lille Nord-Europe
| |
Collapse
|
36
|
Gaudin M, Desnues C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. Front Microbiol 2018; 9:2924. [PMID: 30542340 PMCID: PMC6277869 DOI: 10.3389/fmicb.2018.02924] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
This review describes target-enrichment approaches followed by next generation sequencing and their recent application to the research and diagnostic field of modern and past infectious human diseases caused by viruses, bacteria, parasites and fungi.
Collapse
Affiliation(s)
- Maxime Gaudin
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Christelle Desnues
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
37
|
Jaeger N, Besaury L, Röhling AN, Koch F, Delort AM, Gasc C, Greule M, Kolb S, Nadalig T, Peyret P, Vuilleumier S, Amato P, Bringel F, Keppler F. Chloromethane formation and degradation in the fern phyllosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1278-1287. [PMID: 29660879 DOI: 10.1016/j.scitotenv.2018.03.316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Chloromethane (CH3Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH3Cl budget are approximate. The strength of the CH3Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH3Cl. Their ability to degrade CH3Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH3Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH3Cl at rates from 2.1 to 17 and 0.3 to 0.9μggdw-1day-1 for C. cooperi and D. filix-mas respectively, depending on CH3Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH3Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH3Cl, but produced it at rates ranging from 0.6 to 128μggdw-1day-1, with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH3Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH3Cl.
Collapse
Affiliation(s)
- Nicole Jaeger
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany.
| | - Ludovic Besaury
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France; Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France; UMR FARE, Université de Reims Champagne Ardenne, INRA, Reims, France
| | - Amelie Ninja Röhling
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Fabien Koch
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France
| | - Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Markus Greule
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Thierry Nadalig
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France
| | - Françoise Bringel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany; Heidelberg Center for the Environment HCE, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
38
|
Cariou M, Ribière C, Morlière S, Gauthier JP, Simon JC, Peyret P, Charlat S. Comparing 16S rDNA amplicon sequencing and hybridization capture for pea aphid microbiota diversity analysis. BMC Res Notes 2018; 11:461. [PMID: 29996907 PMCID: PMC6042230 DOI: 10.1186/s13104-018-3559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Targeted sequencing of 16S rDNA amplicons is routinely used for microbial community profiling but this method suffers several limitations such as bias affinity of universal primers and short read size. Gene capture by hybridization represents a promising alternative. Here we used a metagenomic extract from the pea aphid Acyrthosiphon pisum to compare the performances of two widely used PCR primer pairs with DNA capture, based on solution hybrid selection. RESULTS All methods produced an exhaustive description of the 8 bacterial taxa known to be present in this sample. In addition, the methods yielded similar quantitative results, with the number of reads strongly correlating with quantitative PCR controls. Both methods can thus be considered as qualitatively and quantitatively robust on such a sample with low microbial complexity.
Collapse
Affiliation(s)
- Marie Cariou
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne, France
- Present Address: Department of Biology, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Céline Ribière
- INRA, MEDIS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Stéphanie Morlière
- INRA, UMR 1349 (IGEPP “Institut de Génétique, Environnement et Protection des Plantes”) INRA/Agrocampus Ouest/Université Rennes 1, 35653 Le Rheu, France
| | - Jean-Pierre Gauthier
- INRA, UMR 1349 (IGEPP “Institut de Génétique, Environnement et Protection des Plantes”) INRA/Agrocampus Ouest/Université Rennes 1, 35653 Le Rheu, France
| | - Jean-Christophe Simon
- INRA, UMR 1349 (IGEPP “Institut de Génétique, Environnement et Protection des Plantes”) INRA/Agrocampus Ouest/Université Rennes 1, 35653 Le Rheu, France
| | - Pierre Peyret
- INRA, MEDIS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
39
|
Gasc C, Peyret P. Hybridization capture reveals microbial diversity missed using current profiling methods. MICROBIOME 2018; 6:61. [PMID: 29587880 PMCID: PMC5870382 DOI: 10.1186/s40168-018-0442-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/13/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Microorganisms comprise the majority of living organisms on our planet. For many years, exploration of the composition of microbial communities has been performed through the PCR-based study of the small subunit rRNA gene due to its high conservation across the domains of life. The application of this method has resulted in the discovery of many unexpected evolutionary lineages. However, amplicon sequencing is subject to numerous biases, with some taxa being missed, and is limited by the read length of second-generation sequencing platforms, which drastically reduces the phylogenetic resolution. RESULTS Here, we describe a hybridization capture strategy that allows the enrichment of 16S rRNA genes from metagenomic samples and enables an exhaustive identification and a complete reconstruction of the biomarker. Applying this approach to a microbial mock community and a soil sample, we demonstrated that hybridization capture is able to reveal greater microbial diversity than 16S rDNA amplicon sequencing and shotgun sequencing. The reconstruction of full-length 16S rRNA genes facilitated the improvement of phylogenetic resolution and the discovery of novel prokaryotic taxa. CONCLUSIONS Our results demonstrate that hybridization capture can lead to major breakthroughs in our understanding of microbial diversity, overcoming the limitations of conventional 16S rRNA gene studies. If applied to a broad range of environmental samples, this innovative approach could reveal the undescribed diversity of the still underexplored microbial communities and could provide a better understanding of ecosystem function.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, 28, place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, 28, place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
40
|
Torkamaneh D, Boyle B, Belzile F. Efficient genome-wide genotyping strategies and data integration in crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:499-511. [PMID: 29352324 DOI: 10.1007/s00122-018-3056-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada.
| |
Collapse
|
41
|
Chen X, Ni G, He K, Ding ZL, Li GM, Adeola AC, Murphy RW, Wang WZ, Zhang YP. Capture Hybridization of Long-Range DNA Fragments for High-Throughput Sequencing. Methods Mol Biol 2018. [PMID: 29536436 DOI: 10.1007/978-1-4939-7717-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capture hybridization coupled with high-throughput sequencing (HTS) has become one of the most popular approaches to address some scientific problems not only for fundamental evolution but also for ecology and human disease in recent years. However, the technical problem of limited probe capture ability affects its widespread application. Here, we propose to capture hybridize long-range DNA fragments for HTS (termed LR-LCH). We provide a case of three amphibian samples to examine LR-LCH with 2 kb libraries and comparison of standard capture hybridization with 480 bp libraries. Capture sensitivity increased from an average 13.57% of standard capture hybridization to an average 19.80% of LR-LCH; capture efficiency also increased from an average 72.56% of standard capture hybridization to an average 97.71% of LR-LCH. These indicate that longer fragments in the library generally contain both relatively variable regions and relatively conservative regions. The divergent parts of target DNA are enriched along with conservative parts of DNA sequence that effectively captured during hybridization. We present a protocol that allows users to overcome the low capture sensitivity problem for high divergent regions.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China
| | - Gang Ni
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China.,Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming, Yunnan, China
| | - Kai He
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China
| | - Zhao-Li Ding
- Kunming Biological Diversity Regional Centre of Large Apparatus and Equipments, Kunming, Yunnan, China.,Public Technology Service Centre, Kunming, Yunnan, China
| | - Gui-Mei Li
- Kunming Biological Diversity Regional Centre of Large Apparatus and Equipments, Kunming, Yunnan, China.,Public Technology Service Centre, Kunming, Yunnan, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China.,China-Africa Centre for Research and Education & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming, Yunnan, China.,Animal Branch of the Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Wen-Zhi Wang
- Wildlife Forensics Science Services, Kunming, Yunnan, China. .,Guizhou Academy of Testing and Analysis, Guiyang, Guizhou, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Animal Branch of the Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, China. .,Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming, Yunnan, China. .,Animal Branch of the Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Laboratory for Conservation and Utilization of Bio-resource and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
42
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Luhmann N, Doerr D, Chauve C. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes. Microb Genom 2017; 3:e000123. [PMID: 29114402 PMCID: PMC5643016 DOI: 10.1099/mgen.0.000123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains.
Collapse
Affiliation(s)
- Nina Luhmann
- 2Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,1International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes", Bielefeld University, Bielefeld, Germany
| | - Daniel Doerr
- 2Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,3School of Computer and Communication Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Cedric Chauve
- 4Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
44
|
Oxelman B, Brysting AK, Jones GR, Marcussen T, Oberprieler C, Pfeil BE. Phylogenetics of Allopolyploids. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| | - Anne Krag Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Graham R. Jones
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, D-93053 Regensburg, Germany
| | - Bernard E. Pfeil
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| |
Collapse
|
45
|
van der Valk T, Lona Durazo F, Dalén L, Guschanski K. Whole mitochondrial genome capture from faecal samples and museum-preserved specimens. Mol Ecol Resour 2017; 17:e111-e121. [DOI: 10.1111/1755-0998.12699] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Tom van der Valk
- Animal Ecology; Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Frida Lona Durazo
- Animal Ecology; Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; Stockholm Sweden
| | - Katerina Guschanski
- Animal Ecology; Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
46
|
Di Donato A, Andolfo G, Ferrarini A, Delledonne M, Ercolano MR. Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 2017; 60:850-859. [PMID: 28742982 DOI: 10.1139/gen-2016-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogen receptor proteins such as receptor-like protein (RLP), receptor-like kinase (RLK), and nucleotide-binding leucine-rich repeat (NLR) play a leading role in plant immunity activation. The genome architecture of such genes has been extensively investigated in several plant species. However, we still know little about their elaborate reorganization that arose during the plant speciation process. Using recently released pepper and eggplant genome sequences, we were able to identify 1097 pathogen recognition genes (PRGs) in the cultivated pepper Zunla-1 and 775 in the eggplant line Nakate-Shinkuro. The retrieved genes were analysed for their tendency to cluster, using different methods to infer the means of grouping. Orthologous relationships among clustering loci were found, and interesting reshuffling within given loci was observed for each analysed species. The information obtained was integrated into a comparative map to highlight the evolutionary dynamics in which the PRG loci were involved. Diversification of 14 selected PRG-rich regions was also explored using a DNA target-enrichment approach. A large number of gene variants were found as well as rearrangements of sequences encoding single protein domain and changes in chromosome gene order among species. Gene duplication and transposition activity have clearly influenced plant genome R-gene architecture and diversification. Our findings contribute to addressing several biological questions concerning the parallel evolution that occurred between genomes of the family Solanaceae. Moreover, the integration of different methods proved a powerful approach to reconstruct the evolutionary history in plant families and to transfer important biology findings among plant genomes.
Collapse
Affiliation(s)
- A Di Donato
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - G Andolfo
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - A Ferrarini
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M Delledonne
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M R Ercolano
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
47
|
Gasc C, Peyret P. Revealing large metagenomic regions through long DNA fragment hybridization capture. MICROBIOME 2017; 5:33. [PMID: 28292322 PMCID: PMC5351058 DOI: 10.1186/s40168-017-0251-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/05/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes from single organisms or metagenomic samples. However, due to the limited capacity of short-read sequence data to assemble complex or low coverage regions, genomes are typically fragmented, leading to draft genomes with numerous underexplored large genomic regions. Revealing these missing sequences is a major goal to resolve concerns in numerous biological studies. METHODS To overcome these limitations, we developed an innovative target enrichment method for the reconstruction of large unknown genomic regions. Based on a hybridization capture strategy, this approach enables the enrichment of large genomic regions allowing the reconstruction of tens of kilobase pairs flanking a short, targeted DNA sequence. RESULTS Applied to a metagenomic soil sample targeting the linA gene, the biomarker of hexachlorocyclohexane (HCH) degradation, our method permitted the enrichment of the gene and its flanking regions leading to the reconstruction of several contigs and complete plasmids exceeding tens of kilobase pairs surrounding linA. Thus, through gene association and genome reconstruction, we identified microbial species involved in HCH degradation which constitute targets to improve biostimulation treatments. CONCLUSIONS This new hybridization capture strategy makes surveying and deconvoluting complex genomic regions possible through large genomic regions enrichment and allows the efficient exploration of metagenomic diversity. Indeed, this approach enables to assign identity and function to microorganisms in natural environments, one of the ultimate goals of microbial ecology.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| |
Collapse
|
48
|
Marmeisse R, Kellner H, Fraissinet-Tachet L, Luis P. Discovering Protein-Coding Genes from the Environment: Time for the Eukaryotes? Trends Biotechnol 2017; 35:824-835. [PMID: 28279485 DOI: 10.1016/j.tibtech.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Abstract
Eukaryotic microorganisms from diverse environments encompass a large number of taxa, many of them still unknown to science. One strategy to mine these organisms for genes of biotechnological relevance is to use a pool of eukaryotic mRNA directly extracted from environmental samples. Recent reports demonstrate that the resulting metatranscriptomic cDNA libraries can be screened by expression in yeast for a wide range of genes and functions from many of the different eukaryotic taxa. In combination with novel emerging high-throughput technologies, we anticipate that this approach should contribute to exploring the functional diversity of the eukaryotic microbiota.
Collapse
Affiliation(s)
- Roland Marmeisse
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne, France; Dipartimento di Scienze de la Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy.
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Laurence Fraissinet-Tachet
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Patricia Luis
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
49
|
Ranchou‐Peyruse M, Gasc C, Guignard M, Aüllo T, Dequidt D, Peyret P, Ranchou‐Peyruse A. The sequence capture by hybridization: a new approach for revealing the potential of mono-aromatic hydrocarbons bioattenuation in a deep oligotrophic aquifer. Microb Biotechnol 2017; 10:469-479. [PMID: 27766749 PMCID: PMC5328808 DOI: 10.1111/1751-7915.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 01/04/2023] Open
Abstract
The formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono-aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate-reducing bacteria (Peptococcaceae) predominate in this microbial community. The capacity of the microbial community to biodegrade toluene and m- and p-xylenes was demonstrated using a culture-based approach after several hundred days of incubation. In order to reveal the potential for biodegradation of these compounds within a shorter time frame, an innovative approach named the solution hybrid selection method, which combines sequence capture by hybridization and next-generation sequencing, was applied to the same original water sample. The bssA and bssA-like genes were investigated as they are considered good biomarkers for the potential of toluene and xylene biodegradation. Unlike a PCR approach which failed to detect these genes directly from formation water, this innovative strategy demonstrated the presence of the bssA and bssA-like genes in this oligotrophic ecosystem, probably harboured by Peptococcaceae. The sequence capture by hybridization shows significant potential to reveal the presence of genes of functional interest which have low-level representation in the biosphere.
Collapse
Affiliation(s)
- Magali Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Cyrielle Gasc
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Marion Guignard
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Thomas Aüllo
- TIGF – Transport et Infrastructures Gaz France40 Avenue de l'Europe, CS2052264000PauFrance
| | - David Dequidt
- STORENGY – Geosciences DepartmentBois‐ColombesFrance
| | - Pierre Peyret
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Anthony Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| |
Collapse
|
50
|
Gasc C, Constantin A, Jaziri F, Peyret P. OCaPPI-Db: an oligonucleotide probe database for pathogen identification through hybridization capture. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3053441. [PMID: 28365722 PMCID: PMC5467545 DOI: 10.1093/database/baw172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022]
Abstract
The detection and identification of bacterial pathogens involved in acts of bio- and agroterrorism are essential to avoid pathogen dispersal in the environment and propagation within the population. Conventional molecular methods, such as PCR amplification, DNA microarrays or shotgun sequencing, are subject to various limitations when assessing environmental samples, which can lead to inaccurate findings. We developed a hybridization capture strategy that uses a set of oligonucleotide probes to target and enrich biomarkers of interest in environmental samples. Here, we present Oligonucleotide Capture Probes for Pathogen Identification Database (OCaPPI-Db), an online capture probe database containing a set of 1,685 oligonucleotide probes allowing for the detection and identification of 30 biothreat agents up to the species level. This probe set can be used in its entirety as a comprehensive diagnostic tool or can be restricted to a set of probes targeting a specific pathogen or virulence factor according to the user’s needs. Database URL: http://ocappidb.uca.works
Collapse
Affiliation(s)
- Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| | | | - Faouzi Jaziri
- Université d'Auvergne, ISIT, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France
| |
Collapse
|