1
|
Tellier M, Ansa G, Murphy S. Isoginkgetin and Madrasin are poor splicing inhibitors. PLoS One 2024; 19:e0310519. [PMID: 39432454 PMCID: PMC11493277 DOI: 10.1371/journal.pone.0310519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
The production of eukaryotic mRNAs requires transcription by RNA polymerase (pol) II and co-transcriptional processing, including capping, splicing, and cleavage and polyadenylation. Pol II can positively affect co-transcriptional processing through interaction of factors with its carboxyl terminal domain (CTD), comprising 52 repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, and pol II elongation rate can regulate splicing. Splicing, in turn, can also affect transcriptional activity and transcription elongation defects are caused by some splicing inhibitors. Multiple small molecule inhibitors of splicing are now available, some of which specifically target SF3B1, a U2 snRNP component. SF3B1 inhibition results in a general downregulation of transcription elongation, including premature termination of transcription caused by increased use of intronic poly(A) sites. Here, we have investigated the effect of Madrasin and Isoginkgetin, two non-SF3B1 splicing inhibitors, on splicing and transcription. Surprisingly, we found that both Madrasin and Isoginkgetin affect transcription before any effect on splicing, indicating that their effect on pre-mRNA splicing is likely to be indirect. Both small molecules promote a general downregulation of transcription. Based on these and other published results, we conclude that these two small molecules should not be considered as primarily pre-mRNA splicing inhibitors.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gilbert Ansa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Yang BZ, Liu MY, Chiu KL, Chien YL, Cheng CA, Chen YL, Tsui LY, Lin KR, Chu HPC, Wu CSP. DHX9 SUMOylation is required for the suppression of R-loop-associated genome instability. Nat Commun 2024; 15:6009. [PMID: 39019926 PMCID: PMC11255299 DOI: 10.1038/s41467-024-50428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.
Collapse
Affiliation(s)
- Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Kuan-Lin Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106319, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Ching-An Cheng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Lin Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
3
|
Park JM, Choi S, Choi DK, Lee HS, Cho DH, Choi J, Ryu HY. Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing. Dev Reprod 2024; 28:47-54. [PMID: 39055101 PMCID: PMC11268891 DOI: 10.12717/dr.2024.28.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/27/2024]
Abstract
In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.
Collapse
Affiliation(s)
- Jeong-Min Park
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Seungji Choi
- Department of Biomedical Sciences, Korea
University College of Medicine, Seoul 02841,
Korea
| | - Dong Kyu Choi
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Dong-Hyung Cho
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea
University College of Medicine, Seoul 02841,
Korea
| | - Hong-Yeoul Ryu
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| |
Collapse
|
4
|
Segovia D, Adams DW, Hoffman N, Safaric Tepes P, Wee TL, Cifani P, Joshua-Tor L, Krainer AR. SRSF1 interactome determined by proximity labeling reveals direct interaction with spliceosomal RNA helicase DDX23. Proc Natl Acad Sci U S A 2024; 121:e2322974121. [PMID: 38743621 PMCID: PMC11126954 DOI: 10.1073/pnas.2322974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY11794
| | - Dexter W. Adams
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY11794
| | | | | | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Leemor Joshua-Tor
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | | |
Collapse
|
5
|
Rivera O, Sharma M, Dagar S, Shahani N, Ramĺrez-Jarquĺn UN, Crynen G, Karunadharma P, McManus F, Bonneil E, Pierre T, Subramaniam S. Rhes, a striatal enriched protein, regulates post-translational small-ubiquitin-like-modifier (SUMO) modification of nuclear proteins and alters gene expression. Cell Mol Life Sci 2024; 81:169. [PMID: 38589732 PMCID: PMC11001699 DOI: 10.1007/s00018-024-05181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.
Collapse
Affiliation(s)
- Oscar Rivera
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Uri Nimrod Ramĺrez-Jarquĺn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
- National Institute of Cardiology Ignacio Chávez, Department of Pharmacology, Mexico, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Pabalu Karunadharma
- Genomic Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Francis McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Thibault Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Rd, Gainesville, FL, 32608, USA.
| |
Collapse
|
6
|
Budden AM, Eravci M, Watson AT, Campillo-Funollet E, Oliver AW, Naiman K, Carr AM. Schizosaccharomyces pombe Rtf2 is important for replication fork barrier activity of RTS1 via splicing of Rtf1. eLife 2023; 12:e78554. [PMID: 37615341 PMCID: PMC10473836 DOI: 10.7554/elife.78554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Arrested replication forks, when restarted by homologous recombination, result in error-prone DNA syntheses and non-allelic homologous recombination. Fission yeast RTS1 is a model fork barrier used to probe mechanisms of recombination-dependent restart. RTS1 barrier activity is entirely dependent on the DNA binding protein Rtf1 and partially dependent on a second protein, Rtf2. Human RTF2 was recently implicated in fork restart, leading us to examine fission yeast Rtf2's role in more detail. In agreement with previous studies, we observe reduced barrier activity upon rtf2 deletion. However, we identified Rtf2 to be physically associated with mRNA processing and splicing factors and rtf2 deletion to cause increased intron retention. One of the most affected introns resided in the rtf1 transcript. Using an intronless rtf1, we observed no reduction in RFB activity in the absence of Rtf2. Thus, Rtf2 is essential for correct rtf1 splicing to allow optimal RTS1 barrier activity.
Collapse
Affiliation(s)
- Alice M Budden
- Genome Damage and Stability Centre, University of SussexBrightonUnited Kingdom
| | - Murat Eravci
- Department of Biochemistry and Biomedicine, University of SussexBrightonUnited Kingdom
| | - Adam T Watson
- Genome Damage and Stability Centre, University of SussexBrightonUnited Kingdom
| | | | - Antony W Oliver
- Genome Damage and Stability Centre, University of SussexBrightonUnited Kingdom
| | - Karel Naiman
- Genome Damage and Stability Centre, University of SussexBrightonUnited Kingdom
| | - Antony M Carr
- Genome Damage and Stability Centre, University of SussexBrightonUnited Kingdom
| |
Collapse
|
7
|
Jian Y, Chen X, Sun K, Liu Z, Cheng D, Cao J, Liu J, Cheng X, Wu L, Zhang F, Luo Y, Hahn M, Ma Z, Yin Y. SUMOylation regulates pre-mRNA splicing to overcome DNA damage in fungi. THE NEW PHYTOLOGIST 2023; 237:2298-2315. [PMID: 36539920 DOI: 10.1111/nph.18692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic fungi are subject to DNA damage stress derived from host immune responses during infection. Small ubiquitin-like modifier (SUMO) modification and precursor (pre)-mRNA splicing are both involved in DNA damage response (DDR). However, the mechanisms of how SUMOylation and splicing coordinated in DDR remain largely unknown. Combining with biochemical analysis, RNA-Seq method, and biological analysis, we report that SUMO pathway participates in DDR and virulence in Fusarium graminearum, a causal agent of Fusarium head blight of cereal crops world-wide. Interestingly, a key transcription factor FgSR is SUMOylated upon DNA damage stress. SUMOylation regulates FgSR nuclear-cytoplasmic partitioning and its phosphorylation by FgMec1, and promotes its interaction with chromatin remodeling complex SWI/SNF for activating the expression of DDR-related genes. Moreover, the SWI/SNF complex was found to further recruit splicing-related NineTeen Complex, subsequently modulates pre-mRNA splicing during DDR. Our findings reveal a novel function of SUMOylation in DDR by regulating a transcription factor to orchestrate gene expression and pre-mRNA splicing to overcome DNA damage during the infection of F. graminearum, which advances the understanding of the delicate regulation of DDR by SUMOylation in pathogenic fungi, and extends the knowledge of cooperation of SUMOylation and pre-mRNA splicing in DDR in eukaryotes.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xia Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danni Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
8
|
Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, Gutiérrez-Zubiate I, Patil AR, Alvarado LA, Roy S, Russell WK, Rosas-Acosta G. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Sci Rep 2023; 13:2309. [PMID: 36759644 PMCID: PMC9911741 DOI: 10.1038/s41598-023-29357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Substantial increases in the conjugation of the main human SUMO paralogs, SUMO1, SUMO2, and SUMO3, are observed upon exposure to different cellular stressors, and such increases are considered important to facilitate cell survival to stress. Despite their critical cellular role, little is known about how the levels of the SUMO modifiers are regulated in the cell, particularly as it relates to the changes observed upon stress. Here we characterize the contribution of alternative splicing towards regulating the expression of the main human SUMO paralogs under normalcy and three different stress conditions, heat-shock, cold-shock, and Influenza A Virus infection. Our data reveal that the normally spliced transcript variants are the predominant mature mRNAs produced from the SUMO genes and that the transcript coding for SUMO2 is by far the most abundant of all. We also provide evidence that alternatively spliced transcripts coding for protein isoforms of the prototypical SUMO proteins, which we refer to as the SUMO alphas, are also produced, and that their abundance and nuclear export are affected by stress in a stress- and cell-specific manner. Additionally, we provide evidence that the SUMO alphas are actively synthesized in the cell as their coding mRNAs are found associated with translating ribosomes. Finally, we provide evidence that the SUMO alphas are functionally different from their prototypical counterparts, with SUMO1α and SUMO2α being non-conjugatable to protein targets, SUMO3α being conjugatable but targeting a seemingly different subset of protein from those targeted by SUMO3, and all three SUMO alphas displaying different cellular distributions from those of the prototypical SUMOs. Thus, alternative splicing appears to be an important contributor to the regulation of the expression of the SUMO proteins and the cellular functions of the SUMOylation system.
Collapse
Affiliation(s)
- Myriah L Acuña
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Andrea García-Morin
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rebeca Orozco-Sepúlveda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Carlos Ontiveros
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, 78229, USA
| | - Alejandra Flores
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Arely V Diaz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Luis A Alvarado
- Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Sourav Roy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Germán Rosas-Acosta
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
9
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Bragado L, Magalnik M, Mammi P, Romero A, Gaioli N, Pozzi B, Srebrow A. SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Res 2022; 50:12444-12461. [PMID: 36454007 PMCID: PMC9757034 DOI: 10.1093/nar/gkac1055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
RNA polymerase II (RNAPII) transcribes small nuclear RNA (snRNA) genes in close proximity to Cajal bodies, subnuclear compartments that depend on the SUMO isopeptidase USPL1 for their assembly. We show here that overexpression of USPL1 as well as of another nuclear SUMO isopeptidase, SENP6, alters snRNA 3'-end cleavage, a process carried out by the Integrator complex. Beyond its role in snRNA biogenesis, this complex is responsible for regulating the expression of different RNAPII transcripts. While several subunits of the complex are SUMO conjugation substrates, we found that the SUMOylation of the INTS11 subunit is regulated by USPL1 and SENP6. We defined Lys381, Lys462 and Lys475 as bona fide SUMO attachment sites on INTS11 and observed that SUMOylation of this protein modulates its subcellular localization and is required for Integrator activity. Moreover, while an INTS11 SUMOylation-deficient mutant is still capable of interacting with INTS4 and INTS9, its interaction with other subunits of the complex is affected. These findings point to a regulatory role for SUMO conjugation on Integrator activity and suggest the involvement of INTS11 SUMOylation in the assembly of the complex. Furthermore, this work adds Integrator-dependent RNA processing to the growing list of cellular processes regulated by SUMO conjugation.
Collapse
Affiliation(s)
- Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Melina Magalnik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Pablo Mammi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Agustín Romero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Nicolás Gaioli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
12
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
13
|
Lan W, Qiu Y, Xu Y, Liu Y, Miao Y. Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:869870. [PMID: 35646014 PMCID: PMC9134077 DOI: 10.3389/fpls.2022.869870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a common post-transcriptional regulatory process in eukaryotes. AS has an irreplaceable role during plant development and in response to environmental stress as it evokes differential expression of downstream genes or splicing factors (e.g., serine/arginine-rich proteins). Numerous studies have reported that loss of AS capacity leads to defects in plant growth and development, and induction of stress-sensitive phenotypes. A role for post-translational modification (PTM) of AS components has emerged in recent years. These modifications are capable of regulating the activity, stability, localization, interaction, and folding of spliceosomal proteins in human cells and yeast, indicating that PTMs represent another layer of AS regulation. In this review, we summarize the recent reports concerning ubiquitin and ubiquitin-like modification of spliceosome components and analyze the relationship between spliceosome and the ubiquitin/26S proteasome pathway in plants. Based on the totality of the evidence presented, we further speculate on the roles of protein ubiquitination mediated AS in plant development and environmental response.
Collapse
|
14
|
Li J, Song Y, Zhang C, Wang R, Hua L, Guo Y, Gan D, Zhu L, Li S, Ma P, Yang C, Li H, Yang J, Shi J, Liu X, Su H. TMEM43 promotes pancreatic cancer progression by stabilizing PRPF3 and regulating RAP2B/ERK axis. Cell Mol Biol Lett 2022; 27:24. [PMID: 35260078 PMCID: PMC8903684 DOI: 10.1186/s11658-022-00321-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Transmembrane protein 43 (TMEM43), a member of the transmembrane protein subfamily, plays a critical role in the initiation and development of cancers. However, little is known concerning the biological function and molecular mechanisms of TMEM43 in pancreatic cancer. METHODS In this study, TMEM43 expression levels were analyzed in pancreatic cancer samples compared with control samples. The relationship of TMEM43 expression and disease-free survival (DFS) and overall survival (OS) were assessed in pancreatic cancer patients. In vitro and in vivo assays were performed to explore the function and role of TMEM43 in pancreatic cancer. Coimmunoprecipitation (co-IP) followed by protein mass spectrometry was applied to analyze the molecular mechanisms of TMEM43 in pancreatic cancer. RESULTS We demonstrated that TMEM43 expression level is elevated in pancreatic cancer samples compared with control group, and is correlated with poor DFS and OS in pancreatic cancer patients. Knockdown of TMEM43 inhibited pancreatic cancer progression in vitro, decreased the percentage of S phase, and inhibited the tumorigenicity of pancreatic cancer in vivo. Moreover, we demonstrated that TMEM43 promoted pancreatic cancer progression by stabilizing PRPF3 and regulating the RAP2B/ERK axis. CONCLUSIONS The present study suggests that TMEM43 contributes to pancreatic cancer progression through the PRPF3/RAP2B/ERK axis, and might be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Junqiang Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Yang Song
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Chao Zhang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Ronglin Wang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Lei Hua
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Yongdong Guo
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Dongxue Gan
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Liaoliao Zhu
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Shanshan Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Peixiang Ma
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Cheng Yang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Hong Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Jing Yang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Jingjie Shi
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Xiaonan Liu
- grid.233520.50000 0004 1761 4404Ambulatory Surgery Center, Xijing Hospital, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Haichuan Su
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| |
Collapse
|
15
|
DHX15-independent roles for TFIP11 in U6 snRNA modification, U4/U6.U5 tri-snRNP assembly and pre-mRNA splicing fidelity. Nat Commun 2021; 12:6648. [PMID: 34789764 PMCID: PMC8599867 DOI: 10.1038/s41467-021-26932-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.
Collapse
|
16
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Birladeanu AM, Rogalska M, Potiri M, Papadaki V, Andreadou M, Kontoyiannis DL, Lewis JD, Erpapazoglou Z, Kafasla P. The scaffold protein IQGAP1 links heat-induced stress signals to alternative splicing regulation in gastric cancer cells. Oncogene 2021; 40:5518-5532. [PMID: 34294847 DOI: 10.1038/s41388-021-01963-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
In response to oncogenic signals, Alternative Splicing (AS) regulators such as SR and hnRNP proteins show altered expression levels, subnuclear distribution and/or post-translational modification status, but the link between signals and these changes remains unknown. Here, we report that a cytosolic scaffold protein, IQGAP1, performs this task in response to heat-induced signals. We show that in gastric cancer cells, a nuclear pool of IQGAP1 acts as a tethering module for a group of spliceosome components, including hnRNPM, a splicing factor critical for the response of the spliceosome to heat-shock. IQGAP1 controls hnRNPM's sumoylation, subnuclear localisation and the relevant response of the AS machinery to heat-induced stress. Genome-wide analyses reveal that IQGAP1 and hnRNPM co-regulate the AS of a cell cycle-related RNA regulon in gastric cancer cells, thus favouring the accelerated proliferation phenotype of gastric cancer cells. Overall, we reveal a missing link between stress signals and AS regulation.
Collapse
Affiliation(s)
- Andrada-Maria Birladeanu
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
| | - Malgorzata Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Myrto Potiri
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
| | - Vasiliki Papadaki
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
| | - Margarita Andreadou
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
- Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Joe D Lewis
- European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Zoi Erpapazoglou
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece
| | - Panagiota Kafasla
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 34 Fleming st. 16672 Vari, Athens, Greece.
| |
Collapse
|
18
|
Park HJ, Jung HM, Lee A, Jo SH, Lee HJ, Kim HS, Jung CK, Min SR, Cho HS. SUMO Modification of OsFKBP20-1b Is Integral to Proper Pre-mRNA Splicing upon Heat Stress in Rice. Int J Mol Sci 2021; 22:ijms22169049. [PMID: 34445755 PMCID: PMC8396655 DOI: 10.3390/ijms22169049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OsFKBP20-1b, a plant-specific cyclophilin protein, has been implicated to regulate pre-mRNA splicing under stress conditions in rice. Here, we demonstrated that OsFKBP20-1b is SUMOylated in a reconstituted SUMOylation system in E.coli and in planta, and that the SUMOylation-coupled regulation was associated with enhanced protein stability using a less SUMOylated OsFKBP20-1b mutant (5KR_OsFKBP20-1b). Furthermore, OsFKBP20-1b directly interacted with OsSUMO1 and OsSUMO2 in the nucleus and cytoplasm, whereas the less SUMOylated 5KR_OsFKBP20-1b mutant had an impaired interaction with OsSUMO1 and 2 in the cytoplasm but not in the nucleus. Under heat stress, the abundance of an OsFKBP20-1b-GFP fusion protein was substantially increased in the nuclear speckles and cytoplasmic foci, whereas the heat-responsiveness was remarkably diminished in the presence of the less SUMOylated 5KR_OsFKBP20-1b-GFP mutant. The accumulation of endogenous SUMOylated OsFKBP20-1b was enhanced by heat stress in planta. Moreover, 5KR_OsFKBP20-1b was not sufficiently associated with the U snRNAs in the nucleus as a spliceosome component. A protoplast transfection assay indicated that the low SUMOylation level of 5KR_OsFKBP20-1b led to inaccurate alternative splicing and transcription under heat stress. Thus, our results suggest that OsFKBP20-1b is post-translationally regulated by SUMOylation, and the modification is crucial for proper RNA processing in response to heat stress in rice.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Hae-Myeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Functional Genomics, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Choon-Kyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| | - Hye-Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| |
Collapse
|
19
|
Maraschi A, Gumina V, Dragotto J, Colombrita C, Mompeán M, Buratti E, Silani V, Feligioni M, Ratti A. SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Mol Neurobiol 2021; 58:5682-5702. [PMID: 34390468 PMCID: PMC8599232 DOI: 10.1007/s12035-021-02505-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP-43 forms abnormal cytoplasmic aggregates in the brains of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients and several molecular mechanisms promoting TDP-43 cytoplasmic mislocalization and aggregation have been proposed, including defects in nucleocytoplasmic transport, stress granules (SG) disassembly and post-translational modifications (PTM). SUMOylation is a PTM which regulates a variety of cellular processes and, similarly to ubiquitination, targets lysine residues. To investigate the possible regulatory effects of SUMOylation on TDP-43 activity and trafficking, we first assessed that TDP-43 is SUMO-conjugated in the nuclear compartment both covalently and non-covalently in the RRM1 domain at the predicted lysine 136 and SUMO-interacting motif (SIM, 106–110 residues), respectively. By using the SUMO-mutant TDP-43 K136R protein, we demonstrated that SUMOylation modifies TDP-43 splicing activity, specifically exon skipping, and influences its sub-cellular localization and recruitment to SG after oxidative stress. When promoting deSUMOylation by SENP1 enzyme over-expression or by treatment with the cell-permeable SENP1 peptide TS-1, the cytoplasmic localization of TDP-43 increased, depending on its SUMOylation. Moreover, deSUMOylation by TS-1 peptide favoured the formation of small cytoplasmic aggregates of the C-terminal TDP-43 fragment p35, still containing the SUMO lysine target 136, but had no effect on the already formed p25 aggregates. Our data suggest that TDP-43 can be post-translationally modified by SUMOylation which may regulate its splicing function and trafficking, indicating a novel and druggable mechanism to explore as its dysregulation may lead to TDP-43 pathological aggregation in ALS and FTD.
Collapse
Affiliation(s)
- AnnaMaria Maraschi
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Valentina Gumina
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Jessica Dragotto
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
| | - Claudia Colombrita
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006 Madrid, Spain
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Vincenzo Silani
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi Di Milano, Via A. di Rudinì 8, 20142 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari” Center, Università Degli Studi Di Milano, Via F. Sforza 35, 20122 Milan, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Via Giuseppe Dezza 48, 20144 Milan, Italy
| | - Antonia Ratti
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan Italy
| |
Collapse
|
20
|
Keiten-Schmitz J, Röder L, Hornstein E, Müller-McNicoll M, Müller S. SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates? Front Mol Biosci 2021; 8:673038. [PMID: 34026847 PMCID: PMC8138125 DOI: 10.3389/fmolb.2021.673038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Linda Röder
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michaela Müller-McNicoll
- Faculty of Biosciences, Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Müller
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Genetic Drivers of Head and Neck Squamous Cell Carcinoma: Aberrant Splicing Events, Mutational Burden, HPV Infection and Future Targets. Genes (Basel) 2021; 12:genes12030422. [PMID: 33804181 PMCID: PMC7998272 DOI: 10.3390/genes12030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.
Collapse
|
22
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
23
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
24
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
25
|
Muthusamy M, Yoon EK, Kim JA, Jeong MJ, Lee SI. Brassica Rapa SR45a Regulates Drought Tolerance via the Alternative Splicing of Target Genes. Genes (Basel) 2020; 11:genes11020182. [PMID: 32050656 PMCID: PMC7074037 DOI: 10.3390/genes11020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 01/02/2023] Open
Abstract
The emerging evidence has shown that plant serine/arginine-rich (SR) proteins play a crucial role in abiotic stress responses by regulating the alternative splicing (AS) of key genes. Recently, we have shown that drought stress enhances the expression of SR45a (also known as SR-like 3) in Brassica rapa. Herein, we unraveled the hitherto unknown functions of BrSR45a in drought stress response by comparing the phenotypes, chlorophyll a fluorescence and splicing patterns of the drought-responsive genes of Arabidopsis BrSR45a overexpressors (OEs), homozygous mutants (SALK_052345), and controls (Col-0). Overexpression and loss of function did not result in aberrant phenotypes; however, the overexpression of BrSR45a was positively correlated with drought tolerance and the stress recovery rate in an expression-dependent manner. Moreover, OEs showed a higher drought tolerance index during seed germination (38.16%) than the control lines. Additionally, the overexpression of BrSR45a induced the expression of the drought stress-inducible genes RD29A, NCED3, and DREB2A under normal conditions. To further illustrate the molecular linkages between BrSR45a and drought tolerance, we investigated the AS patterns of key drought-tolerance and BrSR45a interacting genes in OEs, mutants, and controls under both normal and drought conditions. The splicing patterns of DCP5, RD29A, GOLS1, AKR, U2AF, and SDR were different between overexpressors and mutants under normal conditions. Furthermore, drought stress altered the splicing patterns of NCED2, SQE, UPF1, U4/U6-U5 tri-snRNP-associated protein, and UPF1 between OEs and mutants, indicating that both overexpression and loss of function differently influenced the splicing patterns of target genes. This study revealed that BrSR45a regulates the drought stress response via the alternative splicing of target genes in a concentration-dependent manner.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Eun Kyung Yoon
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
26
|
Liu Y, Yang Y, Luo Y, Wang J, Lu X, Yang Z, Yang J. Prognostic potential of PRPF3 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:912-930. [PMID: 31926109 PMCID: PMC6977647 DOI: 10.18632/aging.102665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
pre-mRNA processing factor 3 (PRPF3) is an RNA binding protein in a core component of the exon junction complex. Abnormal PRPF3 expression is potentially associated with carcinogenesis. However, the biological role of PRPF3 in hepatocellular carcinoma (HCC) remains to be determined. We analyzed PRPF3 expression via multiple gene expression databases and identified its genetic alterations and functional networks using cBioPortal. Co-expressed genes with PRPF3 and its regulators were identified using LinkedOmics. The correlations between PRPF3 and cancer immune infiltrates were investigated via Tumor Immune Estimation Resource (TIMER). PRPF3 was found up-regulated with amplification in tumor tissues in multiple HCC cohorts. High PRPF3 expression was associated with poorer overall survival (OS) and disease-free survival (DFS). Functional network analysis suggested that PRPF3 regulates spliceosome, DNA replication, and cell cycle signaling via pathways involving several cancer-related kinases and E2F family. Notably, PRPF3 expression was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells. PRPF3 expression showed strong correlations with diverse immune marker sets in HCC. These findings suggest that PRPF3 is correlated with prognosis and immune infiltrating in HCC, laying a foundation for further study of the immune regulatory role of PRPF3 in HCC.
Collapse
Affiliation(s)
- Yinlan Liu
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yuhan Yang
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yan Luo
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, P.R. China
| | - Jin Yang
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
27
|
Chen MX, Wijethunge BDIK, Zhou SM, Yang JF, Dai L, Wang SS, Chen C, Fu LJ, Zhang J, Hao GF, Yang GF. Chemical Modulation of Alternative Splicing for Molecular-Target Identification by Potential Genetic Control in Agrochemical Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5072-5084. [PMID: 30986354 DOI: 10.1021/acs.jafc.9b02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS), the process of removing introns from pre-mRNA and the rearrangement of exons to produce several types of mature transcripts, is a remarkable step preceding protein synthesis. In particular, it has now been conclusively shown that up to ∼95% of genes are alternatively spliced to generate a complex and diverse proteome in eukaryotic organisms. Consequently, AS is one of the determinants of the functional repertoire of cells. Many studies have revealed that AS in plants can be regulated by cell type, developmental stage, environmental stress, and the circadian clock. Moreover, increasing amounts of evidence reveal that chemical compounds can affect various steps during splicing to induce major effects on plant physiology. Hence, the chemical modulation of AS can serve as a good strategy for molecular-target identification in attempts to potentially control plant genetics. However, the kind of mechanisms involved in the chemical modulation of AS that can be used in agrochemical research remain largely unknown. This review introduces recent studies describing the specific roles AS plays in plant adaptation to environmental stressors and in the regulation of development. We also discuss recent advances in small molecules that induce alterations of AS and the possibility of using this strategy in agrochemical-target identification, giving a new direction for potential genetic control in agrochemical research.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Boyagane D I K Wijethunge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Shao-Ming Zhou
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Dai
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Shan-Shan Wang
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital , Nanjing University of Chinese Medicine , Nanjing 210003 , PR China
| | - Li-Jun Fu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants , Putian University , Putian , Fujian 351100 , PR China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong , PR China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
28
|
PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in Arabidopsis thaliana. Genetics 2018; 210:1267-1285. [PMID: 30297453 PMCID: PMC6283158 DOI: 10.1534/genetics.118.301515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Prp4 kinase (Prp4k) is the first spliceosome-associated kinase shown to regulate splicing in fungi and metazoans, but nothing is yet known about its functions in plants. Here, Kanno and Venhuizen et al. report... Splicing of precursor messenger RNAs (pre-mRNAs) is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple messenger RNA (mRNA) isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined. We report here the identification of pre-mRNA processing 4 (PRP4) KINASE A (PRP4KA) in a forward genetic screen based on an alternatively spliced GFP reporter gene in Arabidopsis thaliana (Arabidopsis). Prp4 kinase is the first spliceosome-associated kinase shown to regulate splicing in fungi and mammals but it has not yet been studied in plants. In the same screen we identified mutants defective in SAC3A, a putative mRNA export factor that is highly coexpressed with PRP4KA in Arabidopsis. Whereas the sac3a mutants appear normal, the prp4ka mutants display a pleiotropic phenotype featuring atypical rosettes, late flowering, tall final stature, reduced branching, and lowered seed set. Analysis of RNA-sequencing data from prp4ka and sac3a mutants identified widespread and partially overlapping perturbations in alternative splicing in the two mutants. Quantitative phosphoproteomic profiling of a prp4ka mutant detected phosphorylation changes in several serine/arginine-rich proteins, which regulate constitutive and alternative splicing, and other splicing-related factors. Tests of PRP4KB, the paralog of PRP4KA, indicated that the two genes are not functionally redundant. The results demonstrate the importance of PRP4KA for alternative splicing and plant phenotype, and suggest that PRP4KA may influence alternative splicing patterns by phosphorylating a subset of splicing regulators.
Collapse
|
29
|
Emerging Roles of Ubiquitin-like Proteins in Pre-mRNA Splicing. Trends Biochem Sci 2018; 43:896-907. [PMID: 30269981 DOI: 10.1016/j.tibs.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Ubiquitin-like proteins (UBLs) belong to the protein family whose members share a globular beta-grasp fold structure. The archetypal member, ubiquitin, is known for its function in proteasome-mediated protein degradation. UBLs have been shown to play several crucial roles besides protein turnover, including DNA damage response, cell cycle control, cellular signaling, protein trafficking, and innate immunity activation. In the past few years, accumulating evidence illustrates that four UBLs, namely, ubiquitin, SUMO, Hub1, and Sde2, are involved in eukaryotic pre-mRNA splicing. They modify the spliceosomes and promote splicing by adding new surfaces for intermolecular interactions, thereby refining the outcome of gene expression. In this review article, we highlight recent discoveries with an emphasis on the emerging roles of UBLs in splicing regulation.
Collapse
|
30
|
Pozzi B, Mammi P, Bragado L, Giono LE, Srebrow A. When SUMO met splicing. RNA Biol 2018; 15:689-695. [PMID: 29741121 PMCID: PMC6152442 DOI: 10.1080/15476286.2018.1457936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation.
Collapse
Affiliation(s)
- Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Pablo Mammi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Laureano Bragado
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciana E. Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
31
|
Mishra SK, Thakran P. Intron specificity in pre-mRNA splicing. Curr Genet 2018; 64:777-784. [PMID: 29299619 DOI: 10.1007/s00294-017-0802-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India.
| | - Poonam Thakran
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India
| |
Collapse
|
32
|
Pawellek A, Ryder U, Tammsalu T, King LJ, Kreinin H, Ly T, Hay RT, Hartley RC, Lamond AI. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife 2017; 6:27402. [PMID: 28884683 PMCID: PMC5619949 DOI: 10.7554/elife.27402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.
Collapse
Affiliation(s)
- Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ursula Ryder
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lewis J King
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Helmi Kreinin
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard C Hartley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|