1
|
Li G, Liu G, Ruan Y, Liu C, Lian X, Zheng Y. A convenient approach for generating dimeric nucleic acid dyes via click-chemistry. Bioorg Med Chem Lett 2024; 114:130013. [PMID: 39486487 DOI: 10.1016/j.bmcl.2024.130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Fluorescent dyes are essential tools for visualizing DNA and RNA. Dimeric dyes like GelGreen have gained popularity as safer alternatives to ethidium bromide (EB) due to their reduced mutagenicity and genotoxicity. In this study, we present a straightforward method to synthesize novel acridine orange (AO)-based dimeric dyes using click chemistry. Starting from acridine orange, these dyes can be synthesized in just two steps. Compared to GelGreen, these new dyes incorporate additional triazole groups in their linkers. They exhibit a maximum absorption wavelength of approximately 472 nm, which shifts to around 503 nm upon binding with DNA, allowing excitation by blue light. These dyes show minimal fluorescence in aqueous solutions, indicating that they adopt a closed conformation where the fluorescence of acridine orange is quenched due to intramolecular aggregation. The presence of DNA significantly enhances their fluorescence at around 526 nm, suggesting that DNA binding induces an open conformation. This "light-up" property makes them highly sensitive DNA dyes with a strong signal-to-noise ratio. We successfully applied these novel dyes in agarose gel electrophoresis, where they demonstrated excellent performance.
Collapse
Affiliation(s)
- Guorui Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Guanghua Liu
- Laboratory of Hematology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410002, China; Department of Blood Transfusion, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410002, China
| | - Yawen Ruan
- Hunan Ruoyu Biotechnology Co., LTD, Changsha, 410013, China
| | - Chaoshui Liu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China
| | - Xingnan Lian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yangli Zheng
- Hunan Ruoyu Biotechnology Co., LTD, Changsha, 410013, China
| |
Collapse
|
2
|
Zhang Y, Wang M, Xie Y, Zhang J, Cheng Y, Wang Y, Jia H. An ultrasensitive terminal protection-based real-time fluorescence approach for protein detection via an isothermal exponential amplification reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6872-6876. [PMID: 39268762 DOI: 10.1039/d4ay01206b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In this assay, based on the terminal protection of small-molecule-linked DNA, a new ultrasensitive real-time fluorescence strategy combined with an isothermal exponential amplification reaction (IEXPAR) has been established for protein assay. By the clever design of DNA, terminal protection is combined with efficient IEXPAR. The target protein explicitly binds to small molecules attached to the template DNA, protecting the template DNA from exonuclease I (Exo I) degradation. The added DNA primer hybridizes with the protected template DNA and triggers the following IEXPAR. IEXPAR has a super amplification efficiency of 106-109 times. The IEXPAR yields numerous double-stranded DNA (dsDNA) molecules. The fluorescence dye SYBR Green I (SG), which is sensitive to dsDNA, is used to determine the real-time fluorescence of the IEXPAR. Conversely, without the target protein, the template DNA is hydrolyzed by Exo I, failing to trigger the IEXPAR. The intriguing combination of IEXPAR and terminal protection realizes the ultrasensitive detection of protein. As low as 100 fmol L-1 SA and 200 pg mL-1 folic acid (FR) are accurately detected.
Collapse
Affiliation(s)
- Yajing Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Mengqi Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Yanrui Xie
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Yucong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Hongxia Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Shi Y, Nakamura S, Mitomo H, Yonamine Y, Wang G, Ijiro K. Plasmonic circular dichroism-based metal ion detection using gold nanorod-DNA complexes. Chem Commun (Camb) 2024; 60:11794-11797. [PMID: 39330876 DOI: 10.1039/d4cc04017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We report that complexes formed between gold nanorods (AuNRs) and metal-mediated DNA exhibit plasmonic circular dichroism (CD) signals up to ∼400 times stronger than the molecular CD signal of DNA. This substantial enhancement enables the detection of metal ions, offering a promising approach to analytical applications in chiral biochemistry.
Collapse
Affiliation(s)
- Yali Shi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan
| | - Satoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
4
|
Li S, Pi J, Huang Y, Li Y, Tan H. Reusable fluorescence nanoprobe based on DNA-functionalized metal-organic framework for ratiometric detection of mercury (II) ions. Mikrochim Acta 2024; 191:646. [PMID: 39367246 DOI: 10.1007/s00604-024-06710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
A reusable fluorescent nanoprobe was developed using DNA-functionalized metal-organic framework (MOF) for ratiometric detection of Hg2+. We utilized a zirconium-based MOF (UiO-66) to encapsulate tris(bipyridine) ruthenium(II) chloride (Ru(bpy)32+), resulting in Ru(bpy)32+@UiO-66 (RU) with red fluorescence. The unsaturated metal sites in UiO-66 facilitate the attachment of thymine-rich single-strand DNA (T-ssDNA) through Zr-O-P bond, producing T-ssDNA-functionalized RU complex (RUT). The T-ssDNA selectively binds to Hg2+, forming stable T-Hg2+-T base pairs and folding into double-stranded DNA, which permits the intercalation of SYBR Green I (SGI) and activates its green fluorescence. In the presence of Hg2+, SGI fluorescence increases in a dose-dependent manner, while Ru(bpy)32+ fluorescence remains constant. This fluorescence contrast enables RUT to serve as an effective ratiometric nanoprobe for Hg2+ detection, with a detection limit of 3.37 nM. Additionally, RUT demonstrates exceptional reusability due to the ability of cysteine to remove Hg2+, given its stronger affinity for thiol groups. The RUT was successfully applied to detect Hg2+ in real water samples. This work advances the development of ratiometric fluorescence nanoprobe based on DNA-functionalized MOFs.
Collapse
Affiliation(s)
- Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China.
| | - Yingjie Huang
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yong Li
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China.
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| |
Collapse
|
5
|
Li C, Xie Y, Cheng X, Xu L, Yao G, Li Q, Shen J, Fan C, Li M. Single-Molecule Assessment of DNA Hybridization Kinetics on Dye-Loaded DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402870. [PMID: 38844986 DOI: 10.1002/smll.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Indexed: 10/04/2024]
Abstract
DNA nanostructures offer a versatile platform for precise dye assembly, making them promising templates for creating photonic complexes with applications in photonics and bioimaging. However, despite these advancements, the effect of dye loading on the hybridization kinetics of single-stranded DNA protruding from DNA nanostructures remains unexplored. In this study, the DNA points accumulation for imaging in the nanoscale topography (DNA-PAINT) technique is employed to investigate the accessibility of functional binding sites on DNA-templated excitonic wires. The results indicate that positively charged dyes on DNA frameworks can accelerate the hybridization kinetics of protruded ssDNA through long-range electrostatic interactions. Furthermore, the impacts of various charged dyes and binding sites are explored on diverse DNA frameworks with varying cross-sizes. The research underscores the crucial role of electrostatic interactions in DNA hybridization kinetics within DNA-dye complexes, offering valuable insights for the functionalization and assembly of biomimetic photonic systems.
Collapse
Affiliation(s)
- Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Zou H, Lai H, Wu W, Cheng R, Lu Y, Peng X. Rapid molecular identification of Rana dybowskii by species-specific primers. Anal Biochem 2024; 692:115548. [PMID: 38697593 DOI: 10.1016/j.ab.2024.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Oviductus Ranae is the dried oviduct from Rana dybowskii, a forest frog species with medicinal, tonic, and cosmetic properties. Due to the high price and resource shortage, counterfeit varieties of Oviductus Ranae often appear in the market. However, traditional identification methods cannot accurately differentiate between Oviductus Ranae and its adulterants. In this study, a rapid molecular identification method has been established. The method involves extracting genomic DNA in just 30 s using filter paper purification, species-specific rapid polymerase chain reaction (PCR) amplification, and finally, fluorescence detection of the products. It can accurately identify Oviductus Ranae and its three common adulterants in about 30 min, making the process simple, fast, and highly specific.
Collapse
Affiliation(s)
- Heyuan Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Huili Lai
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Wenru Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ruiying Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaru Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Peng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
7
|
Nguyen DN, Ko P, Roper B, Console G, Gao Y, Shaw D, Yu C, Yehl P, Zhang K, Goyon A. Analytical and Functional Characterization of Plasmid DNA Topological Forms and Multimers. Anal Chem 2024; 96:12801-12808. [PMID: 39051724 DOI: 10.1021/acs.analchem.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Plasmid DNA (pDNA) is an essential tool in genetic engineering that has gained prevalence in cell and gene therapies. Plasmids exist as supercoiled (SC), open circular (OC), and linear forms. Plasmid multimerization can also occur during the manufacturing process. Even though the SC forms are thought to provide optimal knock-in (KI) efficiency, there is no strong consensus on the effect of the topological forms and multimers on the functional activity. In addition, the results obtained for conventional pDNAs (>5 kbp) do not necessarily translate to smaller pDNAs (∼3 kbp). In this study, a workflow was developed for the analytical and functional characterization of pDNA topological forms and multimers. An anion exchange chromatography (AEC) method was first developed to quantify the topological forms and multimers. Four AEC columns were initially compared, one of which was found to provide superior chromatographic performance. The effect of mobile phase pH, various salts, column temperature, and acetonitrile content on the separation performance was systematically studied. The method performance, including precision and accuracy, was evaluated. The final AEC method was compared to capillary gel electrophoresis (CGE) by analyzing several pDNA sequences and lots. A forced degradation study revealed unexpectedly high degradation of the SC forms. Finally, the KI efficiency was compared for the SC and OC forms, and the multimers.
Collapse
Affiliation(s)
- Daniel Ngoc Nguyen
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peggy Ko
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell Therapy Analytical Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Gary Console
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuan Gao
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - David Shaw
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher Yu
- Cell Therapy Analytical Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Yehl
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Yang W, Pu X, Xie W, Li L, Ding Z, Jia L. Isopropanol-promoted DNA extraction by polydopamine functionalized magnetic particles based on metal coordination. Talanta 2024; 275:126115. [PMID: 38663068 DOI: 10.1016/j.talanta.2024.126115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/30/2024]
Abstract
High-quality DNA is an important guarantee to start downstream experiments in many biological and medical research areas. Magnetic particle-based DNA extraction methods from blood mainly depend on electrostatic adsorption in a low-pH environment. However, the strong acidic environment can influence the DNA stability. Herein, a polydopamine-functionalized magnetic particle (PDA@Fe3O4)-based protocol was developed for DNA extraction from whole blood samples. In the protocol, Mg2+ and Ca2+ were utilized to bridge the adsorption of DNA by PDA@Fe3O4 via the metal-mediated coordination. Isopropanol was found to efficiently promote DNA adsorption by triggering the change of the conformation of DNA from B-form to more compact A-form. In 50 % isopropanol solution, the DNA adsorption efficiency was nearly 100 % in the presence of 0.5 mM Ca2+ or 1.5 mM Mg2+. The role of metal ions and isopropanol in DNA adsorption was explored. The protocol averts the strong acidic environment and PCR inhibitors, such as high concentrations of salt or polyethylene glycol. It demonstrates superiority in DNA yield (59.13 ± 3.63 ng μL-1) over the commercial kit (27.33 ± 4.98 ng μL-1) and phenol-chloroform methods (37.90 ± 0.47 ng μL-1). In addition, to simplify the operastion, an automated nucleic acid extraction device was designed and fabricated to extract whole genomic DNA from blood. The feasibility of the device was verified by extracting DNA from cattle and pig blood samples. The extracted DNA was successfully applied to discriminate the beef authenticity by a duplex PCR system. The results demonstrate that the DNA extraction protocol and the automated device have great potential in blood samples.
Collapse
Affiliation(s)
- Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoxiao Pu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ling Li
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zixuan Ding
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Zhou Y, Cui X, Wu B, Wang Z, Liu Y, Ren T, Xia S, Rittmann BE. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction. BIORESOURCE TECHNOLOGY 2024; 406:131054. [PMID: 38944317 DOI: 10.1016/j.biortech.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Microalgae extracellular polymeric substances (EPS) are complex high-molecular-weight polymers and the physicochemical properties of EPS strongly affect the core features of microalgae cultivation and resource utilization. Revealing the key roles of EPS in microalgae life-cycle processes in an interesting and novelty topic to achieve energy-efficient practical application of microalgae. This review found that EPS showed positive effect in non-gas uptake, extracellular electron transfer, toxicity resistance and heterotrophic symbiosis, but negative impact in gas transfer and light utilization during microalgae cultivation. For biomass harvesting, EPS favored biomass flocculation and large-size cell self-flocculation, but unfavored small size microalgae self-flocculation, membrane filtration, charge neutralization and biomass dewatering. During bioproducts extraction, EPS exhibited positive impact in extractant uptake, but the opposite effect in cellular membrane permeability and cell rupture. Future research on microalgal EPS were also identified, which offer suggestions for comprehensive understanding of microalgal EPS roles in various scenarios.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America
| |
Collapse
|
10
|
Li Y, Miros S, Eckhardt HG, Blanco A, Mulcahy S, Tiwari BK, Halim R. Freshwater microalgae Nannochloropsis limnetica for the production of β-galactosidase from whey powder. Sci Rep 2024; 14:14346. [PMID: 38906947 PMCID: PMC11192913 DOI: 10.1038/s41598-024-65146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as β-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular β-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting β-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive β-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.
Collapse
Affiliation(s)
- Yuchen Li
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Svitlana Miros
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Mulcahy
- Arrabawn Co-Operative Society Ltd., Nenagh, Co. Tipperary, Ireland
| | - Brijesh Kumar Tiwari
- Department of Food Chemistry and Technology, Ashtown Teagasc Food Research Centre, Dublin 15, Ireland
| | - Ronald Halim
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Zhang Q, Liu A, Song X, Xu S, Da L, Lin D, Jiang C. Ultrasensitive Fluorescent Microsensors Based on Aptamers Modified with SYBR Green I for Visual Quantitative Detection of Organophosphate Pesticides. Anal Chem 2024; 96:9636-9642. [PMID: 38808501 DOI: 10.1021/acs.analchem.4c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Organophosphate pesticides (OPs) are widely utilized in agricultural production, and the residues threaten public health and environmental safety due to their toxicity. Herein, a novel and simple DNA aptamer-based sensor has been fabricated for the rapid, visual, and quantitative detection of profenofos and isocarbophos. The proposed DNA aptamers with a G-quadruplex spatial structure could be recognized by SYBR Green I (SG-I), resulting in strong green fluorescence emitted by SG-I. The DNA aptamers exhibit a higher specific binding ability to target OP molecules through aromatic ring stacking, disrupting the interaction between SG-I and DNA aptamers to induce green fluorescence quenching. Meanwhile, the fluorescence wavelength of G-quadruplex fluorescence emission peaks changes, accompanied by an obvious fluorescence variation from green to blue. SG-I-modified aptasensor without any additive reference fluorescence units for use in multicolor fluorescence assay for selective monitoring of OPs was first developed. The developed aptasensor provides a favorable linear range from 0 to 200 nM, with a low detection limit of 2.48 and 3.01 nM for profenofos and isocarbophos, respectively. Moreover, it offers high selectivity and stability in real sample detection with high recoveries. Then, a self-designed portable smartphone sensing platform was successfully used for quantitative result outputs, demonstrating experience in designing a neotype sensing strategy for point-of-care pesticide monitoring.
Collapse
Affiliation(s)
- Qianru Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Anqi Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin Song
- Hefei Public Security Bureau, Hefei, Anhui 230001, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
12
|
Wang X, Xu N, Zhu L, Yang H, Li C, Tian H, Xu W. Structural Antagonism-Aided Conformational Regulation Enables an Aptamer-Loop G-Quadruplex Modular Sensor of β-Lactoglobulin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307995. [PMID: 38212277 DOI: 10.1002/smll.202307995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Indexed: 01/13/2024]
Abstract
A simple, reliable method for identifying β-lactoglobulin (β-LG) in dairy products is needed to protect those with β-LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label-free modular β-LG aptasensor consisting of an aptamer-loop G-quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module-fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine-tuning the sequences. Furthermore, the principle of specific β-LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by β-LG to reinforce the G4 topology and fluorescence. Finally, a label-free, assembly-free, succinct, and turn-on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting β-LG within 22-min. This study provides a generalizable approach for the conformational regulation of module-fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
- College of Life Science and Engineering, Handan University, Handan, 056005, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Ning Xu
- School of Life Science, Tsinghua University, Beijing, 100091, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - He Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
13
|
Poloamina VI, Alrammah H, Abate W, Avent ND, Fejer G, Jackson SK. Lysophosphatidylcholine Acetyltransferase 2 ( LPCAT2) Influences the Gene Expression of the Lipopolysaccharide Receptor Complex in Infected RAW264.7 Macrophages, Depending on the E. coli Lipopolysaccharide Serotype. BIOLOGY 2024; 13:314. [PMID: 38785798 PMCID: PMC11117747 DOI: 10.3390/biology13050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.
Collapse
Affiliation(s)
| | - Hanaa Alrammah
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
- Zoonoses Research Unit, College of Veterinary Medicine, University of Bagdad, Baghdad 10071, Iraq
| | - Wondwossen Abate
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
- College of Medicine and Health, University of Exeter, Exeter EX1 2HZ, UK
| | - Neil D. Avent
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Gyorgy Fejer
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | | |
Collapse
|
14
|
Bennett HA, McAdorey A, Yan H. Staining Properties of Selected Commercial Fluorescent Dyes Toward B- and Z-DNA. J Fluoresc 2024; 34:1193-1205. [PMID: 37505363 DOI: 10.1007/s10895-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
The properties of six commonly used, commercially available, fluorescent dyes were compared in staining right-handed B-DNA and left-handed Z-DNA. All showed different degree of fluorescence turn-on in the presence of B-DNA, but very little in the presence of Z-DNA. The optimal range of dye-DNA ratios of DNA was determined. While these dyes do not provide a turn-on type probe for Z-DNA, staining between B- and Z-DNA using dyes such as SYBR Green I was shown to be useful in tracking the kinetics of conformational changes between these two forms of DNA. Finally, SYBR Green I showed unique circular dichroism patterns in 4 M NaCl that change in the presence of double stranded DNA, both in the visible and UV range.
Collapse
Affiliation(s)
- Hayley-Ann Bennett
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Alyssa McAdorey
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
15
|
Pataer P, Gao K, Zhang P, Li Z. Ultrasensitive and visual detection of genetically modified crops using two primers-induced cascade exponential amplification assay. Talanta 2024; 268:125282. [PMID: 37913599 DOI: 10.1016/j.talanta.2023.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
The increased global cultivation area of genetically modified (GM) crops has caused severe controversies over potential health and environmental risks worldwide. There is an urgent need to verify even trace amount of a particular GM material in products. Herein, a two primers-induced cascade exponential amplification reaction combined with cationic conjugated polymers (CCPs)-based visual detection method is developed for rapid and ultrasensitive detection of GM crops. This method only uses two primers to specifically recognize the four regions of the target gene, which is easier for primer design and probably more suitable for the detection of shorter targets. By integrating the two exponential amplification reactions, as low as 5 pg genomic DNA from GM maize can be accurately detected, which is more sensitive than the single amplification-based methods. Taking advantage of the efficient fluorescence resonance energy transfer (FRET) between CCPs and the commercial fluorescent dye SYBR Green I (SG), our method can differentiate as low as 0.01 % GM maize from a large amount of non-GM maize, which is the most accurate method so far. By changing the two primers according to target gene, our method can be modified to the detection of any other GM materials, indicating that our method is promising to be applied in other GM materials-related testing and screening system.
Collapse
Affiliation(s)
- Parezhati Pataer
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Kejian Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
16
|
Zhao Q, Wu J, Jiang Z, Lu D, Xie X, Chen L, Shi X. Novel functional DNA-linked immunosorbent assay for aflatoxin B1 with dual-modality based on hybrid chain reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123474. [PMID: 37801796 DOI: 10.1016/j.saa.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins, which is frequently detected in agricultural products. Herein, a novel functional DNA -linked immunosorbent assay (DLISA) with dual-modality based on hybrid chain reaction (HCR) has been successfully developed for ultrasensitive detection of AFB1. The strategy relies on AFB1 immune-bridged occurrence of HCR and the salt-induced aggregation of gold nanoparticles (AuNPs). An aptamer-initiator stand (Apt-Ini stand) is designed for the AFB1 recognition and the activation of HCR, which can recognize the matched hairpins and cause the crossing-opening of H1 and H2, producing a long double-stranded DNA polymer. The addition of SYBR Green I achieves the fluorescent signal output. Remaining less DNA hairpins were added and stuck on the surface of AuNPs, which were insufficient to protect the AuNPs, resulting in the salt-induced aggregation with the color change from red to blue. The dual-modality provides limits of detections of 1.333 × 10-14 g/mL and 2.471 × 10-15 g/mL, respectively. This DLISA with dual-modality provides not only a colorimetry that can meet the needs of on-the-spot preliminary inspection, but also a fluorescence assay that can acquire the precise results.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhenghong Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinhui Xie
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liye Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Li C, Duan Z, Zhang J, Gao J, Ying C. Diagnostic value of dual-fluorescence staining in bacterial vaginosis. Lab Med 2024; 55:40-44. [PMID: 37184354 DOI: 10.1093/labmed/lmad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the epidemiology of bacterial vaginosis (BV) in Shanghai, China, and to explore the value of a dual-fluorescence staining method in the diagnosis of BV. METHODS Specimens were collected from women with vaginitis at the Obstetrics and Gynecology Hospital of Fudan University from January 2020 to December 2021, and the proportions of various vaginitis types (such as Candida vaginitis, Trichomonas, and bacterial vaginitis) were analyzed statistically. To explore the diagnostic value of dual-fluorescence staining for BV, we first executed a dual-fluorescence staining method to analyze the vaginal secretions of 265 patients, then confirmed our diagnoses by consulting clinical physicians and by using Nugent scoring of Gram staining. RESULTS There were 16,905 patients who were diagnosed with vaginitis over the previous 2 years, with a median age of 32 (minimum age of 9 years and maximum of 84 years). Of these patients, we noted 10,887 cases (64.40%) of BV. Our staining results revealed that the dual-fluorescence method was consistent with Gram staining in the diagnosis of BV, with a P value of less than .001 using a χ 2 test and a consistency kappa value of 0.896. Compared with Gram staining, the dual-fluorescence staining method required an acceptable time (2.2 min vs 2.5 min, respectively) and exhibited different visual effects (green and yellow vs purple and red, respectively). CONCLUSION Dual-fluorescence staining for the detection of bacterial diseases of the vagina exhibited acceptable consistency with Gram staining and performed well with respect to dyeing time, stability, and the interpretation of results. We argue that this method should be used in outpatient services.
Collapse
Affiliation(s)
- Cui Li
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhongliang Duan
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Gao
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunmei Ying
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Wang Z, Cao Y, Yu Z, Tian Y, Ren J, Liu W, Fan L, Zhang Q, Cao C. High-resolution nucleic acid detection using online polyacrylamide gel electrophoresis platform. J Chromatogr A 2024; 1713:464571. [PMID: 38091846 DOI: 10.1016/j.chroma.2023.464571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Polyacrylamide gel electrophoresis (PAGE) is one of the most popular techniques for the separation and detection of nucleic acids. However, it requires a complicated detection procedure and offline detection format, which inevitably leads to band broadening and thus compromises the separation resolution. To overcome this problem, we developed an online PAGE (OPAGE) platform by integrating the gel electrophoresis apparatus with the gel imaging system, so as to obviate the need for the complicated detection procedure. Notably, OPAGE enabled the real-time monitoring of the separation process and the immediate imaging of the separation results once the electrophoresis ended. Using a series of synthetic DNAs with different lengths as samples, we demonstrated that the OPAGE platform enhanced 32-64 % of the number of theoretical plates, showed a robust dynamic range of 0.1-12.5 ng/μL, and realized a limit of detection as low as 0.08 ng/μL DNA. Based on our results, we anticipate that the OPAGE platform is a promising alternative to traditional nucleic acid gel electrophoresis for simple and high-resolution detection and quantification and nucleic acid.
Collapse
Affiliation(s)
- Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixian Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Wang X, Qiao Y, Zhang J, Song Y, Han Q. A SYBR Green I-based aptasensor for the label-free, fluorometric, and anti-interference detection of MeHg . Anal Bioanal Chem 2024; 416:299-311. [PMID: 37932512 DOI: 10.1007/s00216-023-05018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yinuo Qiao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
20
|
Hui J, Majikes JM, Riley KR. Analysis of DNA Origami Nanostructures Using Capillary Electrophoresis. Anal Chem 2023; 95:18783-18792. [PMID: 38088564 PMCID: PMC10753524 DOI: 10.1021/acs.analchem.3c03641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
DNA origami nanostructures are engineered nanomaterials (ENMs) that possess significant customizability, biocompatibility, and tunable structural and functional properties, making them potentially useful materials in fields, such as medicine, biocomputing, biomedical engineering, and measurement science. Despite the potential of DNA origami as a functional nanomaterial, a major barrier to its applicability is the difficulty associated with obtaining pure, well-folded structures. Therefore, rapid methods of analysis to ensure purity are needed to support the rapid development of this class of nanomaterials. Here, we present the development of capillary electrophoresis (CE) as an analytical tool for DNA origami. CE was investigated under both capillary zone electrophoresis (CZE) and capillary transient isotachophoresis (ctITP) modes. Optimization of both systems yielded baseline resolved separations of folded DNA origami nanostructures from excess staple strands. The ctITP separation mode demonstrated superior performance in terms of peak resolution (Rs = 2.05 ± 0.3), peak efficiency (N = 12,200 ± 230), and peak symmetry (As = 1.29 ± 0.032). The SYBR family dyes (Gold, Green I, and Green II) were investigated as highly efficient, noncovalent fluorophores for on-column labeling of DNA origami and detection using laser-induced fluorescence. Finally, ctITP analysis conditions were also applied to DNA origami nanostructures with different shapes and for the differentiation of DNA origami aggregates.
Collapse
Affiliation(s)
- Janan Hui
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| | - Jacob M. Majikes
- Physical
Measurement Laboratory, National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Kathryn R. Riley
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
21
|
Zhou J, Chen X, Wei Y, Lu R, Wei Z, Huang K, Luo H, Zhang J, Zheng C. Portable and Rapid Fluorescence Turn-On Detection of Total Pepsin in Saliva Based on Strong Electrostatic Interactions. Anal Chem 2023; 95:18303-18308. [PMID: 38019658 DOI: 10.1021/acs.analchem.3c04723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Salivary pepsin has been proposed as a promising diagnostic marker for gastroesophageal reflux disease (GERD). However, the activity of human pepsin is strongly influenced by pH, and the acidic condition (pH ∼ 2) is optimal, which is a contradiction for the pepsin detection kit based on its catalytic activity. Thus, its accurate quantification in saliva (neutral pH) by readily rapid tools with simplicity and low cost is still challenging. Herein, a convenient fluorescence assay has been developed for the rapid detection of pepsin at neutral pH based on its electrostatic interaction with SYBR Green (SG) rather than the bioactivity. At neutral pH, the positively charged SG fluorophore can be effectively adsorbed by the negatively charged pepsin due to the low isoelectric point (pI) and large molecular size of pepsin. Thus, the molecular rotation of SG is limited, and its fluorescence intensity is significantly increased. The strategy was further confirmed to have the same fluorescence response as that of normally active and inactivated pepsin. Due to the unique pI of pepsin, the fluorescence strategy is highly selective for pepsin compared to other proteins. On the basis of this strategy, a smartphone-based fluorescence capture device integrated with a programmed Python program was fabricated for both color recognition and the accurate detection of pepsin within 3 min. Under the optimal conditions, this turn-on sensor allowed for the on-site analysis of pepsin with a detection limit of 0.2 μg/mL. Moreover, this strategy was successfully used to assess salivary pepsin to aid in the noninvasive diagnosis of GERD.
Collapse
Affiliation(s)
- Jinyan Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xueshan Chen
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruixuan Lu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zeliang Wei
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
22
|
Koirala D, Dalbec F, May J, Hamal K, Allen PB, Cheng IF. Biosensing with Polymerase Chain Reaction-Stable DNA-Functionalized Magnetically Susceptible Carbon-Iron Microparticles. Anal Chem 2023; 95:16631-16638. [PMID: 37904495 DOI: 10.1021/acs.analchem.3c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
We demonstrate a rapid and sensitive method for DNA detection without the need for fluorescence. This is based on carbon-coated magnetic iron (Fe) microparticles with a covalent surface attachment of DNA. We show that these magnetic microparticles can capture complementary DNA. Significantly, the DNA covalent surface bonds are robust to high temperatures and can be included in a sample during polymerase chain reaction (PCR). This method is employed for the detection of targeted DNA sequences (40-50 bp). Hybridization probes on the surface of the magnetically susceptible Fe microparticle recognize the target DNA sequence-specifically. The double-stranded DNA (dsDNA) microparticles are then quickly captured with a magnet from the sample matrix. This foregoes postpurification processes, such as electrophoresis, which make our technique time- and cost-effective. Captured dsDNA can be detected with intercalating dyes such as ethidium bromide through a loss in the UV absorption signal with a limit of detection (LOD) of 24 nM within 15 min. Likewise, surface-bound DNA can act as a primer in PCR to decrease the LOD to 5 pM within 2 h. This is the first instance of a nucleotide-modified magnetically susceptible carbon substrate that is PCR-compatible. Besides DNA capture, this strategy can eventually be applied to sequence-specific nucleic acid purification and enrichment, PCR cleanup, and single-strand generation. The DNA-coated particles are stable under PCR conditions (unlike commonly used polystyrene or gold particles).
Collapse
Affiliation(s)
- Dipak Koirala
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| | - Forrest Dalbec
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| | - Jeremy May
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| | - Kailash Hamal
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| | - Peter B Allen
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| | - I Francis Cheng
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, Idaho 83844, United States
| |
Collapse
|
23
|
Machado MD, Soares EV. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106732. [PMID: 37879199 DOI: 10.1016/j.aquatox.2023.106732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This work focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata (formerly known as Pseudokirchneriella subcapitata and Selenastrum capricornutum), when exposed to adverse conditions generated by the presence of organic [the antibiotic erythromycin (ERY) and the herbicide metolachlor (MET)] or inorganic [the heavy metals, cadmium (Cd) and zinc (Zn)] pollutants, at environmentally relevant concentrations. This alga in absence of stress or when exposed to ERY or Zn, up to 200 µg/L, essentially showed a single-nucleus state, although algal growth was reduced or stopped. R. subcapitata "switched" to a multinucleated state (palmelloid-like morphology) and accumulated energy-reserve compounds (neutral lipids) when stressed by 100-200 µg/L MET or 200 µg/L Cd; at these concentrations of pollutants, growth was arrested, however, the majority of the algal population (≥83 %) was alive. The formation of palmelloid-like phenotype, at sub-lethal concentrations of pollutants, was dependent on the pollutant, its concentration and exposure time. The multinucleated structure is a transitory phenotype since R. subcapitata population was able to revert to a single-nucleus state, with normal cell size, within 24-96 h (depending on the impact of the toxic in the alga), after being transferred to fresh OECD medium, without pollutants. The obtained results indicate that the formation of a palmelloid-like phenotype in R. subcapitata is dependent on the mode of action of toxics and their concentration, not constituting a generalized defense mechanism against stress. The observations here shown contribute to understanding the different strategies used by the unicellular alga R. subcapitata to cope with severe stress imposed by organic and inorganic pollutants.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
24
|
Kang SY, Cho ER, Kang DH. Inactivation of foodborne pathogens in ground pork tenderloin using 915 MHz microwave heating depending on power level. Food Res Int 2023; 173:113231. [PMID: 37803544 DOI: 10.1016/j.foodres.2023.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
The main purpose of this research was to investigate the effect of power level of 915 MHz microwave heating on the inactivation of foodborne pathogens in ground pork and its bactericidal mechanism. It was demonstrated that the heating rate was proportional to the power level. For instance, the heating rates observed at microwave heating powers of 2, 3, 4, and 5 kW were 1.70, 2.77, 3.35, and 4.03℃/s, respectively. The bactericidal effect of microwave heating also significantly (P < 0.05) increased with increasing power level. In particular, when ground pork was subjected to microwave heating at 5 kW, the reduction level of pathogens was>2 log units higher than at 2 kW. To determine the bactericidal mechanism of microwave heating depending on power level, changes in transmembrane potential and DNA damage were determined using fluorescence. The extent of depolarization in membrane potential of pathogens significantly (P < 0.05) increased as power level increased. There was no significant difference in degree of DNA damage at different power levels. However, the percentage of DNA damage was>86% at all power levels. The transmembrane potential assay indicates that the bacteria exhibited dramatic pore formation on the membrane at 5 kW. Through transmission electron microscopy, the electroporation effect was enhanced as power level increased. Moreover, the quality of ground pork subjected to microwave heating at 2-5 kW was determined by measuring the moisture content, cooking loss, and texture profile.
Collapse
Affiliation(s)
- Su-Yeon Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Eun-Rae Cho
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea.
| |
Collapse
|
25
|
Schneider L, Richter M, Oelschlaeger C, Rabe KS, Domínguez CM, Niemeyer CM. Accurate quantification of DNA content in DNA hydrogels prepared by rolling circle amplification. Chem Commun (Camb) 2023; 59:12184-12187. [PMID: 37750315 DOI: 10.1039/d3cc04374f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Accurate quantification of polymerized DNA in rolling circle amplification (RCA)-based hydrogels is challenging due to the high viscosity of these materials, however, it can be achieved with a photometric nucleotide depletion assay or qPCR. We show that the DNA content strongly depends on the template sequence and correlates with the mechanical properties of the hydrogels.
Collapse
Affiliation(s)
- Leonie Schneider
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Madleen Richter
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Kersten S Rabe
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Carmen M Domínguez
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Christof M Niemeyer
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
26
|
Zhang P, Qin K, Gao K, Su F, Wang H, Liu J, Li Z. Multiple thermocycles followed by LAMP with only two primers for ultrasensitive colorimetric viral RNA testing and tracking at single-base resolution. Anal Chim Acta 2023; 1276:341621. [PMID: 37573111 DOI: 10.1016/j.aca.2023.341621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Rapid, accurate and high throughput measurement of infectious viruses is an urgent need to prevent viral transmission. Loop-mediated isothermal amplification (LAMP) is an attractive isothermal amplification method for nucleic acid detection, especially for point-of-care (POC) testing, but it needs at least four primers and its sensitivity is also limited when integrating with visual detection methods. Herein, by designing only two primers to precisely recognize the four regions of the target, we developed a multiple thermocycles-based LAMP method (MTC-LAMP) for sensitive and specific testing and tracking of viral RNA. We also introduced a novel SYBR Green I (SG)-assisted stable colorimetric assay induced by the amplification products through the charge neutralization effect of positively charged SG toward gold nanoparticles (AuNPs). The ultralow nonspecific background of the double exponential amplification improved the detection sensitivity to near single-molecule level (1 aM, 3 copies in 5 μL solution), which was higher than RT-PCR and RT-LAMP. After adding AuNPs, a significant color difference between target and blank was immediately observed by naked eye. By introducing a peptide nucleic acid (PNA) clamp into our colorimetric MTC-LAMP assay, the specific distinguish of virus variants at single-base resolution was observed without the requirement of any equipment. This assay shows great potential for large-scale screening and tracking of the threatening viruses with ultrahigh sensitivity and pronounced colorimetric output, which is of great importance for pandemic control.
Collapse
Affiliation(s)
- Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ke Qin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Kejian Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Fengxia Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
27
|
Pronkin PG, Tatikolov AS. Photonics of Some Monomethine Cyanine Dyes in Solutions and in Complexes with Biomolecules. Int J Mol Sci 2023; 24:13954. [PMID: 37762255 PMCID: PMC10531095 DOI: 10.3390/ijms241813954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
In search of new probes for biomolecules, the spectral fluorescent study of four monomethine cyanine dyes (MCD), both unsymmetrical and symmetrical, has been carried out in different organic solvents, in aqueous buffer solutions, and in the presence of DNA and HSA. The complexation of MCD with biomacromolecules leads to a steep growth of the fluorescence intensity. Complexes of MCD with dsDNA and HSA of various types were modeled in silico by molecular docking. Experiments on thermal dissociation of dsDNA in the presence of MCD showed the formation of intercalative complexes of MCD with DNA. Quenching of intrinsic fluorescence of HSA by MCD occurred with rate constants much higher than the diffusion limit, that is, in dye-HSA complexes. Effective constants of MCD complexation with the biomacromolecules were estimated. MCD 1 has the best characteristics as a possible fluorescent probe for dsDNA and can serve as a sensitive and selective probe for dsDNA in the presence of HSA. Photochemical properties of MCD complexed with DNA have been also studied. An increase in the quantum yield of the triplet states of MCD in complexes with DNA has been found, which may be important for using these dyes as potential candidates in photodynamic therapy.
Collapse
Affiliation(s)
| | - Alexander S. Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia;
| |
Collapse
|
28
|
Morozov VN, Klimovich MA, Shibaeva AV, Klimovich ON, Koshevaya ED, Kolyvanova MA, Kuzmin VA. Optical Polymorphism of Liquid-Crystalline Dispersions of DNA at High Concentrations of Crowding Polymer. Int J Mol Sci 2023; 24:11365. [PMID: 37511123 PMCID: PMC10379083 DOI: 10.3390/ijms241411365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.
Collapse
Affiliation(s)
- Vladimir N Morozov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Mikhail A Klimovich
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Olga N Klimovich
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Ekaterina D Koshevaya
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Maria A Kolyvanova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| |
Collapse
|
29
|
Wang W, Zhang L, Dong W, Wei K, Li J, Sun J, Wang S, Mao X. A colorimetric aptasensor fabricated with group-specific split aptamers and complex nanozyme for enrofloxacin and ciprofloxacin determination. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131995. [PMID: 37437481 DOI: 10.1016/j.jhazmat.2023.131995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Developing simultaneous detection methods for multiple targets is crucial for the field of food analysis. Herein, enrofloxacin (ENR) and ciprofloxacin (CIP) were taken as model targets. For the first time, a strategy to generate group-specific split aptamers was established by revealing and splitting the critical binding domain, and the split aptamers were exploited to design a four-way DNA junction (4WJ) which could regulate the enzymatic activity of chitosan oligosaccharide (COS)-AuNPs nanozyme to develop a colorimetric aptasensor. A pair of split aptamers were obtained for ENR (Kd = 15.00 nM) and CIP (Kd = 4.870 nM). The mechanism of COS binding with double-stranded DNA in the 4WJ was elucidated. Under optimal conditions, the colorimetric aptasensor enabled a wide linear detection range of 1.4-1400 nM and a limit of detection (LOD) of 321.1 pM and 961.0 pM towards ENR and CIP, respectively, which exhibited excellent sensitivity, selectivity, and availability in detecting ENR/CIP in seafood. This study expands the general strategies for generating robust aptamers and nanozyme complex and provides a good reference for developing multi-target detection methods.
Collapse
Affiliation(s)
- Wenjing Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Ling Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Wenhui Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Kaiyue Wei
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jiao Li
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
30
|
Johnson RE, Murray MT, Bycraft LJ, Wetmore SD, Manderville RA. A modular aldol approach for internal fluorescent molecular rotor chalcone surrogates for DNA biosensing applications. Chem Sci 2023; 14:4832-4844. [PMID: 37181758 PMCID: PMC10171068 DOI: 10.1039/d3sc00772c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fluorescent molecular rotors (FMRs) are critical tools for probing nucleic acid structure and function. Many valuable FMRs have been incorporated into oligonucleotides, although the methods of doing so can be cumbersome. Development of synthetically simple, high yielding modular methods to fine-tune dye performance is crucial to expand the biotechnological applications of oligonucleotides. Herein, we report the utility of 6-hydroxy-indanone (6HI) with a glycol backbone to serve as a handle for on-strand aldehyde capture as a modular aldol approach for site-specific insertion of internal FMR chalcones. Aldol reactions with aromatic aldehydes containing N-donors proceed in high yield to create modified DNA oligonucleotides, which in the duplex match the stability of the fully paired canonical B-form with strong stacking interactions between the planar probe and the flanking base pairs, as evidenced by molecular dynamics (MD) simulations. The FMR chalcones possess remarkable quantum yields (Φfl up to 76%) in duplex DNA, coupled with large Stokes shifts (Δν up to 155 nm), light-up emissions (Irel up to 60-fold) that span the visible region (λem 518-680 nm) with brightness up to 17 480 cm-1 M-1. The library also contains a FRET pair and dual emission probes, suitable for ratiometric sensing. The ease of aldol insertion coupled with the excellent performance of the FMR chalcones permits their future wide-spread use.
Collapse
Affiliation(s)
- Ryan E Johnson
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Lucas J Bycraft
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
31
|
Anbiaee G, Feizpour R, Khoshbin Z, Ramezani M, Alibolandi M, Taghdisi SM, Abnous K. A simple tag-free fluorometric aptasensing assay for sensitive detection of kanamycin. Anal Biochem 2023; 672:115183. [PMID: 37169123 DOI: 10.1016/j.ab.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
A novel label-free and enzyme-free fluorescence aptasensing assay that uses Sybr Green I (SGI) as the signal indicator for the kanamycin determination was designed. An aptamer-complementary strand (Apt/CP) conjugate was formed, which provided the intercalation sites for SGI and, therefore, a considerable fluorescent signal. The introduction of the target led to the separation of Apt from CP due to the high affinity of Apt toward kanamycin. Hence, the suitable intercalation gaps reduced, which resulted in a decrease in the generated fluorescent signal. Under optimized conditions, a broad linear concentration range from 0.05 μM to 20 μM and a limit of detection of 11.76 nM were obtained, confirming the ability of the fabricated aptasensor for sensitive and specific kanamycin detection in real samples such as milk and human serum. The aptasensing method has the potential to be extensively employed in the food industry and veterinary science due to its simplicity, sensitivity, user-friendly, and capability of on-site detection of kanamycin.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Feizpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Zhang H, Li AZ, Liu J. Surfactant-Assisted Label-Free Fluorescent Aptamer Biosensors and Binding Assays. BIOSENSORS 2023; 13:bios13040434. [PMID: 37185509 PMCID: PMC10135756 DOI: 10.3390/bios13040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Using DNA staining dyes such as SYBR Green I (SGI) and thioflavin T (ThT) to perform label-free detection of aptamer binding has been performed for a long time for both binding assays and biosensor development. Since these dyes are cationic, they can also adsorb to the wall of reaction vessels leading to unstable signals and even false interpretations of the results. In this work, the stability of the signal was first evaluated using ThT and the classic adenosine aptamer. In a polystyrene microplate, a drop in fluorescence was observed even when non-binding targets or water were added, whereas a more stable signal was achieved in a quartz cuvette. Equilibrating the system can also improve signal stability. In addition, a few polymers and surfactants were also screened, and 0.01% Triton X-100 was found to have the best protection effect against fluorescence signal decrease due to dye adsorption. Three aptamers for Hg2+, adenosine, and cortisol were tested for their sensitivity and signal stability in the absence and presence of Triton X-100. In each case, the sensitivity was similar, whereas the signal stability was better for the surfactant. This study indicates that careful control experiments need to be designed to ensure reliable results and that the reliability can be improved by using Triton X-100 and a long equilibration time.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
33
|
Benavides OR, Gibbs HC, White BP, Kaunas R, Gregory CA, Walsh AJ, Maitland KC. Volumetric imaging of human mesenchymal stem cells (hMSCs) for non-destructive quantification of 3D cell culture growth. PLoS One 2023; 18:e0282298. [PMID: 36976801 PMCID: PMC10047548 DOI: 10.1371/journal.pone.0282298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/11/2023] [Indexed: 03/29/2023] Open
Abstract
The adoption of cell-based therapies into the clinic will require tremendous large-scale expansion to satisfy future demand, and bioreactor-microcarrier cultures are best suited to meet this challenge. The use of spherical microcarriers, however, precludes in-process visualization and monitoring of cell number, morphology, and culture health. The development of novel expansion methods also motivates the advancement of analytical methods used to characterize these microcarrier cultures. A robust optical imaging and image-analysis assay to non-destructively quantify cell number and cell volume was developed. This method preserves 3D cell morphology and does not require membrane lysing, cellular detachment, or exogenous labeling. Complex cellular networks formed in microcarrier aggregates were imaged and analyzed in toto. Direct cell enumeration of large aggregates was performed in toto for the first time. This assay was successfully applied to monitor cellular growth of mesenchymal stem cells attached to spherical hydrogel microcarriers over time. Elastic scattering and fluorescence lightsheet microscopy were used to quantify cell volume and cell number at varying spatial scales. The presented study motivates the development of on-line optical imaging and image analysis systems for robust, automated, and non-destructive monitoring of bioreactor-microcarrier cell cultures.
Collapse
Affiliation(s)
- Oscar R. Benavides
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Holly C. Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas, United States of America
| | - Berkley P. White
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Carl A. Gregory
- School of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Alex J. Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Kristen C. Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
34
|
Hou Y, Lu X, Yang J, Tang C, Jiang H, Cai T, Chen M, Wei Z, Yu P. A label-free fluorescent aptamer sensor for testosterone based on SYBR Green I. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1546-1552. [PMID: 36883443 DOI: 10.1039/d3ay00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Testosterone is a steroid hormone that plays an indispensable role in the normal metabolism of organisms. However, exogenous testosterone, even as low as nmol L-1, will harm the human body due to accumulation. In this study, we developed an unlabeled fluorescent sensor for testosterone based on SYBR Green I. SYBR Green I is a fluorescent dye that can be embedded into the G-quadruplex of the testosterone aptamer T5. The fluorescence quenching effect is utilized to achieve quantitative detection, which occurs by the competition between testosterone and SYBR Green I for the T5 aptamer binding sites. In this work, we optimized the detection conditions to make the fluorescent sensor more sensitive and verify the specificity, linear range, and detection ability in the buffer and real water samples. The sensor's LOD and LOQ values were 0.27 nmol L-1 and 0.91 nmol L-1, respectively, while the detection range was linear from 0.91 nmol L-1 to 2000 nmol L-1. According to the results, the sensor shows high specificity and good performance even in real sample detection such as tap water and river water, providing an alternative method for the quantitative detection of testosterone in the environment, which is more convenient and efficient.
Collapse
Affiliation(s)
- Yucui Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Hanbing Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Tongji Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China.
| |
Collapse
|
35
|
Wessig P, Lehmann M. [1,3]-Dioxolo[4,5-f]benzodioxole (DBD) Fluorescent Dyes; Synthesis, Properties, and Applications. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AbstractIn this review we give an overview of the syntheses and photophysical properties of the new class of fluorescent dyes based on a [1,3]-dioxolo[4,5-f]benzodioxole core and their derivatives. Starting from commercially available reactants (e.g., sesamol, 1,2,4,5-tetrachlorobenzene) the core units can be prepared in a simple manner. Then, the benzene core can be derivatized via lithiation and their photophysical properties can be adjusted as desired. The obtained fluorophores have an absorption range of 403–520 nm and an emission range of 495–665 nm. This class of fluorescent dyes is also characterized by a long fluorescence lifetime, a high stability towards photobleaching, large Stokes shifts, and small size. Thus, the DBD dyes are optimally suited for optical sensing.1 Introduction2 Synthesis3 Properties4 Applications
Collapse
|
36
|
Yu Z, Meng R, Deng S, Jia L. An open-source handheld spectrometer for colorimetric and fluorescence analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122072. [PMID: 36375287 DOI: 10.1016/j.saa.2022.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Spectrometers are essential analytical devices for analyzing fluid samples in biological, environmental, and disease diagnostic applications. However, the relatively high cost, the lack of portability, and the requirement for a constant power supply of bulky laboratory instruments limit their on-site applications. Herein, a wireless, cost-effective, open-source, and handheld spectrometer was designed and fabricated to realize the colorimetric and fluorescence analyses. It was built from off-the-shelf electronics utilizing 3D printing technology. The assembled device costs as little as $50. It has an overall dimension of 5 × 5 × 8 cm and an overall weight of only 130 g, which can easily fit in the palm of an adult's hand. It can detect light waves in the 405-690 nm range and transmit the read data to the corresponding SpecAnalysis Android application via Bluetooth. The feasibility of the device was demonstrated by the optical detection of Cu(II), bovine serum albumin, and calf thymus DNA. The sensitivity and detection limits of this device were comparable to those of commercial research-grade spectrophotometers and fluorescence spectrometers. The results suggest that the handheld spectrometer can be applied to detect a variety of substances, not limited to quantitative analysis of a specific individual compound.
Collapse
Affiliation(s)
- Zhicheng Yu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ruidong Meng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
37
|
Kolyvanova MA, Klimovich MA, Dement’eva OV, Rudoy VM, Kuzmin VA, Trofimov AV, Morozov VN. Interaction of Gold Nanoparticles with Cyanine Dyes in Cholesteric DNA Submicroparticles: Impact of the Way of Their Introduction into the System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2023. [DOI: 10.1134/s1990793123010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
38
|
Lim HJ, Hong S, Jin H, Chua B, Son A. A multi-functional reagent suitable for 1-step rapid DNA intercalation fluorescence-based screening of total bacteria in drinking water. CHEMOSPHERE 2023; 313:137541. [PMID: 36526135 DOI: 10.1016/j.chemosphere.2022.137541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The prerequisites for rapid screening of total bacteria in drinking water are low detection limit and convenience. Inspired by commercial adenosine 5'-triphosphate (ATP) based total bacterial detection kits, we pursued likewise convenience but with much lower detection limit. Existing intercalation fluorescence-based techniques employ multiple reagents to permeate the cell membrane and intercalate dye into the DNA in discrete sequential steps. A simple multi-functional reagent is proposed to do the same within one step. Surfactants (TritonX and SDS), and intercalating dyes (SYBR green, SYBR gold) were examined for their mutual compatibility and augmented with EDTA. Evaluation was performed with Gram negative Escherichia coli K12 (E. coli K12) and Gram positive Bacillus subtilis (B. subtilis) at serial dilution ratios from 10-6 to 10-2. Comparison was made with absorbance (600 nm) measurements and a commercial ATP kit. Using charge integrated photodetection, the proposed 1-step reagent achieved an LOD (1.00 × 10-6, B. subtilis) that is two orders of magnitude lower than that of ATP kit (LOD = 1.06× 10-4). This means it could detect minute quantity of total bacteria that is otherwise undetected by the ATP kit.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Seungwon Hong
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyowon Jin
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
39
|
Zhang P, Zandieh M, Ding Y, Wu L, Wang X, Liu J, Li Z. A Label-Free, Mix-and-Detect ssDNA-Binding Assay Based on Cationic Conjugated Polymers. BIOSENSORS 2023; 13:bios13010122. [PMID: 36671957 PMCID: PMC9855919 DOI: 10.3390/bios13010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 05/28/2023]
Abstract
The accurate, simple, and efficient measurement of the concentration of single-stranded DNA (ssDNA) is important for many analytical applications, such as DNA adsorption, biosensor design, and disease diagnosis, but it is still a challenge. Herein, we studied a cationic conjugated polymer (CCP)-based ssDNA assay taking advantage of the obvious fluorescence change of CCPs upon binding ssDNA. Poly(3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride) (PMNT) achieved an apparent dissociation constant (Kd) of 57 ± 4 nM for ssDNA, indicating a very high binding affinity between PMNT and ssDNA. This allowed us to develop a CCP-based ssDNA biosensor with a detection limit of 0.6 nM, similar to the fluorescence-dye-based method using SYBR Green I and SYBR Gold. Our CCP-based biosensor produced smaller differences among ssDNA samples with different base compositions. In addition, the existence of double-stranded DNA (dsDNA) at different concentrations did not interfere with the fluorescence of PMNT, indicating that our CCP-based biosensor was more suitable for the measurement of ssDNA. Compared with fluorescence-intensity-based quantification, our CCP system allowed ratiometric quantification, which made the calibration easier and more robust. We then applied our method to the quantification of ssDNA on AuNPs using both unmodified and thiolated ssDNA, and the accurate quantification of ssDNA was achieved without any fluorophore modification. This method provides an alternative approach for the measurement of ssDNA.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lyuyuan Wu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
40
|
A split β-lactamase sensor for the detection of DNA modification by cisplatin and ruthenium-based chemotherapeutic drugs. J Inorg Biochem 2022; 236:111986. [PMID: 36084568 DOI: 10.1016/j.jinorgbio.2022.111986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
Here we present a split-enzyme sensor approach for the sequence-specific detection of metal-based drug adducts of DNA. Split β-lactamase reporters were constructed using domain A of the High Mobility Group Box 1 protein (HMGB1a) in conjunction with zinc finger DNA-binding domains. As a proof of concept, the sensors were characterized with the well-known drug cisplatin, which forms 1,2-intrastrand crosslinks with DNA that are recognized by HMGB1a. After promising results with cisplatin, five ruthenium-based drugs were studied, four of which produced significant signal over background. These results highlight the utility of our approach for rapid screening of novel metal-based chemotherapeutic drug candidates and provide evidence that HMGB1a likely binds to DNA adducts formed by NAMI-A (imidazolium trans-tetrachlorodimethylsulfoxideimidazoleruthenate(III)), KP1019 (indazolium trans-tetrachlorodiindazoleruthenate(III)), KP418 (imidazolium trans-tetrachlorodiimidazoleruthenate(III)), and RAPTA-C (dichloro(η6-p-cymene)(1,3,5-triaza-7-phosphaadamantane)ruthenium(II)). These results thus imply a potential biologically relevant mode of action for the ruthenium-based drugs investigated herein.
Collapse
|
41
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
42
|
Lopez A, Liu J. Probing metal-dependent G-quadruplexes using the intrinsic fluorescence of DNA. Chem Commun (Camb) 2022; 58:10225-10228. [PMID: 36001027 DOI: 10.1039/d2cc03967b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
K+ enhanced the intrinsic fluorescence of a series of G-quadruplex DNAs, while Pb2+ quenched the fluorescence. The metals showed interesting quadruplex binding kinetics with various DNA sequences.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
43
|
Han J, Wang J, Wang J, Fan D, Dong S. Recent advancements in coralyne (COR)-based biosensors: Basic principles, various strategies and future perspectives. Biosens Bioelectron 2022; 210:114343. [PMID: 35561578 DOI: 10.1016/j.bios.2022.114343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
As a kind of protoberberine alkaloid heterocyclic analogues, coralyne (COR) has been reported to exhibit superior antileukemic ability and used as anticancer drug agent. While, the severe hazards and side effects caused by unreasonable use have made its accurate detection more and more important. Although scientists have explored various methods to sense COR and other related targets, a systematical review which could not only elaborate recent developments and analyze current challenges of COR-based biosensors, but also present future perspective has not been reported and is urgently needed. In this review, we attempt to summarize latest advancements in COR-based biosensors in recent decade. Firstly, the operating principles, advantages and disadvantages of various strategies for COR detection (colorimetric, fluorescent, electrochemical and other ones) are comprehensively demonstrated and reviewed. Secondly, COR-assisted biosensors for detection of different non-COR targets (heparin, toxins, nucleic acids and other small molecules) are further discussed. Finally, we analyze current challenges and also suggest potential perspectives for this area.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
44
|
Xing KY, Bao HH, Ding NS, Xiong YH, Peng J, Lai WH. Two-step aggregation of gold nanoparticles based on charge neutralization for detection of melamine by colorimetric and surface-enhanced Raman spectroscopy platform. J Dairy Sci 2022; 105:7298-7307. [PMID: 35863920 DOI: 10.3168/jds.2022-22037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
A colorimetric and surface-enhanced Raman scattering (SERS) signal amplification platform based on 2-step aggregation of gold nanoparticles (AuNP) was constructed for the sensitive detection of melamine. In this study, the positively charged SYBR Green I was used for the first step of aggregation of AuNP, via charge neutralization, to obtain small-sized AuNP aggregates. The positively charged SYBR Green I decreased the negative charges of the surface of AuNP, which was beneficial to the aggregation of AuNP. In addition, the melamine could aggregate AuNP by decreasing the negative charges of the surface of AuNP and self-assemble with each other on the surface of AuNP by hydrogen bonds. Therefore, the second efficient aggregation of small-sized AuNP aggregates could be achieved with melamine at low concentration, resulting in significant signal changes of color and SERS. The sensitivity of a colorimetric (0.60 mg/L) and SERS (0.089 mg/L) platform, based on 2-step aggregation of AuNP, was 15 and 2.2 times higher than that based on 1-step aggregation of AuNP for detecting melamine.
Collapse
Affiliation(s)
- K Y Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - H H Bao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - N S Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, 361116, China; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y H Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - J Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - W H Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
45
|
Condensation and Protection of DNA by the Myxococcus xanthus Encapsulin: A Novel Function. Int J Mol Sci 2022; 23:ijms23147829. [PMID: 35887179 PMCID: PMC9321382 DOI: 10.3390/ijms23147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Encapsulins are protein nanocages capable of harboring smaller proteins (cargo proteins) within their cavity. The function of the encapsulin systems is related to the encapsulated cargo proteins. The Myxococcus xanthus encapsulin (EncA) naturally encapsulates ferritin-like proteins EncB and EncC as cargo, resulting in a large iron storage nanocompartment, able to accommodate up to 30,000 iron atoms per shell. In the present manuscript we describe the binding and protection of circular double stranded DNA (pUC19) by EncA using electrophoretic mobility shift assays (EMSA), atomic force microscopy (AFM), and DNase protection assays. EncA binds pUC19 with an apparent dissociation constant of 0.3 ± 0.1 µM and a Hill coefficient of 1.4 ± 0.1, while EncC alone showed no interaction with DNA. Accordingly, the EncAC complex displayed a similar DNA binding capacity as the EncA protein. The data suggest that initially, EncA converts the plasmid DNA from a supercoiled to a more relaxed form with a beads-on-a-string morphology. At higher concentrations, EncA self-aggregates, condensing the DNA. This process physically protects DNA from enzymatic digestion by DNase I. The secondary structure and thermal stability of EncA and the EncA-pUC19 complex were evaluated using synchrotron radiation circular dichroism (SRCD) spectroscopy. The overall secondary structure of EncA is maintained upon interaction with pUC19 while the melting temperature of the protein (Tm) slightly increased from 76 ± 1 °C to 79 ± 1 °C. Our work reports, for the first time, the in vitro capacity of an encapsulin shell to interact and protect plasmid DNA similarly to other protein nanocages that may be relevant in vivo.
Collapse
|
46
|
Huang G, Zhou H, Xiang Q, Zhang J, Hu X, Cheng R, Lan L, Wang Y, Shen Z. Exponential and efficient target-catalyst rolling circle amplification for label-free and ultrasensitive fluorescent detection of miR-21 and p53 gene. Anal Chim Acta 2022; 1221:340132. [DOI: 10.1016/j.aca.2022.340132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/01/2022]
|
47
|
The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Sester C, McCone JA, Sen A, Vorster I, Harvey JE, Hodgkiss JM. Unravelling the binding mode of a methamphetamine aptamer: a spectroscopic and calorimetric investigation. Biophys J 2022; 121:2193-2205. [PMID: 35474264 DOI: 10.1016/j.bpj.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleic acid aptamers are bio-molecular recognition agents that bind to their targets with high specificity and affinity, and hold promise in a range of biosensor and therapeutic applications. In the case of small molecule targets, their small size and limited number of functional groups constitute challenges for their detection by aptamer-based biosensors because bio-recognition events may both be weak and produce poorly transduced signals. The binding affinity is principally used to characterize aptamer-ligand interactions; however a structural understanding of bio-recognition is arguably more valuable in order to design a strong response in biosensor applications. Using a combination of nuclear magnetic resonance, circular dichroism, and isothermal titration calorimetry, we propose a binding model for a new methamphetamine aptamer and determine the main interactions driving complex formation. These measurements reveal only modest structural changes to the aptamer upon binding and are consistent with a conformational selection binding model. The aptamer-methamphetamine complex formation was observed to be entropically driven, apparently involving hydrophobic and electrostatic interactions. Taken together, our results exemplify a means of elucidating small molecule-aptamer binding interactions, which may be decisive in the development of aptasensors and therapeutics, and may contribute to a deeper understanding of interactions driving aptamer selection.
Collapse
Affiliation(s)
- Clement Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Jordan Aj McCone
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Anindita Sen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Ian Vorster
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Joanne E Harvey
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand.
| |
Collapse
|
49
|
Lu H, Zhu J, Zhang T, Zhang X, Chen X, Zhao W, Yao Y, Zhao W, Sui G. A rapid multiplex nucleic acid detection system of airborne fungi by an integrated DNA release device and microfluidic chip. Talanta 2022; 246:123467. [PMID: 35489097 DOI: 10.1016/j.talanta.2022.123467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Occupational health problems, such as asthma, in specific work environments arise from the presence of airborne fungi. Rapid detection of pathogenic airborne fungi is therefore important to reduce or avoid any adverse effects on staff health. Herein, we established a new integrated rapid Lyticase-Motor-Chemical reagent nucleic acid releasing (LMC) method for the release of fungal DNA. Aspergillus fumigatus, Aspergillus flavus, and Cryptococcus neoformans were chosen to evaluate the LMC method. The results of Loop-Mediated Isothermal Amplification (LAMP) analyses showed that this method could release the nucleic acid of 4 × 104 fungal spores, equaling to 400 copies per microliter. This rapid multiplex nucleic acid detection system of airborne fungi included an integrated DNA release device and a portable microfluidic chip. The integrated DNA release device combined mechanical lysing and biochemical reagent treatment to automate DNA release. The microfluidic chip was capable of multiplex nucleic acid detection. The detection limit of this system was 4 × 104 spores per test, meeting the requirement of early warnings. The whole analysis from the sample input to readout could be completed within 90 min, including 30 min for fungal DNA release and 45 min for LAMP analysis. The integrated DNA release device and microfluidic chip were portable, showing tremendous potential in point-of-care tests of airborne fungi.
Collapse
Affiliation(s)
- Huijun Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Tong Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Xi Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Wei Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - YuHan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, PR China.
| |
Collapse
|
50
|
Xing K, Peng J, Chen W, Fang B, Liu D, Shan S, Zhang G, Huang Y, Lai W. Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chem 2022; 370:131365. [PMID: 34662795 DOI: 10.1016/j.foodchem.2021.131365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Mycotoxin contamination of corn has been considered a serious problem because it can accumulate in different organs or tissues via ingestion or skin contact and cause several health problems in humans. We have constructed a label-free, colorimetric, and fluorescence dual-channel sensing platform for the detection of zearalenone. Here, we demonstrate that plasmonic gold nanoparticles aggregates could be rapidly formed on the basis of charge neutralization by positively charged SYBR Green I. The sensing platform allowed quantitative detection as low as 0.89 μg kg-1 and visual detection as low as 2.5 μg kg-1. The charge neutralization strategy eliminates a major source of instability in conventional gold nanoparticles colorimetric measurements and paves the way for accurate, label-free bioanalysis.
Collapse
Affiliation(s)
- Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Shan Shan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330012, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yina Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|