1
|
Wen J, Wan L, Chen W, Dong X. The prognostic value of ubiquitin/ubiquitin-like-related genes along with immune cell infiltration and clinicopathological features in osteosarcoma. J Orthop Surg Res 2024; 19:356. [PMID: 38879525 PMCID: PMC11179372 DOI: 10.1186/s13018-024-04781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival of osteosarcoma patients but have not yet been systematically explored. METHODS The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then validated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, western blotting and immunohistochemistry. RESULTS Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) were screened as genes with prognostic value in osteosarcoma. Kaplan-Meier analysis and scatter plots indicated that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell lines and tissues. CONCLUSIONS TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights into the roles of these genes and their implications for patient outcomes.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, 410008, Hunan, China
| | - Wenming Chen
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China.
| | - Xieping Dong
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Haidar L, Georgescu M, Drăghici GA, Bănățean-Dunea I, Nica DV, Șerb AF. DNA Methylation Machinery in Gastropod Mollusks. Life (Basel) 2024; 14:537. [PMID: 38672807 PMCID: PMC11050768 DOI: 10.3390/life14040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
The role of DNA methylation in mollusks is just beginning to be understood. This review synthesizes current knowledge on this potent molecular hallmark of epigenetic control in gastropods-the largest class of mollusks and ubiquitous inhabitants of diverse habitats. Their DNA methylation machinery shows a high degree of conservation in CG maintenance methylation mechanisms, driven mainly by DNMT1 homologues, and the presence of MBD2 and MBD2/3 proteins as DNA methylation readers. The mosaic-like DNA methylation landscape occurs mainly in a CG context and is primarily confined to gene bodies and housekeeping genes. DNA methylation emerges as a critical regulator of reproduction, development, and adaptation, with tissue-specific patterns being observed in gonadal structures. Its dynamics also serve as an important regulatory mechanism underlying learning and memory processes. DNA methylation can be affected by various environmental stimuli, including as pathogens and abiotic stresses, potentially impacting phenotypic variation and population diversity. Overall, the features of DNA methylation in gastropods are complex, being an essential part of their epigenome. However, comprehensive studies integrating developmental stages, tissues, and environmental conditions, functional annotation of methylated regions, and integrated genomic-epigenomic analyses are lacking. Addressing these knowledge gaps will advance our understanding of gastropod biology, ecology, and evolution.
Collapse
Affiliation(s)
- Laura Haidar
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Marius Georgescu
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - George Andrei Drăghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Ioan Bănățean-Dunea
- Biology and Plant Protection Department, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania;
| | - Dragoș Vasile Nica
- The National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry (INMA), Bulevardul Ion Ionescu de la Brad 6, 077190 București, Romania
| | - Alina-Florina Șerb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| |
Collapse
|
3
|
Wang X, Lu H, Sprangers G, Hallstrom TC. UHRF2 accumulates in early G 1-phase after serum stimulation or mitotic exit to extend G 1 and total cell cycle length. Cell Cycle 2024; 23:613-627. [PMID: 38752903 PMCID: PMC11135863 DOI: 10.1080/15384101.2024.2353553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/06/2024] [Indexed: 05/28/2024] Open
Abstract
Ubiquitin like with PHD and ring finger domains 2 (UHRF2) regulates the cell cycle and epigenetics as a multi-domain protein sharing homology with UHRF1. UHRF1 functions with DNMT1 to coordinate daughter strand methylation during DNA replication, but UHRF2 can't perform this function, and its roles during cell cycle progression are not well defined. UHRF2 role as an oncogene vs. tumor suppressor differs in distinct cell types. UHRF2 interacts with E2F1 to control Cyclin E1 (CCNE1) transcription. UHRF2 also functions in a reciprocal loop with Cyclin E/CDK2 during G1, first as a direct target of CDK2 phosphorylation, but also as an E3-ligase with direct activity toward both Cyclin E and Cyclin D. In this study, we demonstrate that UHRF2 is expressed in early G1 following either serum stimulation out of quiescence or in cells transiting directly out of M-phase, where UHRF2 protein is lost. Further, UHRF2 depletion in G2/M is reversed with a CDK1 specific inhibitor. UHRF2 controls expression levels of cyclins and CDK inhibitors and controls its own transcription in a negative-feedback loop. Deletion of UHRF2 using CRISPR/Cas9 caused a delay in passage through each cell cycle phase. UHRF2 loss culminated in elevated levels of cyclins but also the CDK inhibitor p27KIP1, which regulates G1 passage, to reduce retinoblastoma phosphorylation and increase the amount of time required to reach G1/S passage. Our data indicate that UHRF2 is a central regulator of cell-cycle pacing through its complex regulation of cell cycle gene expression and protein stability.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Grace Sprangers
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Timothy C. Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Tiedemann RL, Hrit J, Du Q, Wiseman AK, Eden HE, Dickson BM, Kong X, Chomiak AA, Vaughan RM, Hebert JM, David Y, Zhou W, Baylin SB, Jones PA, Clark SJ, Rothbart SB. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580169. [PMID: 38405904 PMCID: PMC10888769 DOI: 10.1101/2024.02.13.580169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
Collapse
|
5
|
Manou M, Loupis T, Vrachnos DM, Katsoulas N, Theocharis S, Kanakoglou DS, Basdra EK, Piperi C, Papavassiliou AG. Enhanced Transcriptional Signature and Expression of Histone-Modifying Enzymes in Salivary Gland Tumors. Cells 2023; 12:2437. [PMID: 37887281 PMCID: PMC10604940 DOI: 10.3390/cells12202437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Salivary gland tumors (SGTs) are rare and complex neoplasms characterized by heterogenous histology and clinical behavior as well as resistance to systemic therapy. Tumor etiology is currently under elucidation and an interplay of genetic and epigenetic changes has been proposed to contribute to tumor development. In this work, we investigated epigenetic regulators and histone-modifying factors that may alter gene expression and participate in the pathogenesis of SGT neoplasms. We performed a detailed bioinformatic analysis on a publicly available RNA-seq dataset of 94 ACC tissues supplemented with clinical data and respective controls and generated a protein-protein interaction (PPI) network of chromatin and histone modification factors. A significant upregulation of TP53 and histone-modifying enzymes SUV39H1, EZH2, PRMT1, HDAC8, and KDM5B, along with the upregulation of DNA methyltransferase DNMT3A and ubiquitin ligase UHRF1 mRNA levels, as well as a downregulation of lysine acetyltransferase KAT2B levels, were detected in ACC tissues. The protein expression of p53, SUV39H1, EZH2, and HDAC8 was further validated in SGT tissues along with their functional deposition of the repressive histone marks H3K9me3 and H3K27me3, respectively. Overall, this study is the first to detect a network of interacting proteins affecting chromatin structure and histone modifications in salivary gland tumor cells, further providing mechanistic insights in the molecular profile of SGTs that confer to altered gene expression programs.
Collapse
Affiliation(s)
- Maria Manou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.); (E.K.B.)
| | - Theodoros Loupis
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Dimitrios M. Vrachnos
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Nikolaos Katsoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.K.); (S.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.K.); (S.T.)
| | - Dimitrios S. Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.); (E.K.B.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.); (E.K.B.)
| |
Collapse
|
6
|
Zhao S, Zhang C, Xu J, Liu S, Yu L, Chen S, Wen H, Li Z, Liu N. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther 2022; 13:169. [PMID: 35477484 PMCID: PMC9044575 DOI: 10.1186/s13287-022-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental pluripotency-associated 3 (Dppa3, also called Stella or PGC7) is a principal maternal protein specially expressed in pre-implantation embryos, embryonic stem cells (ES cells) and primordial germ cells (PGCs). It plays critical role in the regulating of DNA methylation in zygotes and oocytes. However, the effect of Dppa3 in ES cells on the stability of proteins is still unclear. METHODS In this study, we first identified the potential interacting proteins with Dppa3 using immunoprecipitation-mass spectrometry (IP-MS). After GO analysis, we further constructed Dppa3-silenced ES cells and ES cell lines overexpressing with different lengths of Dppa3 to explore the mechanisms of Dppa3 on protein stability. RESULTS IP-MS results showed that Dppa3 interacted with quite a few subunits of 26S proteasome. Full length of Dppa3 stabilized Uhrf1 and Nanog by inhibiting its degradation. Silencing Dppa3 promoted degradation of Nanog protein. CONCLUSIONS Our results indicated that Dppa3 safeguard the stability of Uhrf1 and Nanog by inhibiting proteasome-associated degradation in ES cells. These findings shed light on new function of Dppa3 in maintaining stability of proteins and provides a valuable resource for understanding the roles of Dppa3 in embryonic stem cells.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Jia Xu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Lu Yu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Hang Wen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Na Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China. .,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Wang X, Sarver AL, Han Q, Seiler CL, Xie C, Lu H, Forster CL, Tretyakova NY, Hallstrom TC. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development 2022; 149:274710. [PMID: 35285483 PMCID: PMC8984156 DOI: 10.1242/dev.195644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Ubiquitin-like, containing PHD and RING finger domains 2 (UHRF2) regulates cell cycle and binds 5-hydroxymethylcytosine (5hmC) to promote completion of DNA demethylation. Uhrf2-/- mice are without gross phenotypic defects; however, the cell cycle and epigenetic regulatory functions of Uhrf2 during retinal tissue development are unclear. Retinal progenitor cells (RPCs) produce all retinal neurons and Müller glia in a predictable sequence controlled by the complex interplay between extrinsic signaling, cell cycle, epigenetic changes and cell-specific transcription factor activation. In this study, we find that UHRF2 accumulates in RPCs, and its conditional deletion from mouse RPCs reduced 5hmC, altered gene expressions and disrupted retinal cell proliferation and differentiation. Retinal ganglion cells were overproduced in Uhrf2-deficient retinae at the expense of VSX2+ RPCs. Most other cell types were transiently delayed in differentiation. Expression of each member of the Tet3/Uhrf2/Tdg active demethylation pathway was reduced in Uhrf2-deficient retinae, consistent with locally reduced 5hmC in their gene bodies. This study highlights a novel role of UHRF2 in controlling the transition from RPCs to differentiated cell by regulating cell cycle, epigenetic and gene expression decisions.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron L Sarver
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qiyuan Han
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chencheng Xie
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
9
|
Khan NH, Chen HJ, Fan Y, Surfaraz M, Ahammad MD, Qin YZ, Shahid M, Virk R, Jiang E, Wu DD, Ji XY. Biology of PEST‐Containing Nuclear Protein: A Potential Molecular Target for Cancer Research. Front Oncol 2022; 12:784597. [PMID: 35186732 PMCID: PMC8855108 DOI: 10.3389/fonc.2022.784597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in vital cellular processes like cell proliferation and mediates tumorigenesis. PCNP is a short-living, small nuclear protein of only 178 amino acids with two remarkable PEST sequences that are rich in proline (P), glutamic acid (E), serine (S), and threonine (T). The current understanding of PCNP reveals that PCNP has the ability to interact with cell cycle regulatory proteins; tumor suppressors (p53 and pRB), and promoters (cyclin E and cyclin D) to determine the fate of tissues to facilitate the process of either apoptosis or cell proliferation. In many preclinical studies, it has been evaluated that PCNP expression has associations with the development and progression of various cancers like neuroblastoma, lung adenocarcinoma, and ovarian cancer. Based on these depicted novel roles of PCNP in cell cycleregulation and of PCNP in tumorigenesis, it is logical to consider PCNP as a potential molecular target for cancer research. The aim of the current communication is to present an update on PCNP research and discussion on the potential role of PCNP in cancer development with challenges and opportunities perspectives. Considering the available evidence as a baseline for our statement, we anticipate that in the future, new research insights will strengthen the aim to develop PCNP-based diagnostic and therapeutic approaches that will move the PCNP from the laboratory to the cancer clinic.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Fan
- School of Life Sciences, Henan University, Kaifeng, China
| | | | - MD.Faysal Ahammad
- Key Laboratory of Natural Medicine and Immune Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Razia Virk
- Department of Bio-Sciences, University Wah, Rawalpindi, Pakistan
| | - Enshe Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, Henan University College of Medicine, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
10
|
Hao M, Dou Z, Xu L, Shao Z, Sun H, Li Z. RNA Sequencing Analysis of Gene Expression by Electroacupuncture in Guinea Pig Gallstone Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3793946. [PMID: 35035504 PMCID: PMC8759925 DOI: 10.1155/2022/3793946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical studies have shown that electroacupuncture (EA) promotes gallbladder motility and alleviates gallstone. However, the mechanism underlying the effects of EA on gallstone is poorly understood. In this study, the mRNA transcriptome analysis was used to study the possible therapeutic targets of EA. METHODS Hartley SPF guinea pigs were employed for the gallstone models. Illumina NovaSeq 6000 platform was used for the RNA sequencing of guinea pig gallbladders in the normal group (Normal), gallstone model group (Model), and EA-treated group (EA). Differently expressed genes (DEGs) were examined separately in Model vs. Normal and EA vs. Model. DEGs reversed by EA were selected by comparing the DEGs of Model vs. Normal and EA vs. Model. Biological functions were enriched by gene ontology (GO) analysis. The protein-protein interaction (PPI) network was analyzed. RESULTS After 2 weeks of EA, 257 DEGs in Model vs. Normal and 1704 DEGs in EA vs. Model were identified. 94 DEGs reversed by EA were identified among these DEGs, including 28 reversed upregulated DEGs and 66 reversed downregulated DEGs. By PPI network analysis, 10 hub genes were found by Cytohubba plugin of Cytoscape. Quantitative real-time PCR (qRT-PCR) verified the changes. CONCLUSION We identified a few GOs and genes that might play key roles in the treatment of gallstone. This study may help understand the therapeutic mechanism of EA for gallstone.
Collapse
Affiliation(s)
- Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongchen Shao
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Sun
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
11
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Morgan MAJ, Popova IK, Vaidya A, Burg JM, Marunde MR, Rendleman EJ, Dumar ZJ, Watson R, Meiners MJ, Howard SA, Khalatyan N, Vaughan RM, Rothbart SB, Keogh MC, Shilatifard A. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes Dev 2021; 35:1642-1656. [PMID: 34819353 PMCID: PMC8653789 DOI: 10.1101/gad.348766.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.
Collapse
Affiliation(s)
- Marc A J Morgan
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Anup Vaidya
- EpiCypher, Inc., Durham, North Carolina 27709, USA
| | | | | | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | | | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
13
|
Ginnard SM, Winkler AE, Mellado Fritz C, Bluhm T, Kemmer R, Gilliam M, Butkevich N, Abdrabbo S, Bricker K, Feiler J, Miller I, Zoerman J, El-Mohri Z, Khuansanguan P, Basch M, Petzold T, Kostoff M, Konopka S, Kociba B, Gillis T, Heyl DL, Trievel RC, Albaugh BN. Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2. Proteins 2021; 90:835-847. [PMID: 34766381 DOI: 10.1002/prot.26278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 11/12/2022]
Abstract
Ubiquitin-like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD-PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2 binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD-PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.
Collapse
Affiliation(s)
- Shane M Ginnard
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Alyssa E Winkler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | | | - Tatum Bluhm
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Ray Kemmer
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Marisa Gilliam
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Nick Butkevich
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sara Abdrabbo
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Kaitlyn Bricker
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Justin Feiler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Isaak Miller
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Jenna Zoerman
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Zeineb El-Mohri
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Panida Khuansanguan
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Madyson Basch
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Timothy Petzold
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Matthew Kostoff
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sean Konopka
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Brendon Kociba
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Thomas Gillis
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Deborah L Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany N Albaugh
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
14
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
15
|
Liu X, Xu B, Yang J, He L, Zhang Z, Cheng X, Yu H, Liu X, Jin T, Peng Y, Huang Y, Xia L, Wang Y, Wu J, Wu X, Liu S, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol Cell 2021; 81:2960-2974.e7. [PMID: 34111398 DOI: 10.1016/j.molcel.2021.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Zihan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Huajing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Tong Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Hahm JY, Park JW, Kang JY, Park J, Kim CH, Kim JY, Ha NC, Kim JW, Seo SB. Acetylation of UHRF1 Regulates Hemi-methylated DNA Binding and Maintenance of Genome-wide DNA Methylation. Cell Rep 2021; 32:107958. [PMID: 32726623 DOI: 10.1016/j.celrep.2020.107958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 11/28/2022] Open
Abstract
UHRF1 is a key regulator in DNA methylation maintenance. It binds histone H3K9me2/3 and hemi-methylated DNA and recruits DNMT1 to DNA replication forks during S phase. However, the regulatory mechanism of hemi-methylated DNA binding activity of UHRF1 remains unknown. In this study, we reveal that acetylation of UHRF1 is regulated by PCAF and HDAC1. We show that UHRF1 acetylation at K490 attenuates its binding affinity to hemi-methylated DNA. We analyze genome-wide DNA methylation and gene-expression patterns using stable cell lines and discover that cells where the endogenous UHRF1 is replaced with an acetyl-mimetic (UHRF1 K490Q) mutant show deficiencies in inherited DNA methylation and show different gene-expression patterns in genes related to cell survival. These results reveal that precise regulation of UHRF1 acetylation is required to maintain DNA methylation during cell division and control cell survival.
Collapse
Affiliation(s)
- Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
TETology: Epigenetic Mastermind in Action. Appl Biochem Biotechnol 2021; 193:1701-1726. [PMID: 33694104 DOI: 10.1007/s12010-021-03537-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a well-explored epigenetic modification mediated by DNA methyltransferases (DNMTs) which are considered "methylation writers"; cytosine methylation is a reversible process. The process of removal of methyl groups from DNA remained unelucidated until the discovery of ten-eleven translocation (TET) proteins which are now considered "methylation editors." TET proteins are a family of Fe(II) and alpha-ketoglutarate-dependent 5-methyl cytosine dioxygenases-they convert 5-methyl cytosine to 5-hydroxymethyl cytosine, and to further oxidized derivatives. In humans, there are three TET paralogs with tissue-specific expression, namely TET1, TET2, and TET3. Among the TETs, TET2 is highly expressed in hematopoietic stem cells where it plays a pleiotropic role. The paralogs also differ in their structure and DNA binding. TET2 lacks the CXXC domain which mediates DNA binding in the other paralogs; thus, TET2 requires interactions with other proteins containing DNA-binding domains for effectively binding to DNA to bring about the catalysis. In addition to its role as methylation editor of DNA, TET2 also serves as methylation editor of RNA. Thus, TET2 is involved in epigenetics as well as epitranscriptomics. TET2 mutations have been found in various malignant hematological disorders like acute myeloid leukemia, and non-malignant hematological disorders like myelodysplastic syndromes. Increasing evidence shows that TET2 plays an important role in the non-hematopoietic system as well. Hepatocellular carcinoma, gastric cancer, prostate cancer, and melanoma are some non-hematological malignancies in which a role of TET2 has been implicated. Loss of TET2 is also associated with atherosclerotic vascular lesions and endometriosis. The current review elaborates on the role of structure, catalysis, physiological functions, pathological alterations, and methods to study TET2, with specific emphasis on epigenomics and epitranscriptomics.
Collapse
|
18
|
Vaughan RM, Kupai A, Rothbart SB. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications. Trends Biochem Sci 2020; 46:258-269. [PMID: 33308996 DOI: 10.1016/j.tibs.2020.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
19
|
Vaughan RM, Kupai A, Foley CA, Sagum CA, Tibben BM, Eden HE, Tiedemann RL, Berryhill CA, Patel V, Shaw KM, Krajewski K, Strahl BD, Bedford MT, Frye SV, Dickson BM, Rothbart SB. The histone and non-histone methyllysine reader activities of the UHRF1 tandem Tudor domain are dispensable for the propagation of aberrant DNA methylation patterning in cancer cells. Epigenetics Chromatin 2020; 13:44. [PMID: 33097091 PMCID: PMC7585203 DOI: 10.1186/s13072-020-00366-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
The chromatin-binding E3 ubiquitin ligase ubiquitin-like with PHD and RING finger domains 1 (UHRF1) contributes to the maintenance of aberrant DNA methylation patterning in cancer cells through multivalent histone and DNA recognition. The tandem Tudor domain (TTD) of UHRF1 is well-characterized as a reader of lysine 9 di- and tri-methylation on histone H3 (H3K9me2/me3) and, more recently, lysine 126 di- and tri-methylation on DNA ligase 1 (LIG1K126me2/me3). However, the functional significance and selectivity of these interactions remain unclear. In this study, we used protein domain microarrays to search for additional readers of LIG1K126me2, the preferred methyl state bound by the UHRF1 TTD. We show that the UHRF1 TTD binds LIG1K126me2 with high affinity and selectivity compared to other known methyllysine readers. Notably, and unlike H3K9me2/me3, the UHRF1 plant homeodomain (PHD) and its N-terminal linker (L2) do not contribute to multivalent LIG1K126me2 recognition along with the TTD. To test the functional significance of this interaction, we designed a LIG1K126me2 cell-penetrating peptide (CPP). Consistent with LIG1 knockdown, uptake of the CPP had no significant effect on the propagation of DNA methylation patterning across the genomes of bulk populations from high-resolution analysis of several cancer cell lines. Further, we did not detect significant changes in DNA methylation patterning from bulk cell populations after chemical or genetic disruption of lysine methyltransferase activity associated with LIG1K126me2 and H3K9me2. Collectively, these studies identify UHRF1 as a selective reader of LIG1K126me2 in vitro and further implicate the histone and non-histone methyllysine reader activity of the UHRF1 TTD as a dispensable domain function for cancer cell DNA methylation maintenance.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Bailey M Tibben
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Hope E Eden
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | | | | | - Varun Patel
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kevin M Shaw
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
20
|
Nechin J, Tunstall E, Raymond N, Hamagami N, Pathmanabhan C, Forestier S, Davis TL. Hemimethylation of CpG dyads is characteristic of secondary DMRs associated with imprinted loci and correlates with 5-hydroxymethylcytosine at paternally methylated sequences. Epigenetics Chromatin 2019; 12:64. [PMID: 31623686 PMCID: PMC6796366 DOI: 10.1186/s13072-019-0309-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammals, the regulation of imprinted genes is controlled by differential methylation at imprinting control regions which acquire parent of origin-specific methylation patterns during gametogenesis and retain differences in allelic methylation status throughout fertilization and subsequent somatic cell divisions. In addition, many imprinted genes acquire differential methylation during post-implantation development; these secondary differentially methylated regions appear necessary to maintain the imprinted expression state of individual genes. Despite the requirement for both types of differentially methylated sequence elements to achieve proper expression across imprinting clusters, methylation patterns are more labile at secondary differentially methylated regions. To understand the nature of this variability, we analyzed CpG dyad methylation patterns at both paternally and maternally methylated imprinted loci within multiple imprinting clusters. RESULTS We determined that both paternally and maternally methylated secondary differentially methylated regions associated with imprinted genes display high levels of hemimethylation, 29-49%, in comparison to imprinting control regions which exhibited 8-12% hemimethylation. To explore how hemimethylation could arise, we assessed the differentially methylated regions for the presence of 5-hydroxymethylcytosine which could cause methylation to be lost via either passive and/or active demethylation mechanisms. We found enrichment of 5-hydroxymethylcytosine at paternally methylated secondary differentially methylated regions, but not at the maternally methylated sites we analyzed in this study. CONCLUSIONS We found high levels of hemimethylation to be a generalizable characteristic of secondary differentially methylated regions associated with imprinted genes. We propose that 5-hydroxymethylcytosine enrichment may be responsible for the variability in methylation status at paternally methylated secondary differentially methylated regions associated with imprinted genes. We further suggest that the high incidence of hemimethylation at secondary differentially methylated regions must be counteracted by continuous methylation acquisition at these loci.
Collapse
Affiliation(s)
- Julianna Nechin
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Emma Tunstall
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Naideline Raymond
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Nicole Hamagami
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Chris Pathmanabhan
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Samantha Forestier
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA
| | - Tamara L Davis
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA, 19010-2899, USA.
| |
Collapse
|
21
|
Vaughan RM, Rothbart SB, Dickson BM. The finger loop of the SRA domain in the E3 ligase UHRF1 is a regulator of ubiquitin targeting and is required for the maintenance of DNA methylation. J Biol Chem 2019; 294:15724-15732. [PMID: 31481468 PMCID: PMC6816099 DOI: 10.1074/jbc.ra119.010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
The Su(var)3–9, enhancer of zeste, and trithorax (SET) and really interesting new gene (RING) finger–associated (SRA) protein domain is conserved across bacteria and eukaryota and coordinates extrahelical or “flipped” DNA bases. A functional SRA domain is required for ubiquitin-like with PHD and RING finger domains 1 (UHRF1) E3 ubiquitin ligase activity toward histone H3, a mechanism for recruiting the DNA methylation maintenance enzyme DNA methyltransferase 1 (DNMT1). The SRA domain supports UHRF1 oncogenic activity in colon cancer cells, highlighting that UHRF1 SRA antagonism could be a cancer therapeutic strategy. Here we used molecular dynamics simulations, DNA binding assays, in vitro ubiquitination reactions, and DNA methylation analysis to identify the SRA finger loop as a regulator of UHRF1 ubiquitin targeting and DNA methylation maintenance. A chimeric UHRF1 (finger swap) with diminished E3 ligase activity toward nucleosomal histones, despite tighter binding to unmodified or asymmetric or symmetrically methylated DNA, uncouples DNA affinity from regulation of E3 ligase activity. Our model suggests that SRA domains sample DNA bases through flipping in the presence or absence of a cytosine modification and that specific interactions of the SRA finger loop with DNA are required for downstream host protein function. Our findings provide insight into allosteric regulation of UHRF1 E3 ligase activity, suggesting that UHRF1's SRA finger loop regulates its conformation and function.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
22
|
Targeting DNA Methylation and EZH2 Activity to Overcome Melanoma Resistance to Immunotherapy. Trends Immunol 2019; 40:328-344. [PMID: 30853334 DOI: 10.1016/j.it.2019.02.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Methylation of DNA at CpG sites is the most common and stable of epigenetic changes in cancer. Hypermethylation acts to limit immune checkpoint blockade immunotherapy by inhibiting endogenous interferon responses needed for recognition of cancer cells. By contrast, global hypomethylation results in the expression of programmed death ligand 1 (PD-L1) and inhibitory cytokines, accompanied by epithelial-mesenchymal changes that can contribute to immunosuppression. The drivers of these contrasting methylation states are not well understood. DNA methylation also plays a key role in cytotoxic T cell 'exhaustion' associated with tumor progression. We present an updated exploratory analysis of how DNA methylation may define patient subgroups and can be targeted to develop tailored treatment combinations to help improve patient outcomes.
Collapse
|
23
|
Kori S, Ferry L, Matano S, Jimenji T, Kodera N, Tsusaka T, Matsumura R, Oda T, Sato M, Dohmae N, Ando T, Shinkai Y, Defossez PA, Arita K. Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure 2019; 27:485-496.e7. [PMID: 30639225 DOI: 10.1016/j.str.2018.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.
Collapse
Affiliation(s)
- Satomi Kori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Laure Ferry
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Shohei Matano
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Tomohiro Jimenji
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Rumie Matsumura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Pierre-Antoine Defossez
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France.
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
24
|
Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Mol Cell 2018; 72:739-752.e9. [PMID: 30392929 PMCID: PMC6242706 DOI: 10.1016/j.molcel.2018.09.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The RING E3 ubiquitin ligase UHRF1 controls DNA methylation through its ability to target the maintenance DNA methyltransferase DNMT1 to newly replicated chromatin. DNMT1 recruitment relies on ubiquitylation of histone H3 by UHRF1; however, how UHRF1 deposits ubiquitin onto the histone is unknown. Here, we demonstrate that the ubiquitin-like domain (UBL) of UHRF1 is essential for RING-mediated H3 ubiquitylation. Using chemical crosslinking and mass spectrometry, biochemical assays, and recombinant chromatin substrates, we show that the UBL participates in structural rearrangements of UHRF1 upon binding to chromatin and the E2 ubiquitin conjugating enzyme UbcH5a/UBE2D1. Similar to ubiquitin, the UBL exerts its effects through a hydrophobic patch that contacts a regulatory surface on the “backside” of the E2 to stabilize the E2-E3-chromatin complex. Our analysis of the enzymatic mechanism of UHRF1 uncovers an unexpected function of the UBL domain and defines a new role for this domain in DNMT1-dependent inheritance of DNA methylation. The UBL domain of UHRF1 is required for its E3 ubiquitin ligase activity A hydrophobic patch on the UBL is required to form a stable E2/E3/chromatin complex The UHRF1 N terminus and UBL hydrophobic patch control targeted H3 ubiquitylation DNMT1-mediated maintenance DNA methylation requires the UBL hydrophobic patch
Collapse
Affiliation(s)
- Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Paul Stolz
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Alex Montoya
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Sebastian Bultmann
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
25
|
Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. Proc Natl Acad Sci U S A 2018; 115:8775-8780. [PMID: 30104358 PMCID: PMC6126761 DOI: 10.1073/pnas.1806373115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA methylation and histone posttranslational modifications are key epigenetic marks that contribute to the fine-tuned regulation of gene expression and other chromatin-templated biological processes. Here, we build artificial chromatin templates and reveal key chromatin structural features and epigenetic marks that coordinately regulate the binding and enzymatic activity of the DNA methylation regulator UHRF1. Studying activities of epigenetic regulators in the context of defined chromatin templates, particularly for multidomain histone and DNA binding proteins such as UHRF1, is critical for understanding molecular mechanisms of epigenetic crosstalk and mechanics regulating epigenetic signaling, and for determining how epigenetic dysregulation contributes to human disease. Mitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells. Here, we construct semisynthetic mononucleosomes harboring defined histone and DNA modifications and perform rigorous analysis of UHRF1 binding and enzymatic activity with these reagents. We show that multivalent engagement of nucleosomal linker DNA and dimethylated lysine 9 on histone H3 directs UHRF1 ubiquitin ligase activity toward histone substrates. Notably, we reveal a molecular switch, stimulated by recognition of hemimethylated DNA, which redirects UHRF1 ubiquitin ligase activity away from histones in favor of robust autoubiquitination. Our studies support a noncompetitive model for UHRF1 and DNMT1 chromatin recruitment to replicating chromatin and define a role for hemimethylated linker DNA as a regulator of UHRF1 ubiquitin ligase substrate selectivity.
Collapse
|
26
|
Ren R, Horton JR, Zhang X, Blumenthal RM, Cheng X. Detecting and interpreting DNA methylation marks. Curr Opin Struct Biol 2018; 53:88-99. [PMID: 30031306 DOI: 10.1016/j.sbi.2018.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
The generation, alteration, recognition, and erasure of epigenetic modifications of DNA are fundamental to controlling gene expression in mammals. These covalent DNA modifications include cytosine methylation by AdoMet-dependent methyltransferases and 5-methylcytosine oxidation by Fe(II)-dependent and α-ketoglutarate-dependent dioxygenases. Sequence-specific transcription factors are responsible for interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases: 5-methylcytosine and 5-methyluracil (thymine).
Collapse
Affiliation(s)
- Ren Ren
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|