1
|
Zhang X, Tseo Y, Bai Y, Chen F, Uhler C. Prediction of protein subcellular localization in single cells. Nat Methods 2025; 22:1265-1275. [PMID: 40360932 DOI: 10.1038/s41592-025-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
The subcellular localization of a protein is important for its function, and its mislocalization is linked to numerous diseases. Existing datasets capture limited pairs of proteins and cell lines, and existing protein localization prediction models either miss cell-type specificity or cannot generalize to unseen proteins. Here we present a method for Prediction of Unseen Proteins' Subcellular localization (PUPS). PUPS combines a protein language model and an image inpainting model to utilize both protein sequence and cellular images. We demonstrate that the protein sequence input enables generalization to unseen proteins, and the cellular image input captures single-cell variability, enabling cell-type-specific predictions. Experimental validation shows that PUPS can predict protein localization in newly performed experiments outside the Human Protein Atlas used for training. Collectively, PUPS provides a framework for predicting differential protein localization across cell lines and single cells within a cell line, including changes in protein localization driven by mutations.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yitong Tseo
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Caroline Uhler
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial calcium signaling regulates branched-chain amino acid catabolism in fibrolamellar carcinoma. SCIENCE ADVANCES 2025; 11:eadu9512. [PMID: 40435263 PMCID: PMC12118637 DOI: 10.1126/sciadv.adu9512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
Metabolic adaptations are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating mitochondrial metabolic pathways and calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate consequences of uniporter loss and gain of function using uniporter knockout cells and fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. We find that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated pathways. Reduced uniporter function boosts expression of BCAA catabolism genes and the urea cycle enzyme ornithine transcarbamylase. In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by the transcription factor KLF15, a master regulator of liver metabolism. Thus, the uniporter plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for the uniporter in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism.
Collapse
Affiliation(s)
- Nicole M. Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Albert A. Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Timothy M. Locke
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Madeleine L. Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Paglia S, Morciano P, de Biase D, Giorgi FM, Pession A, Grifoni D. Transcriptome-Wide Analysis of Brain Cancer Initiated by Polarity Disruption in Drosophila Type II Neuroblasts. Int J Mol Sci 2025; 26:5115. [PMID: 40507925 PMCID: PMC12154101 DOI: 10.3390/ijms26115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Brain tumors, in particular gliomas and glioblastoma multiforme (GBM), are thought to originate from different cells facing specific founding insults, a feature that partly justifies the complexity and heterogeneity of these severe forms of cancer. However, gliomas and GBM are usually reproduced in animal models by inducing molecular alterations in mature glial cells, which, though being part of the puzzle, do not represent the whole picture. To fill this conceptual gap, we previously developed a neurogenic model of brain cancer in Drosophila, demonstrating that the loss of cell polarity in neural stem cells (called neuroblasts in the fruit fly) is sufficient to promote the formation of malignant masses that continue to grow in the adult, displaying several phenotypic traits typical of human GBM. Here, we expand on previous work by restricting polarity disruption to Drosophila type II neuroblasts, whose self-renewal is comparable to that of mammalian neural progenitors, with the aim to capture the molecular signature of the resulting cancers in a specific and reproducible context. A comparison of the most deregulated transcripts with those found in human primary GBMs confirmed that our model can be proficiently used to delve into the roots of human brain tumorigenesis.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (S.P.); (D.d.B.); (F.M.G.)
| | - Patrizia Morciano
- Department of “Life Health and Environmental Sciences”, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy;
- INFN-Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (S.P.); (D.d.B.); (F.M.G.)
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federico Manuel Giorgi
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (S.P.); (D.d.B.); (F.M.G.)
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (S.P.); (D.d.B.); (F.M.G.)
| | - Daniela Grifoni
- Department of “Life Health and Environmental Sciences”, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy;
| |
Collapse
|
4
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Kisielewska K, Rak A, Smolinska N, Kaminski T. The effect of visfatin on the transcriptomic profile of porcine anterior pituitary cells during periimplantation period. Sci Rep 2025; 15:15858. [PMID: 40328795 PMCID: PMC12056127 DOI: 10.1038/s41598-025-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Females' reproductive capacity is closely related to the actual metabolic status of the organism. The pituitary, an element of the regulatory hypothalamic-pituitary-ovarian axis, is one of the most important endocrine glands regulating reproductive system activity. Undisturbed functioning of pituitary ensures the regular course of pregnancy through, among others, the modulation of steroid hormones production, which is critical in the early stages of gestation. Visfatin, a hormone belonging to the adipokines family, may belong to a group of factors regulating the reproductive functions in response to the female's metabolic status. Herein we verified the hypothesis assuming a modulatory effect of visfatin on the porcine anterior pituitary transcriptome on days 15 to 16 of gestation (beginning of implantation). RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 203 genes (121 up-regulated and 82 down-regulated, when compared to the non-treated controls), assigned to 325 gene ontology terms. The presence of visfatin affected the frequency of alternative splicing events (194 cases), as well as long noncoding RNA expression (64 cases). Visfatin expression and the occurrence of alternative splicing events of genes that are responsible, directly or indirectly, for regulation of the secretory functions of the pituitary, including those critical for reproductive functions suggests that the adipokine may be a key agent in ensuring the appropriate hormonal milieu during the peri-implantation period.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego st. 5, Olsztyn, 10-719, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Wee K, Yang KC, Schaeffer DF, Zhou C, Leung E, Feng X, Laskin J, Marra MA, Loree JM, Gorski SM. Genomic and transcriptomic landscapes of metastatic neuroendocrine neoplasms from distinct primary sites and their clinical implications. Sci Rep 2025; 15:15770. [PMID: 40328872 PMCID: PMC12056210 DOI: 10.1038/s41598-025-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroendocrine neoplasms (NENs) encompass a highly heterogeneous group of neoplasms with varying prognoses and molecular alterations. Molecular profiling studies have furthered our understanding of NENs, but the majority of previous studies have focused on primary tumors and on mutational landscapes using DNA sequencing data. Here, we describe the genomic and transcriptomic landscapes of 28 metastatic NENs across different primary anatomical sites (PASs) and their potential clinical implications. Although our cohort is small, our analyses provide further insights on the molecular commonalities and distinctions between metastatic NENs of different PASs. Comparison to several reference transcriptome data sets revealed that despite considerable whole genome and transcriptome variability in NENs, the metastatic NENs are still more like each other than other cancer types. Our study also highlights the potential utility of NEN transcriptome data for molecular classification and clinical decision making.
Collapse
Affiliation(s)
- Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David F Schaeffer
- Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Chen Zhou
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| | - Emily Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Xiaolan Feng
- Vancouver Island Centre, BC Cancer, Victoria, BC, Canada
| | - Janessa Laskin
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
6
|
Okui N, Hachiya T, Horie S. Pilot study using a discrete mathematical approach for topological analysis and ssGSEA of gene expression in autosomal recessive polycystic kidney disease. Sci Rep 2025; 15:15559. [PMID: 40319097 PMCID: PMC12049503 DOI: 10.1038/s41598-025-99048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe genetic disorder characterized by renal cystogenesis and hepatic fibrosis, primarily associated with PKHD1 mutations. While differential expression analysis (DEG) has identified key genes involved in ARPKD, their network-level interactions remain unclear. Recent studies have implicated WNT signaling in ARPKD pathogenesis, but a topological framework may provide additional insights into gene community structures. This study applied a network-based approach integrating single-sample gene set enrichment analysis (ssGSEA) and topological centrality analysis to investigate gene communities in ARPKD. We identified three key communities: Community 2, centered on IFT22, exhibited stable activation in both ARPKD and healthy samples, suggesting its role in ciliary function. Community 5, predominantly activated in ARPKD, included genes linked to tissue repair and immune regulation. In contrast, Community 3 was suppressed in ARPKD, indicating potential structural instability. Notably, PKHD1 was mathematically isolated, suggesting limited direct involvement in ARPKD-specific transcriptional networks, while the absence of WNT5A, CDH1, and FZD10 from defined communities in ARPKD may indicate potential alterations in their network associations compared to healthy individuals. These findings highlight the advantages of network topology over conventional DEG analysis in elucidating ARPKD pathophysiology. By identifying gene communities and regulatory hubs, this approach offers novel insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Nobuo Okui
- Urology, Yokosuka Urogynecology and Urology Clinic, Ootaki 2-6, Yokosuka, Kanagawa, 238-0008, Japan.
- Mathematics, Kanagawa Dental University, Inaoka-cyou 82, Yokosuka, Kanagawa, 238- 0008, Japan.
- Data Science and Informatics for Genetic Disorders, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Tsuyoshi Hachiya
- Data Science and Informatics for Genetic Disorders, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Urology, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Shigeo Horie
- Data Science and Informatics for Genetic Disorders, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Urology, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2025; 62:5977-5989. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
8
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
9
|
Kilili H, Padilla-Morales B, Castillo-Morales A, Monzón-Sandoval J, Díaz-Barba K, Cornejo-Paramo P, Vincze O, Giraudeau M, Bush SJ, Li Z, Chen L, Mourkas E, Ancona S, Gonzalez-Voyer A, Cortez D, Gutierrez H, Székely T, Acuña-Alonzo AP, Urrutia AO. Maximum lifespan and brain size in mammals are associated with gene family size expansion related to immune system functions. Sci Rep 2025; 15:15087. [PMID: 40301502 PMCID: PMC12041557 DOI: 10.1038/s41598-025-98786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Mammals exhibit an unusual variation in their maximum lifespan potential, measured as the longest recorded longevity of any individual in a species. Evidence suggests that lifespan increases follow expansion in brain size relative to body mass. Here, we found significant gene family size expansions associated with maximum lifespan potential and relative brain size but not in gestation time, age of sexual maturity, and body mass in 46 mammalian species. Extended lifespan is associated with expanding gene families enriched in immune system functions. Our results suggest an association between gene duplication in immune-related gene families and the evolution of longer lifespans in mammals. These findings explore the genomic features linked with the evolution of lifespan in mammals and its association with life story and morphological traits.
Collapse
Affiliation(s)
- Huseyin Kilili
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Benjamin Padilla-Morales
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | | | | | - Karina Díaz-Barba
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, Mexico
| | - Paola Cornejo-Paramo
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, Mexico
| | - Orsolya Vincze
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
- Institute of Aquatic Ecology, Centre for Ecological Research, 4026, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| | - Stephen J Bush
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhidan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Evangelos Mourkas
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sergio Ancona
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Diego Cortez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, México
| | - Humberto Gutierrez
- Instituto Nacional de Medicina Genomica, 14610, Ciudad de Mexico, Mexico
| | - Tamás Székely
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Alín P Acuña-Alonzo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
10
|
Rohde T, Demirtas TY, Süsser S, Shaw AH, Kaulich M, Billmann M. BaCoN (Balanced Correlation Network) improves prediction of gene buffering. Mol Syst Biol 2025:10.1038/s44320-025-00103-7. [PMID: 40263591 DOI: 10.1038/s44320-025-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Buffering between genes, where one gene can compensate for the loss of another gene, is fundamental for robust cellular functions. While experimentally testing all possible gene pairs is infeasible, gene buffering can be predicted genome-wide under the assumption that a gene's buffering capacity depends on its expression level and its absence primes a severe fitness phenotype of the buffered gene. We developed BaCoN (Balanced Correlation Network), a post hoc unsupervised correction method that amplifies specific signals in expression-vs-fitness correlation networks. We quantified 147 million potential buffering relationships by associating CRISPR-Cas9-screening fitness effects with transcriptomic data across 1019 Cancer Dependency Map (DepMap) cell lines. BaCoN outperformed state-of-the-art methods, including multiple linear regression based on our compiled gene buffering prediction metrics. Combining BaCoN with batch correction or Cholesky data whitening further boosts predictive performance. We characterized 808 high-confidence buffering predictions and found that in contrast to buffering gene pairs overall, buffering paralogs were on different chromosomes. BaCoN performance increases with more screens and genes considered, making it a valuable tool for gene buffering predictions from the growing DepMap.
Collapse
Affiliation(s)
- Thomas Rohde
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, 53127, Germany
| | - Talip Yasir Demirtas
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, 53127, Germany
| | - Sebastian Süsser
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Angela Helen Shaw
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, 53127, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Maximilian Billmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, 53127, Germany.
| |
Collapse
|
11
|
Ogura Y, Sun X, Zhang Z, Kawata K, Wu J, Matsubara R, Ozeki AN, Taniue K, Onoguchi-Mizutani R, Adachi S, Nakayama K, Goda N, Akimitsu N. Fragile X messenger ribonucleoprotein 1 (FMRP) regulates glycolytic gene expression under chronic hypoxia in HCT116 cells. Sci Rep 2025; 15:13273. [PMID: 40246883 PMCID: PMC12006372 DOI: 10.1038/s41598-025-91828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
Oxygen shortage, known as hypoxia, occurs commonly in both physiological and pathological conditions. Transcriptional regulation by hypoxia-inducible factors is a dominant regulatory mechanism controlling hypoxia-responsive genes during acute hypoxia; however, recent studies suggest that post-transcriptional regulation, including RNA degradation, also involves hypoxia-induced gene expression during the chronic hypoxia. In this study, we developed a method to quantify the contributions of RNA synthesis and degradation to differential gene expression, and identified 102 genes mainly regulated via RNA degradation under chronic hypoxia in HCT116 cells. Bioinformatics analysis showed that the genes mainly regulated by RNA degradation were involved in glycolysis. We examined changes in the RNA-binding ability of RNA-binding proteins by RNA interactome capture and statistical analysis using public databases. We identified fragile X messenger ribonucleoprotein 1 (FMRP) as an RNA-binding protein involved in the chronic hypoxia-induced increase in mRNAs encoding rate-limiting enzymes. This study emphasizes the importance of post-transcriptional gene regulation under chronic hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Yoko Ogura
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaoning Sun
- Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Zaijun Zhang
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Jinyu Wu
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryuma Matsubara
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Koh Nakayama
- Department of Pharmacology, School of Medicine, Asahikawa Medical University, Hokkaido, 078-8510, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
12
|
D'Sa K, Choi ML, Wagen AZ, Setó-Salvia N, Kopach O, Evans JR, Rodrigues M, Lopez-Garcia P, Lachica J, Clarke BE, Singh J, Ghareeb A, Bayne J, Grant-Peters M, Garcia-Ruiz S, Chen Z, Rodriques S, Athauda D, Gustavsson EK, Gagliano Taliun SA, Toomey C, Reynolds RH, Young G, Strohbuecker S, Warner T, Rusakov DA, Patani R, Bryant C, Klenerman DA, Gandhi S, Ryten M. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. SCIENCE ADVANCES 2025; 11:eadp8504. [PMID: 40215316 PMCID: PMC11988446 DOI: 10.1126/sciadv.adp8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
RNA editing is a posttranscriptional mechanism that targets changes in RNA transcripts to modulate innate immune responses. We report the role of astrocyte-specific, ADAR1-mediated RNA editing in neuroinflammation in Parkinson's disease (PD). We generated human induced pluripotent stem cell-derived astrocytes, neurons and cocultures and exposed them to small soluble alpha-synuclein aggregates. Oligomeric alpha-synuclein triggered an inflammatory glial state associated with Toll-like receptor activation, viral responses, and cytokine secretion. This reactive state resulted in loss of neurosupportive functions and the induction of neuronal toxicity. Notably, interferon response pathways were activated leading to up-regulation and isoform switching of the RNA deaminase enzyme, ADAR1. ADAR1 mediates A-to-I RNA editing, and increases in RNA editing were observed in inflammatory pathways in cells, as well as in postmortem human PD brain. Aberrant, or dysregulated, ADAR1 responses and RNA editing may lead to sustained inflammatory reactive states in astrocytes triggered by alpha-synuclein aggregation, and this may drive the neuroinflammatory cascade in Parkinson's.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Minee L. Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Brain & Cognitive Sciences, KAIST, 921 Dehak-ro, Daejeon, Republic of Korea
| | - Aaron Z. Wagen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuroscience and Cell Biology Research Institute, City St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Patricia Lopez-Garcia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joanne Lachica
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benjamin E. Clarke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jaijeet Singh
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ali Ghareeb
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - James Bayne
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Melissa Grant-Peters
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sonia Garcia-Ruiz
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Zhongbo Chen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Samuel Rodriques
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- FutureHouse, 1405 Minnesota Street, San Francisco, CA 94107, USA
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emil K. Gustavsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah A. Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christina Toomey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Regina H. Reynolds
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - George Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Stephanie Strohbuecker
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thomas Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
13
|
Chen Y, Davidson NM, Wan YK, Yao F, Su Y, Gamaarachchi H, Sim A, Patel H, Low HM, Hendra C, Wratten L, Hakkaart C, Sawyer C, Iakovleva V, Lee PL, Xin L, Ng HEV, Loo JM, Ong X, Ng HQA, Wang J, Koh WQC, Poon SYP, Stanojevic D, Tran HD, Lim KHE, Toh SY, Ewels PA, Ng HH, Iyer NG, Thiery A, Chng WJ, Chen L, DasGupta R, Sikic M, Chan YS, Tan BOP, Wan Y, Tam WL, Yu Q, Khor CC, Wüstefeld T, Lezhava A, Pratanwanich PN, Love MI, Goh WSS, Ng SB, Oshlack A, Göke J. A systematic benchmark of Nanopore long-read RNA sequencing for transcript-level analysis in human cell lines. Nat Methods 2025; 22:801-812. [PMID: 40082608 PMCID: PMC11978509 DOI: 10.1038/s41592-025-02623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
The human genome contains instructions to transcribe more than 200,000 RNAs. However, many RNA transcripts are generated from the same gene, resulting in alternative isoforms that are highly similar and that remain difficult to quantify. To evaluate the ability to study RNA transcript expression, we profiled seven human cell lines with five different RNA-sequencing protocols, including short-read cDNA, Nanopore long-read direct RNA, amplification-free direct cDNA and PCR-amplified cDNA sequencing, and PacBio IsoSeq, with multiple spike-in controls, and additional transcriptome-wide N6-methyladenosine profiling data. We describe differences in read length, coverage, throughput and transcript expression, reporting that long-read RNA sequencing more robustly identifies major isoforms. We illustrate the value of the SG-NEx data to identify alternative isoforms, novel transcripts, fusion transcripts and N6-methyladenosine RNA modifications. Together, the SG-NEx data provide a comprehensive resource enabling the development and benchmarking of computational methods for profiling complex transcriptional events at isoform-level resolution.
Collapse
Affiliation(s)
- Ying Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Nadia M Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuk Kei Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fei Yao
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yan Su
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Hasindu Gamaarachchi
- School of Computer Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andre Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Hwee Meng Low
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Christopher Hendra
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| | - Laura Wratten
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Chelsea Sawyer
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Viktoriia Iakovleva
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Puay Leng Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lixia Xin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui En Vanessa Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui Qi Amanda Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jiaxu Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Qian Casslynn Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Suk Yeah Polly Poon
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Dominik Stanojevic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Hoang-Dai Tran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kok Hao Edwin Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shen Yon Toh
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Huck-Hui Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Alexandre Thiery
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mile Sikic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Yun-Shen Chan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Boon Ooi Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiang Yu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Chiea Chuan Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Torsten Wüstefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National Cancer Centre Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ploy N Pratanwanich
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Chula Intelligent and Complex Systems Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wee Siong Sho Goh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sarah B Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Alicia Oshlack
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan Göke
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Zhuang QKW, Bauermeister K, Galvez JH, Alogayil N, Batdorj E, de Villena FPM, Taketo T, Bourque G, Naumova AK. Survey of gene, lncRNA and transposon transcription patterns in four mouse organs highlights shared and organ-specific sex-biased regulation. Genome Biol 2025; 26:74. [PMID: 40140847 PMCID: PMC11948892 DOI: 10.1186/s13059-025-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Sex-biased gene regulation is the basis of sexual dimorphism in phenotypes and has been studied across different cell types and different developmental stages. However, sex-biased expression of transposable elements (TEs), which represent nearly half of the mammalian genome and have the potential of influencing genome integrity and regulation, remains underexplored. RESULTS We report a survey of gene, lncRNA, and TE expression in four organs from mice with different combinations of gonadal and genetic sex. The data show remarkable variability among organs with respect to the impact of gonadal sex on transcription with the strongest effects observed in the liver. In contrast, the X-chromosome dosage alone had a modest influence on sex-biased transcription across organs, albeit interaction between X-dosage and gonadal sex cannot be ruled out. The presence of the Y-chromosome influences TE, but not gene or lncRNA, expression in the liver. Notably, 90% of sex-biased TEs (sDETEs) reside in clusters. Moreover, 54% of these clusters overlap or reside less than 100 kb from sex-biased genes or lncRNAs, share the same sex bias, and also have higher expression levels than sDETE clusters that do not co-localize with other types of sex-biased transcripts. We test the heterochromatic sink hypothesis that predicts higher expression of TEs in XX individuals finding no evidence to support it. CONCLUSIONS Our data show that sex-biased expression of TEs varies among organs with the highest numbers of sDETEs found in the liver following trends observed for genes and lncRNAs. It is enhanced by proximity to other types of sex-biased transcripts.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada
| | - Najla Alogayil
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan.
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada.
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
15
|
Garde C, Pavlidis MA, Garces P, Lange EJ, Ramarathinam SH, Sokač M, Pandey K, Faridi P, Ahrenfeldt J, Chung S, Friis S, Kleine-Kohlbrecher D, Birkbak NJ, Kringelum JV, Rønø B, Purcell AW, Trolle T. Endogenous viral elements constitute a complementary source of antigens for personalized cancer vaccines. NPJ Vaccines 2025; 10:54. [PMID: 40113807 PMCID: PMC11926357 DOI: 10.1038/s41541-025-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Personalized cancer vaccines (PCVs) largely leverage neoantigens arising from somatic mutations, limiting their application to patients with relatively high tumor mutational burden (TMB). This underscores the need for alternative antigens to design PCVs for low TMB cancers. To this end, we substantiate endogenous retroviral elements (EVEs) as tumor antigens through large-scale genomic analyses of healthy tissues and solid cancers. These analyses revealed that the breadth of EVE expression in tumors stratify checkpoint inhibitor-treated melanoma patients into groups with differential overall and progression-free survival. To enable the design of PCVs containing EVE-derived epitopes with therapeutic potential, we developed a computational pipeline, ObsERV. We show that EVE-derived peptides are presented as epitopes on tumors and can be predicted by ObsERV. Preclinical testing of ObsERV demonstrates induction of sustained poly-functional CD4+ and CD8+ T-cell responses as well as long-term tumor protection. As such, EVEs may facilitate and improve PCVs, especially for low-TMB patients.
Collapse
Affiliation(s)
- Christian Garde
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark.
| | | | - Pablo Garces
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark
| | - Emma J Lange
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mateo Sokač
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stine Friis
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark
| | | | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Birgitte Rønø
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thomas Trolle
- Evaxion Biotech A/S, Dr Neergaards Vej 5F, Hørsholm, Denmark
| |
Collapse
|
16
|
Kilgore HR, Chinn I, Mikhael PG, Mitnikov I, Van Dongen C, Zylberberg G, Afeyan L, Banani S, Wilson-Hawken S, Lee TI, Barzilay R, Young RA. Protein codes promote selective subcellular compartmentalization. Science 2025; 387:1095-1101. [PMID: 39913643 PMCID: PMC12034300 DOI: 10.1126/science.adq2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/07/2024] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
Cells have evolved mechanisms to distribute ~10 billion protein molecules to subcellular compartments where diverse proteins involved in shared functions must assemble. In this study, we demonstrate that proteins with shared functions share amino acid sequence codes that guide them to compartment destinations. We developed a protein language model, ProtGPS, that predicts with high performance the compartment localization of human proteins excluded from the training set. ProtGPS successfully guided generation of novel protein sequences that selectively assemble in the nucleolus. ProtGPS identified pathological mutations that change this code and lead to altered subcellular localization of proteins. Our results indicate that protein sequences contain not only a folding code but also a previously unrecognized code governing their distribution to diverse subcellular compartments.
Collapse
Affiliation(s)
- Henry R. Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Itamar Chinn
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter G. Mikhael
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilan Mitnikov
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Guy Zylberberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lena Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salman Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana Wilson-Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Wang M, Di Pietro-Torres A, Feregrino C, Luxey M, Moreau C, Fischer S, Fages A, Ritz D, Tschopp P. Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis. Nat Commun 2025; 16:2187. [PMID: 40038298 PMCID: PMC11880379 DOI: 10.1038/s41467-025-57480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being crucial to evolutionary success. A prime example are the skeletogenic cells of vertebrates. Depending on anatomical location, these cells originate from three different precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, their 'skeletogenic competency' arose at distinct evolutionary timepoints, thus questioning to what extent different skeletal body parts rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties are integrated at the gene regulatory level, to allow for skeletogenic cell fate convergence. Using single-cell functional genomics, we find that distinct transcription factor profiles are inherited from the three precursor states and incorporated at lineage-specific enhancer elements. This lineage-specific regulatory logic suggests that these regionalized skeletogenic cells are distinct cell types, rendering them amenable to individualized selection, to define adaptive morphologies and biomaterial properties in different parts of the vertebrate skeleton.
Collapse
Affiliation(s)
- Menghan Wang
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Di Pietro-Torres
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maëva Luxey
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MeLis, CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Institut NeuroMyo Gène, Lyon, France
| | - Chloé Moreau
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Antoine Fages
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Tadross JA, Steuernagel L, Dowsett GKC, Kentistou KA, Lundh S, Porniece M, Klemm P, Rainbow K, Hvid H, Kania K, Polex-Wolf J, Knudsen LB, Pyke C, Perry JRB, Lam BYH, Brüning JC, Yeo GSH. A comprehensive spatio-cellular map of the human hypothalamus. Nature 2025; 639:708-716. [PMID: 39910307 PMCID: PMC11922758 DOI: 10.1038/s41586-024-08504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
The hypothalamus is a brain region that plays a key role in coordinating fundamental biological functions1. However, our understanding of the underlying cellular components and neurocircuitries have, until recently, emerged primarily from rodent studies2,3. Here we combine single-nucleus sequencing of 433,369 human hypothalamic cells with spatial transcriptomics, generating a comprehensive spatio-cellular transcriptional map of the hypothalamus, the 'HYPOMAP'. Although conservation of neuronal cell types between humans and mice, as based on transcriptomic identity, is generally high, there are notable exceptions. Specifically, there are significant disparities in the identity of pro-opiomelanocortin neurons and in the expression levels of G-protein-coupled receptors between the two species that carry direct implications for currently approved obesity treatments. Out of the 452 hypothalamic cell types, we find that 291 neuronal clusters are significantly enriched for expression of body mass index (BMI) genome-wide association study genes. This enrichment is driven by 426 'effector' genes. Rare deleterious variants in six of these (MC4R, PCSK1, POMC, CALCR, BSN and CORO1A) associate with BMI at population level, and CORO1A has not been linked previously to BMI. Thus, HYPOMAP provides a detailed atlas of the human hypothalamus in a spatial context and serves as an important resource to identify new druggable targets for treating a wide range of conditions, including reproductive, circadian and metabolic disorders.
Collapse
Affiliation(s)
- John A Tadross
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Georgina K C Dowsett
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katherine A Kentistou
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sofia Lundh
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Kara Rainbow
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Henning Hvid
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Katarzyna Kania
- Genomics Core, Cancer Research UK Cambridge Institute, Cambridge, UK
| | | | | | - Charles Pyke
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - John R B Perry
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Müller M, May S, Hall H, Kendall TJ, McGarry L, Blukacz L, Nuciforo S, Georgakopoulou A, Jamieson T, Phinichkusolchit N, Dhayade S, Suzuki T, Huguet-Pradell J, Powley IR, Officer-Jones L, Pennie RL, Esteban-Fabró R, Gris-Oliver A, Pinyol R, Skalka GL, Leslie J, Hoare M, Sprangers J, Malviya G, Mackintosh A, Johnson E, McCain M, Halpin J, Kiourtis C, Nixon C, Clark G, Clark W, Shaw R, Hedley A, Drake TM, Tan EH, Neilson M, Murphy DJ, Lewis DY, Reeves HL, Le Quesne J, Mann DA, Carlin LM, Blyth K, Llovet JM, Heim MH, Sansom OJ, Miller CJ, Bird TG. Human-correlated genetic models identify precision therapy for liver cancer. Nature 2025; 639:754-764. [PMID: 39972137 PMCID: PMC11922762 DOI: 10.1038/s41586-025-08585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is a leading cause of cancer-related mortality worldwide1,2. HCC occurs typically from a background of chronic liver disease, caused by a spectrum of predisposing conditions. Tumour development is driven by the expansion of clones that accumulate progressive driver mutations3, with hepatocytes the most likely cell of origin2. However, the landscape of driver mutations in HCC is broadly independent of the underlying aetiologies4. Despite an increasing range of systemic treatment options for advanced HCC, outcomes remain heterogeneous and typically poor. Emerging data suggest that drug efficacies depend on disease aetiology and genetic alterations5,6. Exploring subtypes in preclinical models with human relevance will therefore be essential to advance precision medicine in HCC7. Here we generated a suite of genetically driven immunocompetent in vivo and matched in vitro HCC models. Our models represent multiple features of human HCC, including clonal origin, histopathological appearance and metastasis. We integrated transcriptomic data from the mouse models with human HCC data and identified four common human-mouse subtype clusters. The subtype clusters had distinct transcriptomic characteristics that aligned with the human histopathology. In a proof-of-principle analysis, we verified response to standard-of-care treatment and used a linked in vitro-in vivo pipeline to identify a promising therapeutic candidate, cladribine, that has not previously been linked to HCC treatment. Cladribine acts in a highly effective subtype-specific manner in combination with standard-of-care therapy.
Collapse
Affiliation(s)
| | - Stephanie May
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Lauriane Blukacz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anastasia Georgakopoulou
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Narisa Phinichkusolchit
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Júlia Huguet-Pradell
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ian R Powley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | | | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Albert Gris-Oliver
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | | | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | - Emma Johnson
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Misti McCain
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - John Halpin
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Christos Kiourtis
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Graeme Clark
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Thomas M Drake
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ee Hong Tan
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Matt Neilson
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Daniel J Murphy
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Y Lewis
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Helen L Reeves
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Liver Group, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John Le Quesne
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Leo M Carlin
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- University Digestive Health Care Center Basel-Clarunis, Basel, Switzerland
| | - Owen J Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Centre, Edinburgh, UK
- Cancer Research UK Scotland Centre, Glasgow, UK
| | - Crispin J Miller
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas G Bird
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, Edinburgh, UK.
- Cancer Research UK Scotland Centre, Glasgow, UK.
| |
Collapse
|
20
|
Bertrand L, Nelde A, Ramirez BC, Hatin I, Arbes H, François P, Demais S, Labaronne E, Decimo D, Guiguettaz L, Grégoire S, Bet A, Beauclair G, Gross A, Ziegler MC, Pereira M, Jeger-Madiot R, Verdier Y, Vinh J, Cardinaud S, Graff-Dubois S, Esclatine A, Gouttefangeas C, Altfeld M, Hocqueloux L, Samri A, Autran B, Lambotte O, Rammensee HG, Ricci EP, Walz J, Namy O, Moris A. Unveiling conserved HIV-1 open reading frames encoding T cell antigens using ribosome profiling. Nat Commun 2025; 16:1707. [PMID: 39966340 PMCID: PMC11836469 DOI: 10.1038/s41467-025-56773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
The development of ribosomal profiling (Riboseq) revealed the immense coding capacity of human and viral genomes. Here, we used Riboseq to delineate the translatome of HIV-1 in infected CD4+ T cells. In addition to canonical viral protein coding sequences (CDSs), we identify 98 alternative open reading frames (ARFs), corresponding to small Open Reading Frames (sORFs) that are distributed across the HIV genome including the UTR regions. Using a database of HIV genomes, we observe that most ARF amino-acid sequences are likely conserved among clade B and C of HIV-1, with 8 ARF-encoded amino-acid sequences being more conserved than the overlapping CDSs. Using T cell-based assays and mass spectrometry-based immunopeptidomics, we demonstrate that ARFs encode viral polypeptides. In the blood of people living with HIV, ARF-derived peptides elicit potent poly-functional T cell responses mediated by both CD4+ and CD8+ T cells. Our discovery expands the list of conserved viral polypeptides that are targets for vaccination strategies and might reveal the existence of viral microproteins or pseudogenes.
Collapse
Affiliation(s)
- Lisa Bertrand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, 72076, Tübingen, Germany
- Institute of Immunology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Bertha Cecilia Ramirez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Hugo Arbes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Pauline François
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Stéphane Demais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Emmanuel Labaronne
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- ADLIN Science, Evry-Courcouronnes, France
| | - Didier Decimo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Sylvie Grégoire
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Anne Bet
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Antoine Gross
- IRIM, UMR 9004, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mathias Pereira
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UAR2051, Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UAR2051, Paris, France
| | - Sylvain Cardinaud
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
- Vaccine Research Institute (VRI), INSERM-U955 (IMRB) Équipe 16, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France
| | - Cécile Gouttefangeas
- Institute of Immunology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, 72076, Tübingen, Germany
| | | | | | - Assia Samri
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Brigitte Autran
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Olivier Lambotte
- Université Paris Saclay, Inserm, CEA, AP-HP, UMR1184 IDMIT, Department of Internal Medicine & Clinical Immunology, Bicêtre Hospital, Le Kremlin-Bicêtre, Bicêtre, France
| | - Hans-Georg Rammensee
- Institute of Immunology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, 72076, Tübingen, Germany
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Juliane Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, 72076, Tübingen, Germany
- Institute of Immunology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, 72076, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France.
| | - Arnaud Moris
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190, Gif-sur-Yvette, France.
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France.
| |
Collapse
|
21
|
Liu S, Li K, Long C, Lao M, Ma B, Liu C, He H, Wang C, Chen W, Yu B. The role of FTO in m6A RNA methylation and immune regulation in Staphylococcus aureus infection-related osteomyelitis. Front Microbiol 2025; 16:1526475. [PMID: 39980685 PMCID: PMC11839825 DOI: 10.3389/fmicb.2025.1526475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Background Regulators of n6-methyladenosine (m6A) RNA modification play important roles in many diseases; however, their involvement in Staphylococcus aureus (S. aureus)-related osteomyelitis remains inadequately explored. Therefore, this study aims to investigate the role of m6A in S. aureus infection-related osteomyelitis and elucidate its underlying mechanisms. Methods We downloaded the S. aureus infection-related osteomyelitis infection dataset GSE30119 from the Gene Expression Omnibus database. Initially, we constructed a diagnostic model based on m6A genes and predicted the hub node miRNAs and transcription factors by constructing a protein-protein interaction network. Subsequently, a prognostic model was built using LASSO regression, the receiver operating characteristic curve of the model was plotted, and the predictive performance of the diagnostic model was validated. Further, unsupervised clustering analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were employed to assess immune cell infiltration. Additionally, we validated the expression of fat mass and obesity-associated protein (FTO) in S. aureus-infected Raw264.7 macrophages using qPCR and western blotting. Moreover, we conducted si-FTO experiments on mouse Raw264.7 macrophages to investigate the anti-inflammatory regulatory role of si-FTO during S. aureus infection. Results We identified 19 co-expressed genes closely related to FTO were identified, along with 206 related transcription factor regulatory genes and 589 miRNAs. Enrichment analyses suggested that these genes were involved in pathways related to the proliferation and oxidation of various immune cells, cellular senescence, and various tumors and immune cells, as well as cell cycle-related functions. GSEA revealed that PD-1, TH1, TH2, CTLA4, and other pathways were significantly enriched in patients with high FTO expression. GSVA indicated that the differentially enriched pathways were related to included amino acid metabolism, immunity, and infection. Correlation analysis of immune infiltration revealed that monocytes, M2 macrophages, resting mast cells, and neutrophils were present in normal and diseased samples. Differences in expression were observed between the groups. The western blotting and qPCR analyses confirmed that the protein expression of FTO was reduced in macrophages after infection with S. aureus, consistent with the observed changes in mRNA expression. Furthermore, we validated that FTO may influence the regulation of inflammation through the FoxO1/NF-kB pathway. Conclusion The m6A RNA methylation regulator FTO may serve as a potential diagnostic marker and therapeutic target, involved in the pathogenesis of S. aureus infection-related osteomyelitis. This finding provides new insights into the relationship between FTO-mediated m6A RNA methylation and osteomyelitis.
Collapse
Affiliation(s)
- Sijing Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedic Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Kai Li
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
| | - Changhai Long
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
| | - Mingwu Lao
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
| | - Biao Ma
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
| | - Changquan Liu
- Department of Orthopaedic Center, The Second Hospital Affiliated of Guangdong Medical University, Zhanjiang, China
| | - Haoyuan He
- Department of Orthopaedic Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Chunjiang Wang
- Department of Orthopaedic Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Wangzhu Chen
- Department of Orthopaedic Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Abbasi AF, Asim MN, Dengel A. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. J Transl Med 2025; 23:153. [PMID: 39905452 PMCID: PMC11796103 DOI: 10.1186/s12967-024-06013-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
The revolutionary CRISPR-Cas9 system leverages a programmable guide RNA (gRNA) and Cas9 proteins to precisely cleave problematic regions within DNA sequences. This groundbreaking technology holds immense potential for the development of targeted therapies for a wide range of diseases, including cancers, genetic disorders, and hereditary diseases. CRISPR-Cas9 based genome editing is a multi-step process such as designing a precise gRNA, selecting the appropriate Cas protein, and thoroughly evaluating both on-target and off-target activity of the Cas9-gRNA complex. To ensure the accuracy and effectiveness of CRISPR-Cas9 system, after the targeted DNA cleavage, the process requires careful analysis of the resultant outcomes such as indels and deletions. Following the success of artificial intelligence (AI) in various fields, researchers are now leveraging AI algorithms to catalyze and optimize the multi-step process of CRISPR-Cas9 system. To achieve this goal AI-driven applications are being integrated into each step, but existing AI predictors have limited performance and many steps still rely on expensive and time-consuming wet-lab experiments. The primary reason behind low performance of AI predictors is the gap between CRISPR and AI fields. Effective integration of AI into multi-step CRISPR-Cas9 system demands comprehensive knowledge of both domains. This paper bridges the knowledge gap between AI and CRISPR-Cas9 research. It offers a unique platform for AI researchers to grasp deep understanding of the biological foundations behind each step in the CRISPR-Cas9 multi-step process. Furthermore, it provides details of 80 available CRISPR-Cas9 system-related datasets that can be utilized to develop AI-driven applications. Within the landscape of AI predictors in CRISPR-Cas9 multi-step process, it provides insights of representation learning methods, machine and deep learning methods trends, and performance values of existing 50 predictive pipelines. In the context of representation learning methods and classifiers/regressors, a thorough analysis of existing predictive pipelines is utilized for recommendations to develop more robust and precise predictive pipelines.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany.
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
23
|
Allio R, Teullet S, Lutgen D, Magdeleine A, Koual R, Tilak MK, de Thoisy B, Emerling CA, Lefébure T, Delsuc F. Transcriptomic Data Reveal Divergent Paths of Chitinase Evolution Underlying Dietary Convergence in Anteaters and Pangolins. Genome Biol Evol 2025; 17:evaf002. [PMID: 39780438 PMCID: PMC11789784 DOI: 10.1093/gbe/evaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Ant-eating mammals represent a textbook example of convergent evolution. Among them, anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth loss, elongated skulls, protruding tongues, and hypertrophied salivary glands producing large amounts of saliva. However, comparative genomic analyses have shown that anteaters and pangolins differ in their chitinase acidic gene (CHIA) repertoires, which potentially degrade the chitinous exoskeletons of ingested ants and termites. While the southern tamandua (Tamandua tetradactyla) harbors four functional CHIA paralogs (CHIA1-4), Asian pangolins (Manis spp.) have only one functional paralog (CHIA5). Here, we performed a comparative transcriptomic analysis of salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating species and close relatives. Our results suggest that salivary glands play an important role in adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in insectivorous species. Furthermore, convergently evolved pangolins and anteaters express different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed in all major digestive organs, whereas in the southern tamandua, all four functional paralogs are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas and for CHIA3 and CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate that divergent molecular mechanisms within the chitinase acidic gene family underlie convergent adaptation to the ant-eating diet in pangolins and anteaters. This study highlights the role of historical contingency and molecular tinkering of the chitin digestive enzyme toolkit in this classic example of convergent evolution.
Collapse
Affiliation(s)
- Rémi Allio
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Dave Lutgen
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Rachid Koual
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Christopher A Emerling
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, USA
| | - Tristan Lefébure
- LEHNA UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | | |
Collapse
|
24
|
Schipper M, de Leeuw CA, Maciel BAPC, Wightman DP, Hubers N, Boomsma DI, O'Donovan MC, Posthuma D. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat Genet 2025; 57:323-333. [PMID: 39930082 DOI: 10.1038/s41588-025-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025]
Abstract
Genome-wide association studies (GWAS) yield large numbers of genetic loci associated with traits and diseases. Predicting the effector genes that mediate these locus-trait associations remains challenging. Here we present the FLAMES (fine-mapped locus assessment model of effector genes) framework, which predicts the most likely effector gene in a locus. FLAMES creates machine learning predictions from biological data linking single-nucleotide polymorphisms to genes, and then evaluates these scores together with gene-centric evidence of convergence of the GWAS signal in functional networks. We benchmark FLAMES on gene-locus pairs derived by expert curation, rare variant implication and domain knowledge of molecular traits. We demonstrate that combining single-nucleotide-polymorphism-based and convergence-based modalities outperforms prioritization strategies using a single line of evidence. Applying FLAMES, we resolve the FSHB locus in the GWAS for dizygotic twinning and further leverage this framework to find schizophrenia risk genes that converge with rare coding evidence and are relevant in different stages of life.
Collapse
Affiliation(s)
- Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernardo A P C Maciel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Asim MN, Ibrahim MA, Asif T, Dengel A. RNA sequence analysis landscape: A comprehensive review of task types, databases, datasets, word embedding methods, and language models. Heliyon 2025; 11:e41488. [PMID: 39897847 PMCID: PMC11783440 DOI: 10.1016/j.heliyon.2024.e41488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Deciphering information of RNA sequences reveals their diverse roles in living organisms, including gene regulation and protein synthesis. Aberrations in RNA sequence such as dysregulation and mutations can drive a diverse spectrum of diseases including cancers, genetic disorders, and neurodegenerative conditions. Furthermore, researchers are harnessing RNA's therapeutic potential for transforming traditional treatment paradigms into personalized therapies through the development of RNA-based drugs and gene therapies. To gain insights of biological functions and to detect diseases at early stages and develop potent therapeutics, researchers are performing diverse types RNA sequence analysis tasks. RNA sequence analysis through conventional wet-lab methods is expensive, time-consuming and error prone. To enable large-scale RNA sequence analysis, empowerment of wet-lab experimental methods with Artificial Intelligence (AI) applications necessitates scientists to have a comprehensive knowledge of both DNA and AI fields. While molecular biologists encounter challenges in understanding AI methods, computer scientists often lack basic foundations of RNA sequence analysis tasks. Considering the absence of a comprehensive literature that bridges this research gap and promotes the development of AI-driven RNA sequence analysis applications, the contributions of this manuscript are manifold: It equips AI researchers with biological foundations of 47 distinct RNA sequence analysis tasks. It sets a stage for development of benchmark datasets related to 47 distinct RNA sequence analysis tasks by facilitating cruxes of 64 different biological databases. It presents word embeddings and language models applications across 47 distinct RNA sequence analysis tasks. It streamlines the development of new predictors by providing a comprehensive survey of 58 word embeddings and 70 language models based predictive pipelines performance values as well as top performing traditional sequence encoding based predictors and their performances across 47 RNA sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| |
Collapse
|
26
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.20.572462. [PMID: 38187769 PMCID: PMC10769208 DOI: 10.1101/2023.12.20.572462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair and axonal regeneration.
Collapse
|
27
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
28
|
Barnett SN, Cujba AM, Yang L, Maceiras AR, Li S, Kedlian VR, Pett JP, Polanski K, Miranda AMA, Xu C, Cranley J, Kanemaru K, Lee M, Mach L, Perera S, Tudor C, Joseph PD, Pritchard S, Toscano-Rivalta R, Tuong ZK, Bolt L, Petryszak R, Prete M, Cakir B, Huseynov A, Sarropoulos I, Chowdhury RA, Elmentaite R, Madissoon E, Oliver AJ, Campos L, Brazovskaja A, Gomes T, Treutlein B, Kim CN, Nowakowski TJ, Meyer KB, Randi AM, Noseda M, Teichmann SA. An organotypic atlas of human vascular cells. Nat Med 2024; 30:3468-3481. [PMID: 39566559 PMCID: PMC11645277 DOI: 10.1038/s41591-024-03376-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
The human vascular system, comprising endothelial cells (ECs) and mural cells, covers a vast surface area in the body, providing a critical interface between blood and tissue environments. Functional differences exist across specific vascular beds, but their molecular determinants across tissues remain largely unknown. In this study, we integrated single-cell transcriptomics data from 19 human organs and tissues and defined 42 vascular cell states from approximately 67,000 cells (62 donors), including angiotypic transitional signatures along the arterial endothelial axis from large to small caliber vessels. We also characterized organotypic populations, including splenic littoral and blood-brain barrier ECs, thus clarifying the molecular profiles of these important cell states. Interrogating endothelial-mural cell molecular crosstalk revealed angiotypic and organotypic communication pathways related to Notch, Wnt, retinoic acid, prostaglandin and cell adhesion signaling. Transcription factor network analysis revealed differential regulation of downstream target genes in tissue-specific modules, such as those of FOXF1 across multiple lung vascular subpopulations. Additionally, we make mechanistic inferences of vascular drug targets within different vascular beds. This open-access resource enhances our understanding of angiodiversity and organotypic molecular signatures in human vascular cells, and has therapeutic implications for vascular diseases across tissues.
Collapse
Affiliation(s)
- Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ana Raquel Maceiras
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shuang Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | - Zewen K Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ioannis Sarropoulos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lia Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Wahi K, Freidman N, Wang Q, Devadason M, Quek LE, Pang A, Lloyd L, Larance M, Zanini F, Harvey K, O'Toole S, Guan YF, Holst J. Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer. EMBO J 2024; 43:5857-5882. [PMID: 39420093 PMCID: PMC11611898 DOI: 10.1038/s44318-024-00271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) metabolism and cell growth uniquely rely on glutamine uptake by the transporter ASCT2. Despite previous data reporting cell growth inhibition after ASCT2 knockdown, we here show that ASCT2 CRISPR knockout is tolerated by TNBC cell lines. Despite the loss of a glutamine transporter and low rate of glutamine uptake, intracellular glutamine steady-state levels were increased in ASCT2 knockout compared to control cells. Proteomics analysis revealed upregulation of macropinocytosis, reduction in glutamine efflux and increased glutamine synthesis in ASCT2 knockout cells. Deletion of ASCT2 in the TNBC cell line HCC1806 induced a strong increase in macropinocytosis across five ASCT2 knockout clones, compared to a modest increase in ASCT2 knockdown. In contrast, ASCT2 knockout impaired cell proliferation in the non-macropinocytic HCC1569 breast cancer cells. These data identify macropinocytosis as a critical secondary glutamine acquisition pathway in TNBC and a novel resistance mechanism to strategies targeting glutamine uptake alone. Despite this adaptation, TNBC cells continue to rely on glutamine metabolism for their growth, providing a rationale for targeting of more downstream glutamine metabolism components.
Collapse
Affiliation(s)
- Kanu Wahi
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| | - Natasha Freidman
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qian Wang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Devadason
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Angel Pang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Larissa Lloyd
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Mark Larance
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Kate Harvey
- Cancer Ecosystems Program, Garvan Institute of Medical Research, UNSW Sydney, Kensington, NSW, Australia
| | - Sandra O'Toole
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yi Fang Guan
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jeff Holst
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
30
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596106. [PMID: 38853984 PMCID: PMC11160645 DOI: 10.1101/2024.05.27.596106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Metabolic adaptations in response to changes in energy supply and demand are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating TCA cycle activation, mitochondrial fatty acid oxidation, and cellular calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate metabolic consequences of uniporter loss- and gain-of-function using uniporter knockout cells and the liver cancer fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. Our results reveal that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated metabolic pathways. Reduced uniporter function boosts expression of BCAA catabolism genes, and the urea cycle enzyme ornithine transcarbamylase (OTC). In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by reduced expression of the transcription factor KLF15, a master regulator of liver metabolism. Thus, uniporter responsive calcium signaling plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for mitochondrial calcium signaling in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism in FLC.
Collapse
Affiliation(s)
- Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Albert A Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Huang W, Hu Y, Wang L, Wu G, Zhang C, Shi Q. Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity. Brief Bioinform 2024; 26:bbaf021. [PMID: 39841593 PMCID: PMC11752617 DOI: 10.1093/bib/bbaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings. As a novel cross-dimensional transfer learning architecture, SpaGTL aligns spatial graph representations across gene-level graph transformers and cell/spot-level manifold-dominated variational autoencoder. This alignment facilitates the exploration of microenvironmental variations in cell types and functional domains from a molecular regulatory perspective, all within a self-supervised framework. We verified SpaGTL's precision, robustness, and speed over existing state-of-the-art algorithms and show SpaGTL's potential that facilitates the discovery of novel regulatory programs that exhibit strong associations with tissue functional regions and cell types. Importantly, SpaGTL could be extended to process multi-slice SRT data and map molecular regulatory landscape associated with three-dimensional spatial-temporal changes during development.
Collapse
Affiliation(s)
- Wendong Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaofeng Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lequn Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangsheng Wu
- School of Mathematics and Computer Science, Xinyu University, Xinyu 338004, Jiangxi, China
| | - Chuanchao Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
33
|
Schwarz JE, Mrčela A, Lahens NF, Li Y, Hsu C, Grant GR, Skarke C, Zhang SL, Sehgal A. Evidence for a role of human blood-borne factors in mediating age-associated changes in molecular circadian rhythms. eLife 2024; 12:RP88322. [PMID: 39485282 PMCID: PMC11530234 DOI: 10.7554/elife.88322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25-30) and old (age 70-76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer's Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.
Collapse
Affiliation(s)
- Jessica E Schwarz
- Howard Hughes Medical Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongjun Li
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Cynthia Hsu
- Howard Hughes Medical Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Carsten Skarke
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
34
|
Long X, Liu G, Liu X, Zhang C, Shi L, Zhu Z. Identifying the HIV-Resistance-Related Factors and Regulatory Network via Multi-Omics Analyses. Int J Mol Sci 2024; 25:11757. [PMID: 39519306 PMCID: PMC11546959 DOI: 10.3390/ijms252111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
For research on HIV/AIDS, it is important to elucidate the complex viral-host interaction, host dependency factors (HDFs), and restriction factors. However, the regulatory network of HIV-resistance-related factors remains not well understood. Therefore, we integrated four publicly available HIV-related transcriptome datasets, along with three datasets on HIV-infection-related DNA methylation, miRNA, and ChIP-seq, to predict the factors influencing HIV resistance and infection. Our approach involved differential analysis, functional annotation, and protein-protein interaction network analysis. Through comprehensive analyses, we identified 25 potential HIV-resistance-related genes (including shared EGF) and 24 HIV-infection-related hub genes (including shared JUN). Additionally, we pinpointed five key differentially methylated genes, five crucial differentially expressed microRNAs, and five significant pathways associated with HIV resistance. We mapped the potential regulatory pathways involving these HIV-resistance-related factors. Among the predicted factors, RHOA, RAD51, GATA1, IRF4, and CXCL8 have been validated as HDFs or restriction factors. The identified factors, such as JUN, EGF, and PLEK, are potential HDFs or restriction factors. This study uncovers the gene signatures and regulatory networks associated with HIV-1 resistance, suggesting potential targets for the development of new therapies against HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | - Lei Shi
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| |
Collapse
|
35
|
Cheung K, Rollins LA, Hammond JM, Barton K, Ferguson JM, Eyck HJF, Shine R, Edwards RJ. Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome. Genome Biol Evol 2024; 16:evae246. [PMID: 39548850 PMCID: PMC11606642 DOI: 10.1093/gbe/evae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome. Nevertheless, false-positive detection of NUMTs is common when handling repeat-rich sequences, while fragmented genomes might result in missing true NUMTs. In this study, we investigated different NUMT detection methods and how the quality of the genome assembly affects them. We presented an improved nuclear genome assembly (aRhiMar1.3) of the invasive cane toad (Rhinella marina) with additional long-read Nanopore and 10× linked-read sequencing. The final assembly was 3.47 Gb in length with 91.3% of tetrapod universal single-copy orthologs (n = 5,310), indicating the gene-containing regions were well assembled. We used 3 complementary methods (NUMTFinder, dinumt, and PALMER) to study the NUMT landscape of the cane toad genome. All 3 methods yielded consistent results, showing very few NUMTs in the cane toad genome. Furthermore, we expanded NUMT detection analyses to other amphibians and confirmed a weak relationship between genome size and the number of NUMTs present in the nuclear genome. Amphibians are repeat-rich, and we show that the number of NUMTs found in highly repetitive genomes is prone to inflation when using homology-based detection without filters. Together, this study provides an exemplar of how to robustly identify NUMTs in complex genomes when confounding effects on mtDNA analyses are a concern.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - James M Ferguson
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Harrison J F Eyck
- National Collections and Marine Infrastructure, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J Edwards
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Western Australia, Australia
| |
Collapse
|
36
|
Nikafshan Rad H, Su Z, Trinh A, Hakim Newton M, Shamsani J, NYGC ALS Consortium, Karim A, Sattar A. Amyotrophic lateral sclerosis diagnosis using machine learning and multi-omic data integration. Heliyon 2024; 10:e38583. [PMID: 39640633 PMCID: PMC11619964 DOI: 10.1016/j.heliyon.2024.e38583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex and rare neurodegenerative disorder characterized by significant genetic, molecular, and clinical heterogeneity. Despite numerous endeavors to discover the genetic factors underlying ALS, a significant number of these factors remain unknown. This knowledge gap highlights the necessity for personalized medicine approaches that can provide more comprehensive information for the purposes of diagnosis, prognosis, and treatment of ALS. This work utilizes an innovative approach by employing a machine learning-facilitated, multi-omic model to develop a more comprehensive knowledge of ALS. Through unsupervised clustering on gene expression profiles, 9,847 genes associated with ALS pathways are isolated and integrated with 7,699 genes containing rare, presumed pathogenic genomic variants, leading to a comprehensive amalgamation of 17,546 genes. Subsequently, a Variational Autoencoder is applied to distil complex biomedical information from these genes, culminating in the creation of the proposed Multi-Omics for ALS (MOALS) model, which has been designed to expose intricate genotype-phenotype interconnections within the dataset. Our meticulous investigation elucidates several pivotal ALS signaling pathways and demonstrates that MOALS is a superior model, outclassing other machine learning models based on single omic approaches such as SNV and RNA expression, enhancing accuracy by 1.7 percent and 6.2 percent, respectively. The findings of this study suggest that analyzing the relationships within biological systems can provide heuristic insights into the biological mechanisms that help to make highly accurate ALS diagnosis tools and achieve more interpretable results.
Collapse
Affiliation(s)
- Hima Nikafshan Rad
- School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, Brisbane, 4111, QLD, Australia
| | - Zheng Su
- GenieUs Genomics Pty Ltd, Sydney, 2000, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Anne Trinh
- GenieUs Genomics Pty Ltd, Sydney, 2000, NSW, Australia
| | - M.A. Hakim Newton
- School of Information and Physical Sciences, The University of Newcastle, University Drive, Callaghan, Newcastle, 2308, NSW, Australia
| | | | - NYGC ALS Consortium
- The New York Genome Center, 101 Avenue of the Americas, New York, 10013, NY, USA
| | - Abdul Karim
- School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, Brisbane, 4111, QLD, Australia
| | - Abdul Sattar
- School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, Brisbane, 4111, QLD, Australia
- Institute of Integrated and Intelligent Systems, Griffith University, 170 Kessels Rd, Nathan, Brisbane, 4111, QLD, Australia
| |
Collapse
|
37
|
Burkert M, Blanc E, Thiessen N, Weber C, Toedling J, Monti R, Dombrowe VM, Stella de Biase M, Kaufmann TL, Haase K, Waszak SM, Eggert A, Beule D, Schulte JH, Ohler U, Schwarz RF. Copy-number dosage regulates telomere maintenance and disease-associated pathways in neuroblastoma. iScience 2024; 27:110918. [PMID: 39635126 PMCID: PMC11615189 DOI: 10.1016/j.isci.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Telomere maintenance in neuroblastoma is linked to poor outcome and caused by either telomerase reverse transcriptase (TERT) activation or through alternative lengthening of telomeres (ALT). In contrast to TERT activation, commonly caused by genomic rearrangements or MYCN amplification, ALT is less well understood. Alterations at the ATRX locus are key drivers of ALT but only present in ∼50% of ALT tumors. To identify potential new pathways to telomere maintenance, we investigate allele-specific gene dosage effects from whole genomes and transcriptomes in 115 primary neuroblastomas. We show that copy-number dosage deregulates telomere maintenance, genomic stability, and neuronal pathways and identify upregulation of variants of histone H3 and H2A as a potential alternative pathway to ALT. We investigate the interplay between TERT activation, overexpression and copy-number dosage and reveal loss of imprinting at the RTL1 gene associated with poor clinical outcome. These results highlight the importance of gene dosage in key oncogenic mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Martin Burkert
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Nina Thiessen
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Joern Toedling
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Remo Monti
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria M. Dombrowe
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Stella de Biase
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Ohler
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol 2024; 25:263. [PMID: 39390582 PMCID: PMC11465688 DOI: 10.1186/s13059-024-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development and disease, how the molecular agents collectively shape the H3K36me landscape is unclear. RESULTS We use mouse mesenchymal stem cells to perturb the H3K36me methyltransferases (K36MTs) and infer the activities of the five most prominent enzymes: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it may also deposit H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other (K36MTs) prime gene bodies with lower methylation states ahead of transcription. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. CONCLUSIONS Within genes, SETD2 primarily deposits H3K36me3, while the other K36MTs deposit H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1 > NSD2 > NSD3 > ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
Affiliation(s)
- Gerry A Shipman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Reinnier Padilla
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Francisca N Vitorino
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanna M Gongora
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A Garcia
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
39
|
Novo SG, Faranda AP, D'Antin JC, Wang Y, Shihan M, Barraquer RI, Michael R, Duncan MK. Human lens epithelial cells induce the inflammatory response when placed into the lens capsular bag model of posterior capsular opacification. Mol Vis 2024; 30:348-367. [PMID: 39959166 PMCID: PMC11829793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/05/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose Cataracts are typically treated by phacoemulsification followed by intraocular lens implantation. Studies of mouse models of cataract surgery have revealed that lens epithelial cells rapidly remodel their transcriptome to express proinflammatory cytokines after lens fiber cell removal, but it is currently unknown whether this response is conserved in human lenses. This study seeks to fill this knowledge gap. Methods Human cadaver eyes from 70 to 89 year old individuals were prepared for the human capsular bag model of cataract surgery. The central epithelium was preserved in RNAlater during culture preparation, then the equatorial epithelium was either immediately preserved in RNAlater after the culture was created, or 24 h later. Gene expression profiles were generated by bulk sequencing of RNA isolated from these tissue samples. The transcriptomic response of human cadaver-derived lens epithelial cells to culture in this "capsular bag" model was characterized by bioinformatic analysis. The human response was directly compared to that of 24-month-old mouse lens epithelial cells subjected to fiber cell removal surgery. Results Human lens epithelial cells remodel approximately a third of their transcriptome by 24 h after surgery, and like mice, this response consists of induction of proinflammatory cytokine genes, upregulation of fibrotic markers and downregulation of genes controlling the lens epithelial phenotype. Conclusions These observations demonstrate that humans and mice have similar responses to cataract surgery and support the use of mice to study the response of lens epithelial cells to cataract surgery, suggesting that identified injury response mechanisms can be leveraged to elucidate new approaches to improve the outcomes of cataract surgery.
Collapse
Affiliation(s)
- Samuel G Novo
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Justin C D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Mahbubul Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Rafael I Barraquer
- Centro de Oftalmología Barraquer, Barcelona, Spain
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ralph Michael
- Centro de Oftalmología Barraquer, Barcelona, Spain
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE
| |
Collapse
|
40
|
Chen S, Jiang J, Liang W, Tang Y, Lyu R, Hu Y, Cai D, Luo X, Sun M. Comprehensive Annotation and Expression Profiling of C2H2 Zinc Finger Transcription Factors across Chicken Tissues. Int J Mol Sci 2024; 25:10525. [PMID: 39408854 PMCID: PMC11476951 DOI: 10.3390/ijms251910525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
As the most abundant class of transcription factors in eukaryotes, C2H2-type zinc finger proteins (C2H2-ZFPs) play critical roles in various biological processes. Despite being extensively studied in mammals, C2H2-ZFPs remain poorly characterized in birds. Recent accumulation of multi-omics data for chicken enables the genome-wide investigation of C2H2-ZFPs in birds. The purpose of this study is to reveal the genomic occurrence and evolutionary signature of chicken C2H2-ZFPs, and further depict their expression profiles across diverse chicken tissues. Here, we annotated 301 C2H2-ZFPs in chicken genome, which are associated with different effector domains, including KRAB, BTB, HOMEO, PHD, SCAN, and SET. Among them, most KRAB-ZFPs lack orthologues in mammals and tend to form clusters by duplication, supporting their fast evolution in chicken. We also annotated a unique and previously unidentified SCAN-ZFP, which is lineage-specific and highly expressed in ovary and testis. By integrating 101 RNA-seq datasets for 32 tissues, we found that most C2H2-ZFPs have tissue-specific expression. Particularly, 74 C2H2-ZFPs-including 27 KRAB-ZFPs-show blastoderm-enriched expression, indicating their association with early embryo development. Overall, this study performs comprehensive annotation and expression profiling of C2H2 ZFPs in diverse chicken tissues, which gives new insights into the evolution and potential function of C2H2-ZFPs in avian species.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
| | - Jiayao Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
| | - Wenxiu Liang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
| | - Yuchen Tang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
| | - Renzhe Lyu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (D.C.)
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (D.C.)
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (D.C.)
| | - Mingan Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (J.J.); (W.L.); (Y.T.); (R.L.)
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
41
|
Britto-Borges T, Gehring NH, Boehm V, Dieterich C. NMDtxDB: data-driven identification and annotation of human NMD target transcripts. RNA (NEW YORK, N.Y.) 2024; 30:1277-1291. [PMID: 39095083 PMCID: PMC11404449 DOI: 10.1261/rna.080066.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for SMG5, SMG6, and SMG7 knockdowns or SMG7 knockout. Based on this data set, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information (CDS) from Ensembl, Gencode consensus Ribo-seq ORFs, and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon, and 6433 are significantly upregulated in three or more comparisons of NMD active versus deficient cell lines. We present an in-depth view of these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.
Collapse
Affiliation(s)
- Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Boulgakoff L, Sturny R, Olejnickova V, Sedmera D, Kelly RG, Miquerol L. Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1140-1157. [PMID: 39198628 DOI: 10.1038/s44161-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
Collapse
Affiliation(s)
- Lucie Boulgakoff
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Rachel Sturny
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Veronika Olejnickova
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - David Sedmera
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
| |
Collapse
|
43
|
Liu J, Castillo-Hair SM, Du LY, Wang Y, Carte AN, Colomer-Rosell M, Yin C, Seelig G, Schier AF. Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609971. [PMID: 39253514 PMCID: PMC11383055 DOI: 10.1101/2024.08.27.609971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interplay between transcription factors and chromatin accessibility regulates cell type diversification during vertebrate embryogenesis. To systematically decipher the gene regulatory logic guiding this process, we generated a single-cell multi-omics atlas of RNA expression and chromatin accessibility during early zebrafish embryogenesis. We developed a deep learning model to predict chromatin accessibility based on DNA sequence and found that a small number of transcription factors underlie cell-type-specific chromatin landscapes. While Nanog is well-established in promoting pluripotency, we discovered a new function in priming the enhancer accessibility of mesendodermal genes. In addition to the classical stepwise mode of differentiation, we describe instant differentiation, where pluripotent cells skip intermediate fate transitions and terminally differentiate. Reconstruction of gene regulatory interactions reveals that this process is driven by a shallow network in which maternally deposited regulators activate a small set of transcription factors that co-regulate hundreds of differentiation genes. Notably, misexpression of these transcription factors in pluripotent cells is sufficient to ectopically activate their targets. This study provides a rich resource for analyzing embryonic gene regulation and reveals the regulatory logic of instant differentiation.
Collapse
Affiliation(s)
- Jialin Liu
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | | | - Lucia Y. Du
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Yiqun Wang
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, La Jolla, CA, 92037, USA
| | - Adam N. Carte
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, 02115, USA
| | - Mariona Colomer-Rosell
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Yin
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
44
|
González-Prendes R, Pena RN, Richart C, Nadal J, Ros-Freixedes R. Long-read de novo assembly of the red-legged partridge (Alectoris rufa) genome. Sci Data 2024; 11:908. [PMID: 39191744 PMCID: PMC11349902 DOI: 10.1038/s41597-024-03659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The red-legged partridge (Alectoris rufa) is a popular game bird species that is in decline in several regions of southwestern Europe. The introduction of farm-reared individuals of a distinct genetic make-up in hunting reserves can result in genetic swamping of wild populations. Here we present a de novo genome assembly for the red-legged partridge based on long-read sequencing technology. The assembled genome size is 1.14 Gb, with scaffold N50 of 37.6 Mb and contig N50 of 29.5 Mb. Our genome is highly contiguous and contains 97.06% of complete avian core genes. Overall, the quality of this genome assembly is equivalent to those available for other close relatives such as the Japanese quail or the chicken. This genome assembly will contribute to the understanding of genetic dynamics of wild populations of red-legged partridges with releases of farm-reared reinforcements and to appropriate management decisions of such populations.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, The Netherlands
| | - Ramona Natacha Pena
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain
- Agrotecnio-CERCA Center, Lleida, Spain
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jesús Nadal
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain.
| | - Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain.
- Agrotecnio-CERCA Center, Lleida, Spain.
| |
Collapse
|
45
|
Rachid Zaim S, Pebworth MP, McGrath I, Okada L, Weiss M, Reading J, Czartoski JL, Torgerson TR, McElrath MJ, Bumol TF, Skene PJ, Li XJ. MOCHA's advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts. Nat Commun 2024; 15:6828. [PMID: 39122670 PMCID: PMC11316085 DOI: 10.1038/s41467-024-50612-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is being increasingly used to study gene regulation. However, major analytical gaps limit its utility in studying gene regulatory programs in complex diseases. In response, MOCHA (Model-based single cell Open CHromatin Analysis) presents major advances over existing analysis tools, including: 1) improving identification of sample-specific open chromatin, 2) statistical modeling of technical drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) identification of alternative transcription-starting-site regulation, and 5) modules for inferring temporal gene regulatory networks from longitudinal data. These advances, in addition to open chromatin analyses, provide a robust framework after quality control and cell labeling to study gene regulatory programs in human disease. We benchmark MOCHA with four state-of-the-art tools to demonstrate its advances. We also construct cross-sectional and longitudinal gene regulatory networks, identifying potential mechanisms of COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional genomic inference from scATAC-seq data.
Collapse
Affiliation(s)
| | | | | | - Lauren Okada
- Allen Institute for Immunology, Seattle, WA, USA
| | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
46
|
McIntire KM, Meng H, Lin TH, Kim W, Moore NE, Han J, McMahon M, Wang M, Malladi SK, Mohammed BM, Zhou JQ, Schmitz AJ, Hoehn KB, Carreño JM, Yellin T, Suessen T, Middleton WD, Teefey SA, Presti RM, Krammer F, Turner JS, Ward AB, Wilson IA, Kleinstein SH, Ellebedy AH. Maturation of germinal center B cells after influenza virus vaccination in humans. J Exp Med 2024; 221:e20240668. [PMID: 38935072 PMCID: PMC11211068 DOI: 10.1084/jem.20240668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.
Collapse
Affiliation(s)
- Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Nina E. Moore
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Wang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Bassem M. Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M. Presti
- Department of Internal Medicine-Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
47
|
Nammo T, Funahashi N, Udagawa H, Kozawa J, Nakano K, Shimizu Y, Okamura T, Kawaguchi M, Uebanso T, Nishimura W, Hiramoto M, Shimomura I, Yasuda K. Single-housing-induced islet epigenomic changes are related to polymorphisms in diabetic KK mice. Life Sci Alliance 2024; 7:e202302099. [PMID: 38876803 PMCID: PMC11178941 DOI: 10.26508/lsa.202302099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
A lack of social relationships is increasingly recognized as a type 2 diabetes (T2D) risk. To investigate the underlying mechanism, we used male KK mice, an inbred strain with spontaneous diabetes. Given the association between living alone and T2D risk in humans, we divided the non-diabetic mice into singly housed (KK-SH) and group-housed control mice. Around the onset of diabetes in KK-SH mice, we compared H3K27ac ChIP-Seq with RNA-Seq using pancreatic islets derived from each experimental group, revealing a positive correlation between single-housing-induced changes in H3K27ac and gene expression levels. In particular, single-housing-induced H3K27ac decreases revealed a significant association with islet cell functions and GWAS loci for T2D and related diseases, with significant enrichment of binding motifs for transcription factors representative of human diabetes. Although these H3K27ac regions were preferentially localized to a polymorphic genomic background, SNVs and indels did not cause sequence disruption of enriched transcription factor motifs in most of these elements. These results suggest alternative roles of genetic variants in environment-dependent epigenomic changes and provide insights into the complex mode of disease inheritance.
Collapse
Affiliation(s)
- Takao Nammo
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuaki Funahashi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, Chigasaki, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Uebanso
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wataru Nishimura
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Chiba, Japan
- Division of Anatomy, Bio-Imaging and Neuro-cell Science, Jichi Medical University, Tochigi, Japan
| | - Masaki Hiramoto
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Sigeman H, Downing PA, Zhang H, Hansson B. The rate of W chromosome degeneration across multiple avian neo-sex chromosomes. Sci Rep 2024; 14:16548. [PMID: 39020011 PMCID: PMC11255319 DOI: 10.1038/s41598-024-66470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
49
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Paukszto L, Rak A, Smolinska N, Kaminski T. Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle. J Anim Sci Biotechnol 2024; 15:96. [PMID: 38978053 PMCID: PMC11232246 DOI: 10.1186/s40104-024-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle. RESULTS RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis. CONCLUSIONS The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
50
|
Wang Z, Ke J, Guo Z, Wang Y, Lei K, Wang S, Chen G, Shen Z, Li W, Ou G. Transposase-assisted tagmentation: an economical and scalable strategy for single-worm whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae094. [PMID: 38856093 PMCID: PMC11228870 DOI: 10.1093/g3journal/jkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 06/11/2024]
Abstract
AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Jingyi Ke
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zhengyang Guo
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Kexin Lei
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Shimin Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Guanghan Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zijie Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100190, China
| | - Guangshuo Ou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| |
Collapse
|