1
|
Lin YT, Liou JR, Liang HH, Lin YH, Chen YL. Digoxin detection for therapeutic drug monitoring using target-triggered aptamer hairpin switch and nicking enzyme-assisted signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39484778 DOI: 10.1039/d4ay01540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Digoxin, a cardiac glycoside drug, is commonly used to treat heart failure and arrhythmias. The therapeutic concentration range of digoxin, with a narrow therapeutic index, is between 0.5 and 2.0 ng mL-1. Hence, it is important for patients to monitor their blood levels after taking medication to achieve effective treatment and reduce the likelihood of experiencing drug side effects. Due to the complex steps and high cost of immunoassays, aptasensors that use aptamers to recognize the targets offer the advantages of low cost and good stability over other analysis methods. Nicking enzyme-assisted signal amplification is a novel isothermal signal amplification technology that relies on nicking enzymes to recognize and cleave restriction sites on one oligonucleotide strand. In this study, we develop a fluorescent aptasensor coupled with target-triggered aptamer hairpin switch and nicking enzyme-assisted signal amplification for digoxin detection in plasma for therapeutic drug monitoring. After optimizing the experimental parameters, we design hairpin probes with ten base pairs of the aptamer sequence and extended sequence complement to react with digoxin in a 10 mM Tris buffer containing 150 mM NaCl and 50 mM MgCl2 (pH 7.4). The signal amplification reactions were performed for 3 hours. The fluorescent aptasensor exhibited high sensitivity with a detection limit of 88 pg mL-1 for detecting digoxin in plasma and a linear range from 0.1 ng mL-1 to 5 ng mL-1. This technology was successfully used for digoxin detection to improve treatment effectiveness and minimize the risk of adverse side effects.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan.
| | - Jing-Ru Liou
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Hsin-Hua Liang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan.
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621301, Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yen-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Cui X, Yao Z, Zhao T, Guo J, Ding J, Zhang S, Liang Z, Wei Z, Zoa A, Tian Y, Li J. siAKR1C3@PPA complex nucleic acid nanoparticles inhibit castration-resistant prostate cancer in vitro. Front Oncol 2022; 12:1069033. [PMID: 36591491 PMCID: PMC9800608 DOI: 10.3389/fonc.2022.1069033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction AKR1C3, as a crucial androgenic enzyme, implicates the androgen biosynthesis and promoting prostate cancer cell growth in vitro. This study provides a new gene therapy strategy for targeting AKR1C3 to treat castration-resistant prostate cancer. Methods siAKR1C3@PPA is assembled from PEG3500, PAMAM, Aptamer-PSMA, and siRNA for AKR1C3. We analyzed the relationship between AKR1C3 expression and the survival rate of prostate cancer patients based on the GEPIA online database to perform disease-free survival, and found that AKR1C3 may be an important factor leading to poor prognosis in prostate cancer. Considering AKR1C3 as a therapeutic target for castration-resistant prostate cancer, we constructed a complex nucleic acid nanoparticle, siAKR1C3@PPA to investigate the inhibitory effect on castration-resistant prostate cancer. Results Aptamer-PSMA acts as a target to guide siAKR1C3@PPA into PSMA-positive prostate cancer cells and specifically down regulate AKR1C3. Cyclin D1 was decreased as a result of siAKR1C3@PPA treatment. Changes in Cyclin D1 were consistent with decreased expression of AKR1C3 in LNCaP-AKR1C3 cells and 22RV1 cells. Furthermore, in the LNCaP-AKR1C3 group, 1070 proteins were upregulated and 1015 proteins were downregulated compared to the LNCaP group according to quantitative 4D label-free proteomics. We found 42 proteins involved in cell cycle regulation. In a validated experiment, we demonstrated that PCNP and CINP were up-regulated, and TERF2 and TP53 were down-regulated by western blotting. Conclusion We concluded that siAKR1C3@PPA may arrest the cell cycle and affect cell proliferation.
Collapse
Affiliation(s)
- Xiaoli Cui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhou Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianyu Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiahui Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jipeng Ding
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zuowen Liang
- Department of Andrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alexis Zoa
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuantong Tian
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China,*Correspondence: Yuantong Tian, ; Jing Li,
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Yuantong Tian, ; Jing Li,
| |
Collapse
|
3
|
Duschmalé J, Schäublin A, Funder E, Schmidt S, Kiełpiński ŁJ, Nymark H, Jensen K, Koch T, Duschmalé M, Koller E, Møller MR, Schadt S, Husser C, Brink A, Sewing S, Minz T, Wengel J, Bleicher K, Li M. Investigating discovery strategies and pharmacological properties of stereodefined phosphorodithioate LNA gapmers. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:176-188. [PMID: 35860384 PMCID: PMC9271985 DOI: 10.1016/j.omtn.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Duschmalé
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Adrian Schäublin
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erik Funder
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Steffen Schmidt
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Łukasz J. Kiełpiński
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Helle Nymark
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Klaus Jensen
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Troels Koch
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Martina Duschmalé
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erich Koller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marianne Ravn Møller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Simone Schadt
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Christophe Husser
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Sabine Sewing
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Tanja Minz
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Konrad Bleicher
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Meiling Li
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
- Corresponding author Meiling Li, Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| |
Collapse
|
4
|
Sierra AMR, Arold ST, Grünberg R. Efficient multi-gene expression in cell-free droplet microreactors. PLoS One 2022; 17:e0260420. [PMID: 35312702 PMCID: PMC8936439 DOI: 10.1371/journal.pone.0260420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free transcription and translation systems promise to accelerate and simplify the engineering of proteins, biological circuits and metabolic pathways. Their encapsulation on microfluidic platforms can generate millions of cell-free reactions in picoliter volume droplets. However, current methods struggle to create DNA diversity between droplets while also reaching sufficient protein expression levels. In particular, efficient multi-gene expression has remained elusive. We here demonstrate that co-encapsulation of DNA-coated beads with a defined cell-free system allows high protein expression while also supporting genetic diversity between individual droplets. We optimize DNA loading on commercially available microbeads through direct binding as well as through the sequential coupling of up to three genes via a solid-phase Golden Gate assembly or BxB1 integrase-based recombineering. Encapsulation with an off-the-shelf microfluidics device allows for single or multiple protein expression from a single DNA-coated bead per 14 pL droplet. We envision that this approach will help to scale up and parallelize the rapid prototyping of more complex biological systems.
Collapse
Affiliation(s)
- Ana Maria Restrepo Sierra
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Bionanoscience Department/Applied Sciences, Technische Universiteit Delft, Delft, The Netherlands
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Centre de Biologie Structurale (CBS)/CNRS/INSERM, Université Montpellier, Montpellier, France
| | - Raik Grünberg
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
5
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
6
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
7
|
Wang H, Li X, Lai LA, Brentnall TA, Dawson DW, Kelly KA, Chen R, Pan S. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie 2021; 181:25-33. [PMID: 33242496 PMCID: PMC7863625 DOI: 10.1016/j.biochi.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Modified DNA aptamers incorporated with amino-acid like side chains or drug-like ligands can offer unique advantages and enhance specificity as affinity ligands. Thy-1 membrane glycoprotein (THY1 or CD90) was previously identified as a biomarker candidate of neovasculature in pancreatic ductal adenocarcinoma (PDAC). The current study developed and evaluated modified DNA X-aptamers targeting THY1 in PDAC. The expression and glycosylation of THY1 in PDAC tumor tissues were assessed using immunohistochemistry and quantitative proteomics. Bead-based X-aptamer library that contains 108 different sequences was used to screen for high affinity THY1 X-aptamers. The sequences of the X-aptamers were analyzed with the next-generation sequencing. The affinities of the selected X-aptamers to THY1 were quantitatively evaluated with flow cytometry. Three high affinity THY1 X-aptamers, including XA-B217, XA-B216 and XA-A9, were selected after library screening and affinity binding evaluation. These three X-aptamers demonstrated a high binding affinity and specificity to THY1 protein and the THY1 expressing cell lines, using THY1 antibody as a comparison. The development of these X-aptamers provides highly specific and non-immunogenic affinity ligands for THY1 binding in the context of biomarker development and clinical applications. They could be further exploited to assist molecular imaging of PDAC targeting THY1.
Collapse
Affiliation(s)
- Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Xin Li
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lisa A Lai
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA, 22908, USA
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Kaczmarek R, Ward S, Debnath D, Jacobs T, Stark AD, Korczyński D, Kumar A, Sevilla MD, Denisov SA, Shcherbakov V, Pernot P, Mostafavi M, Dembinski R, Adhikary A. One Way Traffic: Base-to-Backbone Hole Transfer in Nucleoside Phosphorodithioate. Chemistry 2020; 26:9495-9505. [PMID: 32059063 PMCID: PMC7416487 DOI: 10.1002/chem.202000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Indexed: 12/26/2022]
Abstract
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S- . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S- . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S- . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dipra Debnath
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Taisiya Jacobs
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Alexander D Stark
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Viacheslav Shcherbakov
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Pascal Pernot
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay, 91405 Cedex, France
| | - Roman Dembinski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| |
Collapse
|
9
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
10
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
11
|
Shen R, Tan J, Yuan Q. Chemically Modified Aptamers in Biological Analysis. ACS APPLIED BIO MATERIALS 2020; 3:2816-2826. [DOI: 10.1021/acsabm.0c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruichen Shen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Xuan W, Peng Y, Deng Z, Peng T, Kuai H, Li Y, He J, Jin C, Liu Y, Wang R, Tan W. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials 2018; 182:216-226. [PMID: 30138784 DOI: 10.1016/j.biomaterials.2018.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
Aptamers are often compared with antibodies since both types of molecules function as targeting ligands for specific cancer cell recognition. However, aptamers offer several advantages, including small size, facile chemical modification, high chemical stability, low immunogenicity, rapid tissue penetration, and engineering simplicity. Despite these advantages, several crucial factors have delayed their clinical translation, such as concerns over inherent physicochemical stability and safety. Meanwhile, steps have been taken to make aptamer-drug conjugates, or ApDCs, a clinically practical tool. In this review, we highlight the development of ApDCs and discuss how researchers are solving some problems associated with their clinical application for targeted therapy.
Collapse
Affiliation(s)
- Wenjing Xuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhengyu Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jiaxuan He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruowen Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, College of Chemistry and Chemical Engineering, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, College of Chemistry and Chemical Engineering, Shanghai 200240, China; Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States.
| |
Collapse
|
13
|
Dolot R, Lam CH, Sierant M, Zhao Q, Liu FW, Nawrot B, Egli M, Yang X. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res 2018; 46:4819-4830. [PMID: 29684204 PMCID: PMC5961234 DOI: 10.1093/nar/gky268] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 01/11/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Collapse
Affiliation(s)
- Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Curtis H Lam
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
14
|
Abstract
Aptamers and second generation analogs, such as X-Aptamers (XAs), SOMAmers, locked nucleic acids (LNAs), and others are increasingly being used for molecular pathway targeting, biomarker discovery, or disease diagnosis by interacting with protein targets on the surface of cells or in solution. Such targeting is being used for imaging, diagnostic evaluation, interference of protein function, or delivery of therapeutic agents. Selection of aptamers using the original SELEX method is cumbersome and time-consuming, often requiring 10-15 rounds of selection, and provides aptamers with a limited number of functional groups, namely four bases of DNA or RNA, although newer SELEX methods have increased this diversity. In contrast, X-Aptamers provide an unlimited number of functional groups and thus are superior targeting agents. Here, we discuss the X-Aptamer selection process.
Collapse
|
15
|
Kim M, Kim DM, Kim KS, Jung W, Kim DE. Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents. Molecules 2018; 23:E830. [PMID: 29617327 PMCID: PMC6017884 DOI: 10.3390/molecules23040830] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that specifically bind and interact with their corresponding targets, including proteins and cells, through unique three-dimensional structures. Numerous aptamers have been developed to target cancer biomarkers with high specificity and affinity, and some are employed as versatile guiding ligands for cancer-specific drug delivery and anti-cancer therapeutics. In this review, we list the aptamers that target tumor surface biomarkers and summarize the representative applications of aptamers as agonists and antagonists that activate anti-cancer and inactivate pro-cancer biomarkers, respectively. In addition, we describe applications of aptamer-drug or aptamer-oligonucleotide conjugates that can deliver therapeutic agents, including small interfering RNAs, micro RNAs, short hairpin RNAs, and chemotherapeutic molecules, to cancer cells. Moreover, we provide examples of aptamer- conjugated nano-vehicles, in which cancer-targeting oligonucleotide aptamers are conjugated with nano-vehicles such as liposomes, micelles, polymeric nanoparticles, and quantum dots. Conjugation of aptamers with anti-cancer drugs and nano-vehicles will facilitate innovative applications of aptamer-based cancer therapeutics.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea.
| | - Woong Jung
- Department of Emergency Medicine Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
16
|
Selection of PD1/PD-L1 X-Aptamers. Biochimie 2017; 145:125-130. [PMID: 28912094 DOI: 10.1016/j.biochi.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023]
Abstract
Specific, chemically modified aptamers (X-Aptamers) were identified against two immune checkpoint proteins, recombinant Programmed Death 1 (PD-1) and Programmed Death Ligand 1 (PD-L1). Selections were performed using a bead-based X-Aptamer (XA) library containing several different amino acid functional groups attached to dU at the 5-position. The binding affinities and specificities of the selected XA-PD1 and XA-PDL1 were validated by hPD-1 and hPD-L1 expression cells, as well as by binding to human pancreatic ductal adenocarcinoma tissue. The selected PD1 and PDL1 XAs can mimic antibody functions in in vitro assays.
Collapse
|
17
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Xiang Q, Tan G, Jiang X, Wu K, Tan W, Tan Y. Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX. Sci Rep 2017; 7:45377. [PMID: 28358012 PMCID: PMC5371818 DOI: 10.1038/srep45377] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor FOXM1 binds to its consensus sequence at promoters through its DNA binding domain (DBD) and activates proliferation-associated genes. The aberrant overexpression of FOXM1 correlates with tumorigenesis and progression of many cancers. Inhibiting FOXM1 transcriptional activities is proposed as a potential therapeutic strategy for cancer treatment. In this study, we obtained a FOXM1-specific single stranded DNA aptamer (FOXM1 Apt) by SELEX with a recombinant FOXM1 DBD protein as the target of selection. The binding of FOXM1 Apt to FOXM1 proteins were confirmed with electrophoretic mobility shift assays (EMSAs) and fluorescence polarization (FP) assays. Phosphorthioate-modified FOXM1 Apt (M-FOXM1 Apt) bound to FOXM1 as wild type FOXM1 Apt, and co-localized with FOXM1 in nucleus. M-FOXM1-Apt abolished the binding of FOXM1 on its consensus binding sites and suppressed FOXM1 transcriptional activities. Compared with the RNA interference of FOXM1 in cancer cells, M-FOXM1 Apt repressed cell proliferation and the expression of FOXM1 target genes without changing FOXM1 levels. Our results suggest that the obtained FOXM1 Apt could be used as a probe for FOXM1 detection and an inhibitor of FOXM1 transcriptional functions in cancer cells at the same time, providing a potential reagent for cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Qin Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Guixiang Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Xia Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Kuangpei Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
19
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
20
|
Yang X. Solid-Phase Synthesis of Oligodeoxynucleotide Analogs Containing Phosphorodithioate Linkages. ACTA ACUST UNITED AC 2016; 66:4.71.1-4.71.14. [PMID: 27584703 DOI: 10.1002/cpnc.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The oligodeoxynucleotide phosphorodithioate modification (PS2-ODN) uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphordiester backbone linkage. Like a natural phosphodiester ODN backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-ODNs are highly stable to nucleases and numerous in vitro assays have demonstrated their biological activity. For example, PS2-ODNs activated RNase H in vitro, strongly inhibited human immunodeficiency virus (HIV) reverse transcriptase, induced B-cell proliferation and differentiation, and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-ODNs has spawned a variety of strategies for synthesizing, isolating, and characterizing this compounds. ODN-thiophosphoramidite monomers are commercially available from either AM Biotechnologies or Glen Research and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of ODNs having PS2 internucleotide linkages. © 2016 by John Wiley & Sons, Inc.
Collapse
|
21
|
Nguyen D, Zandarashvili L, White MA, Iwahara J. Stereospecific Effects of Oxygen-to-Sulfur Substitution in DNA Phosphate on Ion Pair Dynamics and Protein-DNA Affinity. Chembiochem 2016; 17:1636-42. [PMID: 27271797 DOI: 10.1002/cbic.201600265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 02/05/2023]
Abstract
Oxygen-to-sulfur substitutions in DNA phosphate often enhance affinity for DNA-binding proteins. Our previous studies have suggested that this effect of sulfur substitution of both OP1 and OP2 atoms is due to an entropic gain associated with enhanced ion pair dynamics. In this work, we studied stereospecific effects of single sulfur substitution of either the OP1 or OP2 atom in DNA phosphate at the Lys57 interaction site of the Antennapedia homeodomain-DNA complex. Using crystallography, we obtained structural information on the RP and SP diastereomers of the phosphoromonothioate and their interaction with Lys57. Using fluorescence-based assays, we found significant affinity enhancement upon sulfur substitution of the OP2 atom. Using NMR spectroscopy, we found significant mobilization of the Lys57 side-chain NH3 (+) group upon sulfur substitution of the OP2 atom. These data provide further mechanistic insights into the affinity enhancement by oxygen-to-sulfur substitution in DNA phosphate.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Medical Research Building 5.104C, Galveston, TX, 77555-1068, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Medical Research Building 5.104C, Galveston, TX, 77555-1068, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Medical Research Building 5.104C, Galveston, TX, 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Medical Research Building 5.104C, Galveston, TX, 77555-1068, USA.
| |
Collapse
|
22
|
Zandarashvili L, Nguyen D, Anderson KM, White MA, Gorenstein DG, Iwahara J. Entropic Enhancement of Protein-DNA Affinity by Oxygen-to-Sulfur Substitution in DNA Phosphate. Biophys J 2016; 109:1026-37. [PMID: 26331260 DOI: 10.1016/j.bpj.2015.07.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022] Open
Abstract
Dithioation of DNA phosphate is known to enhance binding affinities, at least for some proteins. We mechanistically characterized this phenomenon for the Antennapedia homeodomain-DNA complex by integrated use of fluorescence, isothermal titration calorimetry, NMR spectroscopy, and x-ray crystallography. By fluorescence and isothermal titration calorimetry, we found that this affinity enhancement is entropy driven. By NMR, we investigated the ionic hydrogen bonds and internal motions of lysine side-chain NH3(+) groups involved in ion pairs with DNA. By x-ray crystallography, we compared the structures of the complexes with and without dithioation of the phosphate. Our NMR and x-ray data show that the lysine side chain in contact with the DNA phosphate becomes more dynamic upon dithioation. Our thermodynamic, structural, and dynamic investigations collectively suggest that the affinity enhancement by the oxygen-to-sulfur substitution in DNA phosphate is largely due to an entropic gain arising from mobilization of the intermolecular ion pair at the protein-DNA interface.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kurtis M Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - David G Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
23
|
Chumakov AM, Yuhina ES, Frolova EI, Kravchenko JE, Chumakov SP. Expanding the application potential of DNA aptamers by their functionalization. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Oligonucleotide Functionalised Microbeads: Indispensable Tools for High-Throughput Aptamer Selection. Molecules 2015; 20:21298-312. [PMID: 26633328 PMCID: PMC6332362 DOI: 10.3390/molecules201219766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/21/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023] Open
Abstract
The functionalisation of microbeads with oligonucleotides has become an indispensable technique for high-throughput aptamer selection in SELEX protocols. In addition to simplifying the separation of binding and non-binding aptamer candidates, microbeads have facilitated the integration of other technologies such as emulsion PCR (ePCR) and Fluorescence Activated Cell Sorting (FACS) to high-throughput selection techniques. Within these systems, monoclonal aptamer microbeads can be individually generated and assayed to assess aptamer candidate fitness thereby helping eliminate stochastic effects which are common to classical SELEX techniques. Such techniques have given rise to aptamers with 1000 times greater binding affinities when compared to traditional SELEX. Another emerging technique is Fluorescence Activated Droplet Sorting (FADS) whereby selection does not rely on binding capture allowing evolution of a greater diversity of aptamer properties such as fluorescence or enzymatic activity. Within this review we explore examples and applications of oligonucleotide functionalised microbeads in aptamer selection and reflect upon new opportunities arising for aptamer science.
Collapse
|
25
|
Sun H, Zu Y. Aptamers and their applications in nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2352-64. [PMID: 25677591 PMCID: PMC4441590 DOI: 10.1002/smll.201403073] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/14/2014] [Indexed: 05/23/2023]
Abstract
Aptamers are composed of short RNA or single-stranded DNA sequences that, when folded into their unique 3D conformation, can bind to their targets with high specificity and affinity. Although functionally similar to protein antibodies, oligonucleotide aptamers offer several advantages over protein antibodies in biomedical and clinical applications. Through the enhanced permeability and retention effect, nanomedicines can improve the therapeutic index of a treatment and reduce side effects by enhancing accumulation at the disease site. However, this targets tumors passively and, thus, may not be ideal for targeted therapy. To construct ligand-directed "active targeting" nanobased delivery systems, aptamer-equipped nanomedicines have been tested for in vitro diagnosis, in vivo imaging, targeted cancer therapy, theranostic approaches, sub-cellular molecule detection, food safety, and environmental monitoring. This review focuses on the development of aptamer-conjugated nanomedicines and their application for in vivo imaging, targeted therapy, and theranostics.
Collapse
Affiliation(s)
| | - Youli Zu
- Corresponding authors: Youli Zu, MD, PhD.
| |
Collapse
|
26
|
Anderson KM, Nguyen D, Esadze A, Zandarashvili L, Gorenstein DG, Iwahara J. A chemical approach for site-specific identification of NMR signals from protein side-chain NH₃⁺ groups forming intermolecular ion pairs in protein-nucleic acid complexes. JOURNAL OF BIOMOLECULAR NMR 2015; 62:1-5. [PMID: 25690740 PMCID: PMC4433575 DOI: 10.1007/s10858-015-9909-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 05/21/2023]
Abstract
Protein-nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein-DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH3 (+) groups forming the intermolecular ion pairs. A characteristic change in their (1)H and (15)N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain (15)N and DNA phosphorodithiaote (31)P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein-RNA complexes as well.
Collapse
Affiliation(s)
- Kurtis M. Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David G. Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e182. [PMID: 25093706 PMCID: PMC4221593 DOI: 10.1038/mtna.2014.32] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xun Zhu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Jilin, China
| | | | - Roberto R Rosato
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Wen Tan
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
28
|
Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014; 4:931-44. [PMID: 25057317 PMCID: PMC4107293 DOI: 10.7150/thno.9663] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics.
Collapse
|
29
|
Lu E, Elizondo-Riojas MA, Chang JT, Volk DE. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data. Biochemistry 2014; 53:3523-5. [PMID: 24866698 PMCID: PMC4059528 DOI: 10.1021/bi500443e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/20/2014] [Indexed: 02/05/2023]
Abstract
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
Collapse
Affiliation(s)
- Emily Lu
- UTHealth Bioinformatics Service
Center, Center for Clinical and Translational
Sciences, School of Biomedical Informatics, Brown Foundation Institute of Molecular Medicine
for the Prevention of Human Diseases, Department of Nanomedicine and
Biomedical Engineering, School of Medicine, and Department of Integrated Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Miguel-Angel Elizondo-Riojas
- UTHealth Bioinformatics Service
Center, Center for Clinical and Translational
Sciences, School of Biomedical Informatics, Brown Foundation Institute of Molecular Medicine
for the Prevention of Human Diseases, Department of Nanomedicine and
Biomedical Engineering, School of Medicine, and Department of Integrated Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jeffrey T. Chang
- UTHealth Bioinformatics Service
Center, Center for Clinical and Translational
Sciences, School of Biomedical Informatics, Brown Foundation Institute of Molecular Medicine
for the Prevention of Human Diseases, Department of Nanomedicine and
Biomedical Engineering, School of Medicine, and Department of Integrated Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, United States
| | - David E. Volk
- UTHealth Bioinformatics Service
Center, Center for Clinical and Translational
Sciences, School of Biomedical Informatics, Brown Foundation Institute of Molecular Medicine
for the Prevention of Human Diseases, Department of Nanomedicine and
Biomedical Engineering, School of Medicine, and Department of Integrated Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
30
|
Pinheiro VB, Holliger P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 2014; 32:321-8. [PMID: 24745974 PMCID: PMC4039137 DOI: 10.1016/j.tibtech.2014.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Nucleic acids display remarkable properties beyond information storage and propagation. The well-understood base pairing rules have enabled nucleic acids to be assembled into nanostructures of ever increasing complexity. Although nanostructures can be constructed using other building blocks, including peptides and lipids, it is the capacity to evolve that sets nucleic acids apart from all other nanoscale building materials. Nonetheless, the poor chemical and biological stability of DNA and RNA constrain their applications. Recent advances in nucleic acid chemistry and polymerase engineering enable the synthesis, replication, and evolution of a range of synthetic genetic polymers (XNAs) with improved chemical and biological stability. We discuss the impact of this technology on the generation of XNA ligands, enzymes, and nanostructures with tailor-made chemistry.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
31
|
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2014; 6:563-73. [PMID: 23090891 DOI: 10.1002/prca.201200042] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
Abstract
Antibodies have been extensively used as capture and detection reagents in diagnostic applications of proteomics-based technologies. Proteomic assays need high sensitivity and specificity, a wide dynamic range for detection, and accurate, reproducible quantification with small confidence values. However, several inherent limitations of monoclonal antibodies in meeting the emerging challenges of proteomics led to the development of a new class of oligonucleotide-based reagents. Natural and derivatized nucleic acid aptamers are emerging as promising alternatives to monoclonal antibodies. Aptamers can be effectively used to simultaneously detect thousands of proteins in multiplex discovery platforms, where antibodies often fail due to cross-reactivity problems. Through chemical modification, vast range of additional functional groups can be added at any desired position in the oligonucleotide sequence, therefore the best features of small molecule drugs, proteins, and antibodies can be brought together into aptamers, making aptamers the most versatile reagent in proteomics. In this review, we discuss the recent developments in aptamer technology, including new selection methods and the aptamers' application in proteomics.
Collapse
Affiliation(s)
- Varatharasa Thiviyanathan
- Centers for Proteomics & Systems Biology, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | |
Collapse
|
32
|
Franssen-van Hal NLW, van der Putte P, Hellmuth K, Matysiak S, Kretschy N, Somoza MM. Optimized light-directed synthesis of aptamer microarrays. Anal Chem 2013; 85:5950-7. [PMID: 23672295 PMCID: PMC3686109 DOI: 10.1021/ac400746j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Aptamer microarrays are a promising
high-throughput method for
ultrasensitive detection of multiple analytes, but although much is
known about the optimal synthesis of oligonucleotide microarrays used
in hybridization-based genomics applications, the bioaffinity interactions
between aptamers and their targets is qualitatively different and
requires significant changes to synthesis parameters. Focusing on
streptavidin-binding DNA aptamers, we employed light-directed in situ
synthesis of microarrays to analyze the effects of sequence fidelity,
linker length, surface probe density, and substrate functionalization
on detection sensitivity. Direct comparison with oligonucleotide hybridization
experiments indicates that aptamer microarrays are significantly more
sensitive to sequence fidelity and substrate functionalization and
have different optimal linker length and surface probe density requirements.
Whereas microarray hybridization probes generate maximum signal with
multiple deletions, aptamer sequences with the same deletion rate
result in a 3-fold binding signal reduction compared with the same
sequences synthesized for maximized sequence fidelity. The highest
hybridization signal was obtained with dT 5mer linkers, and the highest
aptamer signal was obtained with dT 11mers, with shorter aptamer linkers
significantly reducing the binding signal. The probe hybridization
signal was found to be more sensitive to molecular crowding, whereas
the aptamer probe signal does not appear to be constrained within
the density of functional surface groups commonly used to synthesize
microarrays.
Collapse
|
33
|
Sierant M, Yang X, Nawrot B. Sirna Analogs Containing Phosphorodithioate Substitutions. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.745079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Malgorzata Sierant
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| | | | - Barbara Nawrot
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| |
Collapse
|
34
|
Anderson KM, Esadze A, Manoharan M, Brüschweiler R, Gorenstein DG, Iwahara J. Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc 2013; 135:3613-9. [PMID: 23406569 PMCID: PMC3721336 DOI: 10.1021/ja312314b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair dynamics in biological macromolecular systems. Absorption, infrared, and Raman spectroscopic methods were previously used to characterize dynamic properties of ion pairs, but these methods can be applied only to small compounds. Here, using NMR (15)N relaxation and hydrogen-bond scalar (15)N-(31)P J-couplings ((h3)J(NP)), we have investigated the dynamics of the ion pairs between lysine side-chain NH3(+) amino groups and DNA phosphate groups at the molecular interface of the HoxD9 homeodomain-DNA complex. We have determined the order parameters and the correlation times for C-N bond rotation and reorientation of the lysine NH3(+) groups. Our data indicate that the NH3(+) groups in the intermolecular ion pairs are highly dynamic at the protein-DNA interface, which should lower the entropic costs for protein-DNA association. Judging from the C-N bond-rotation correlation times along with experimental and quantum-chemically derived (h3)J(NP) hydrogen-bond scalar couplings, it seems that breakage of hydrogen bonds in the ion pairs occurs on a sub-nanosecond time scale. Interestingly, the oxygen-to-sulfur substitution in a DNA phosphate group was found to enhance the mobility of the NH3(+) group in the intermolecular ion pair. This can partially account for the affinity enhancement of the protein-DNA association by the oxygen-to-sulfur substitution, which is a previously observed but poorly understood phenomenon.
Collapse
Affiliation(s)
- Kurtis M. Anderson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mariappan Manoharan
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - Rafael Brüschweiler
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - David G. Gorenstein
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
35
|
He W, Elizondo-Riojas MA, Li X, Lokesh GLR, Somasunderam A, Thiviyanathan V, Volk DE, Durland RH, Englehardt J, Cavasotto CN, Gorenstein DG. X-aptamers: a bead-based selection method for random incorporation of druglike moieties onto next-generation aptamers for enhanced binding. Biochemistry 2012; 51:8321-3. [PMID: 23057694 PMCID: PMC3924539 DOI: 10.1021/bi300471d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By combining pseudorandom bead-based aptamer libraries with conjugation chemistry, we have created next-generation aptamers, X-aptamers (XAs). Several X-ligands can be added in a directed or random fashion to the aptamers to further enhance their binding affinities for the target proteins. Here we describe the addition of a drug (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), demonstrated to bind to CD44-HABD, to a complete monothioate backbone-substituted aptamer to increase its binding affinity for the target protein by up to 23-fold, while increasing the drug's level of binding 1-million fold.
Collapse
Affiliation(s)
- Weiguo He
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | - Miguel-Angel Elizondo-Riojas
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Centro Universitario Contra el Cáncer, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, N.L. México
| | - Xin Li
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | - Ganesh Lakshmana Rao Lokesh
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | - Anoma Somasunderam
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | - Varatharasa Thiviyanathan
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | - David E. Volk
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| | | | | | - Claudio N. Cavasotto
- Instituto de Investigaciones en Biomedicina de Buenos Aires-Max Planck Society, Partner (IBioBA-MPSP), Godoy Cruz 2390 3rd. Floor, C1425FQA, Buenos Aires, Argentina
| | - David G. Gorenstein
- Center for Proteomics and Systems Biology, The Brown Foundation Institute for Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center – Houston, 1825 Pressler Street, Houston, TX 77030
| |
Collapse
|
36
|
Abstract
IMPORTANCE OF THE FIELD Therapeutic aptamers are synthetic, structured oligonucleotides that bind to a very broad range of targets with high affinity and specificity. They are an emerging class of targeting ligand that show great promise for treating a number of diseases. A series of aptamers currently in various stages of clinical development highlights the potential of aptamers for therapeutic applications. AREAS COVERED IN THIS REVIEW This review covers in vitro selection of oligonucleotide ligands, called aptamers, from a combinatorial library using the Systematic Evolution of Ligands by Exponential Enrichment process as well as the other known strategies for finding aptamers against various targets. WHAT THE READER WILL GAIN Readers will gain an understanding of the highly useful strategies for successful aptamer discovery. They may also be able to combine two or more of the presented strategies for their aptamer discovery projects. TAKE HOME MESSAGE Although many processes are available for discovering aptamers, it is not easy to discover an aptamer candidate that is ready to move toward pharmaceutical drug development. It is also apparent that there have been relatively few therapeutic advances and clinical trials undertaken due to the small number of companies that participate in aptamer development.
Collapse
|
37
|
Xue L, Zhou X, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 2012; 84:3507-13. [PMID: 22455536 DOI: 10.1021/ac2026783] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific and sensitive detection of proteins in biotechnological applications and medical diagnostics is one of the most important goals for the scientific community. In this study, a new protein assay is developed on the basis of hairpin probe and nicking enzyme assisted signal amplification strategy. The metastable state hairpin probe with short loop and long stem is designed to contain a protein aptamer for target recognition. A short Black Hole Quencher (BHQ)-quenching fluorescence DNA probe (BQF probe) carrying the recognition sequence and cleavage site for the nicking enzyme is employed for fluorescence detection. Introduction of target protein into the assay leads to the formation change of hairpin probe from hairpin shape to open form, thus faciliating the hybridization between the hairpin probe and BQF probe. The fluorescence signal is amplified through continuous enzyme cleavage. Thrombin is used as model analyte in the current proof-of-concept experiments. This method can detect thrombin specifically with a detection limit as low as 100 pM. Additionally, the proposed protein detection strategy can achieve separation-free measurement, thus eliminating the washing steps. Moreover, it is potentially universal because hairpin probe can be easily designed for other proteins by changing the corresponding aptamer sequence.
Collapse
Affiliation(s)
- Liyun Xue
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
38
|
Wiesmayr A, Fournier P, Jäschke A. An on-bead tailing/ligation approach for sequencing resin-bound RNA libraries. Nucleic Acids Res 2012; 40:e68. [PMID: 22298510 PMCID: PMC3351178 DOI: 10.1093/nar/gks004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nucleic acids possess the unique property of being enzymatically amplifiable, and have therefore been a popular choice for the combinatorial selection of functional sequences, such as aptamers or ribozymes. However, amplification typically requires known sequence segments that serve as primer binding sites, which can be limiting for certain applications, like the screening of on-bead libraries. Here, we report a method to amplify and sequence on-bead RNA libraries that requires not more than five known nucleotides. A key element is the attachment of the starting nucleoside to the synthesis resin via the nucleobase, which leaves the 3′-OH group accessible to subsequent enzymatic manipulations. After split-and-mix synthesis of the oligonucleotide library and deprotection, a poly(A)-tail can be efficiently added to this free 3′-hydroxyl terminus by Escherichia coli poly(A) polymerase that serves as an anchored primer binding site for reverse transcription. The cDNA is joined to a DNA adapter by T4 DNA ligase. PCR amplification yielded single-band products that could be cloned and sequenced starting from individual polystyrene beads. The method described here makes the selection of functional RNAs from on-bead RNA libraries more attractive due to increased flexibility in library design, higher yields of full-length sequence on bead and robust sequence determination.
Collapse
Affiliation(s)
- Anna Wiesmayr
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | | | | |
Collapse
|
39
|
Abstract
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology and Research Innovation (ITRI), Geelong Technology Precinct (GTP), Deakin University, Victoria, Australia.
| | | | | |
Collapse
|
40
|
Doessing H, Vester B. Locked and unlocked nucleosides in functional nucleic acids. Molecules 2011; 16:4511-26. [PMID: 21629180 PMCID: PMC6264650 DOI: 10.3390/molecules16064511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 12/28/2022] Open
Abstract
Nucleic acids are able to adopt a plethora of structures, many of which are of interest in therapeutics, bio- or nanotechnology. However, structural and biochemical stability is a major concern which has been addressed by incorporating a range of modifications and nucleoside derivatives. This review summarizes the use of locked nucleic acid (LNA) and un-locked nucleic acid (UNA) monomers in functional nucleic acids such as aptamers, ribozymes, and DNAzymes.
Collapse
Affiliation(s)
| | - Birte Vester
- Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark; E-Mail: (H.D.)
| |
Collapse
|
41
|
Wang T, Oehrlein S, Somoza MM, Perez JRS, Kershner R, Cerrina F. Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides. LAB ON A CHIP 2011; 11:1629-1637. [PMID: 21445444 DOI: 10.1039/c0lc00577k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An optical tweezers directed parallel DNA oligonucleotide synthesis methodology is described in which controlled pore glass (CPG) beads act as solid substrates in a two-stream microfluidic reactor. The reactor contains two parallel sets of physical confinement features that retain beads in the reagent stream for synthetic reaction but allow the beads to be optically trapped and transferred between the reagent and the inert streams for sequence programming. As a demonstration, we synthesized oligonucleotides of target sequence 25-nt, one deletion and one substitution using dimethoxytrityl (DMT) nucleoside phosphoramidite chemistry. In detecting single-nucleotide mismatches, fluorescence in situ hybridization of the bead-conjugated probes showed high specificity and signal-to-noise ratios. These preliminary results suggest further possibilities of creating a novel type of versatile, sensitive and multifunctional reconfigurable one-bead one-compound (OBOC) bead array.
Collapse
Affiliation(s)
- Tao Wang
- Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wiesmayr A, Jäschke A. Isolation and characterization of fluorescence-enhancing RNA tags. Bioorg Med Chem 2011; 19:1041-7. [DOI: 10.1016/j.bmc.2010.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
43
|
|
44
|
Abstract
Aptamers are small single-stranded nucleic acids that fold into a well-defined three-dimensional structure. They show a high affinity and specificity for their target molecules and inhibit their biological functions. Aptamers belong to the nucleic acids family and can be synthesized by chemical or enzymatic procedures, or a combination of the two. They can, therefore, be considered as both chemical and biological substances. This Review summarizes the most convenient approaches to their preparation and new developments in the field of aptamers. The application of aptamers in chemical biology is also discussed.
Collapse
Affiliation(s)
- Günter Mayer
- Life and Medical Sciences, Prog. Unit Chemical Biology and Medicinal Chemistry, University of Bonn c/o Kekulé-Institute for Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
45
|
|
46
|
Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res 2008; 659:147-57. [PMID: 18565787 PMCID: PMC2676583 DOI: 10.1016/j.mrrev.2008.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 02/07/2023]
Abstract
The most common form of genetic variation, single nucleotide polymorphisms or SNPs, can affect the way an individual responds to the environment and modify disease risk. Although most of the millions of SNPs have little or no effect on gene regulation and protein activity, there are many circumstances where base changes can have deleterious effects. Non-synonymous SNPs that result in amino acid changes in proteins have been studied because of their obvious impact on protein activity. It is well known that SNPs within regulatory regions of the genome can result in disregulation of gene transcription. However, the impact of SNPs located in putative regulatory regions, or rSNPs, is harder to predict for two primary reasons. First, the mechanistic roles of non-coding genomic sequence remain poorly defined. Second, experimental validation of the functional consequences of rSNPs is often slow and laborious. In this review, we summarize traditional and novel methodologies for candidate rSNPs selection, in particular in silico techniques that aid in candidate rSNP selection. Additionally we will discuss molecular biological techniques that assess the impact of rSNPs on binding of regulatory machinery, as well as functional consequences on transcription. Standard techniques such as EMSA and luciferase reporter constructs are still widely used to assess effects of rSNPs on binding and gene transcription; however, these protocols are often bottlenecks in the discovery process. Therefore, we highlight novel and developing high-throughput protocols that promise to aid in shortening the process of rSNP validation. Given the large amount of genomic information generated from a multitude of re-sequencing and genome-wide SNP array efforts, future focus should be to develop validation techniques that will allow greater understanding of the impact these polymorphisms have on human health and disease.
Collapse
Affiliation(s)
- Brian N. Chorley
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Xuting Wang
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Michelle R. Campbell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Gary S. Pittman
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Maher A. Noureddine
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Douglas A. Bell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| |
Collapse
|
47
|
Yang X, Beasley D, Engelhardt J, Shumbera M, Luxon BA, Gorenstein DG. Bead-Based Approaches to Develop Thioaptamers for Diagnostics and Therapeutics. PHOSPHORUS SULFUR 2008. [DOI: 10.1080/10426500701761367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xianbin Yang
- a AM Biotechnologies LLC , Galveston, Texas, USA
- b Sealy Center for Structural Biology, Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch , Galveston, Texas, USA
| | | | | | | | - Bruce A. Luxon
- b Sealy Center for Structural Biology, Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch , Galveston, Texas, USA
| | - David G. Gorenstein
- b Sealy Center for Structural Biology, Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch , Galveston, Texas, USA
| |
Collapse
|
48
|
Fennewald SM, Scott EP, Zhang L, Yang X, Aronson JF, Gorenstein DG, Luxon BA, Shope RE, Beasley DWC, Barrett ADT, Herzog NK. Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections. J Gen Virol 2007; 88:981-990. [PMID: 17325372 DOI: 10.1099/vir.0.82499-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral haemorrhagic fever (VHF) is caused by a number of viruses, including arenaviruses. The pathogenesis is believed to involve dysregulation of cytokine production. The arenaviruses Lassa virus and Pichinde virus have a tropism for macrophages and other reticuloendothelial cells and both appear to suppress the normal macrophage response to virus infection. A decoy thioaptamer, XBY-S2, was developed and was found to bind to AP-1 transcription factor proteins. The P388D1 macrophage-like cell line contains members of the AP-1 family which may act as negative regulators of AP-1-controlled transcription. XBY-S2 was found to bind to Fra-2 and JunB, and enhance the induction of cytokines IL-6, IL-8 and TNF-alpha, while reducing the binding to AP-1 promoter elements. Administration of XBY-S2 to Pichinde virus-infected guinea pigs resulted in a significant reduction in Pichinde virus-induced mortality and enhanced the expression of cytokines from primary guinea pig macrophages, which may contribute to its ability to increase survival of Pichinde virus-infected guinea pigs. These data demonstrate a proof of concept that thioaptamers can be used to modulate the outcome of in vivo viral infections by arenaviruses by the manipulation of transcription factors involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Susan M Fennewald
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Erin P Scott
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Xianbin Yang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Judith F Aronson
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - David G Gorenstein
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Bruce A Luxon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Robert E Shope
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - David W C Beasley
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alan D T Barrett
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Norbert K Herzog
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
49
|
Yang X, Wang H, Beasley DWC, Volk DE, Zhao X, Luxon BA, Lomas LO, Herzog NK, Aronson JF, Barrett ADT, Leary JF, Gorenstein DG. Selection of thioaptamers for diagnostics and therapeutics. Ann N Y Acad Sci 2007; 1082:116-9. [PMID: 17145932 DOI: 10.1196/annals.1348.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioaptamers offer advantages over normal phosphate ester backbone aptamers due to their enhanced affinity, specificity, and higher stability, largely due to the properties of the sulfur backbone modifications. Over the past several years, in vitro thioaptamer selection and bead-based thioaptamer selection techniques have been developed in our laboratory. Furthermore, several thioaptamers targeting specific proteins such as transcription factor NF-kappaB and AP-1 proteins have been identified. Selected thioaptamers have been shown diagnostic promise in proteome screens. Moreover, some promising thioaptamers have been shown in preliminary animal therapeutic dosing to increase survival in animal models of infection with West Nile virus.
Collapse
Affiliation(s)
- Xianbin Yang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch at Galveston, Texas 77555-1157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dixon SM, Li P, Liu R, Wolosker H, Lam KS, Kurth MJ, Toney MD. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries. J Med Chem 2006; 49:2388-97. [PMID: 16610782 DOI: 10.1021/jm050701c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-bead one-compound combinatorial chemistry together with a high-throughput screen based on fluorescently labeled enzyme allowed the identification of slow binding inhibitors of human serine racemase (hSR). A peptide library of topographically segregated encoded resin beads was synthesized, and several hSR-binding compounds were isolated, identified, and resynthesized for further kinetic study. Of these, several showed inhibitory effects with moderate potency (high micromolar K(I)s) toward hSR. A clear structural motif was identified consisting of 3-phenylpropionic acid and histidine moieties. Importantly, the inhibitors identified showed no structural similarities to the natural substrate, L-serine. Detailed kinetic analyses of the properties of selected inhibitors show that the screening protocol used here selectively identifies slow binding inhibitors. They provide a pharmacophore for the future isolation of more potent ligands that may prove useful in probing and understanding the biological role of hSR.
Collapse
Affiliation(s)
- Seth M Dixon
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|