1
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Duan Y, Tan Y, Chen X, Pei X, Li M. Modular and Flexible Molecular Device for Simultaneous Cytosine and Adenine Base Editing at Random Genomic Loci in Filamentous Fungi. ACS Synth Biol 2023. [PMID: 37428865 DOI: 10.1021/acssynbio.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Random base editing is regarded as a fundamental method for accelerating the genomic evolution in both scientific research and industrial applications. In this study, we designed a modular interaction-based dual base editor (MIDBE) that assembled a DNA helicase and various base editors through dockerin/cohesin-mediated protein-protein interactions, resulting in a self-assembled MIDBE complex capable of editing bases at any locus in the genome. The base editing type of MIDBE can be readily controlled by the induction of cytidine or/and adenine deaminase gene expression. MIDBE exhibited the highest editing efficiency 2.3 × 103 times greater than the native genomic mutation rate. To evaluate the potential of MIDBE in genomic evolution, we developed a removable plasmid-based MIDBE tool, which led to a remarkable 977.1% increase of lovastatin production in Monascus purpureus HJ11. MIDBE represents the first biological tool for generating and accumulating base mutations in Monascus chromosome and also offers a bottom-up strategy for designing the base editor.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xizhu Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
6
|
High-specific activity variants of recombinant human α-glucosidase for the treatment of Pompe disease. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Hao W, Cui W, Suo F, Han L, Cheng Z, Zhou Z. Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 2022; 13:14395-14409. [PMID: 36545152 PMCID: PMC9749471 DOI: 10.1039/d2sc05824c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
The functionally evolved bacterial chassis is of great importance to manufacture a group of assorted high value-added chemicals, from small molecules to biologically active macromolecules. However, the current evolution frameworks are less efficienct in generating in vivo genomic diversification because of insufficient tunability, rendering limited evolution spacing for chassis. Here, an engineered genomic diversification platform (CRISPR-ABE8e-CDA-nCas9) leveraging a programmable dual-deaminases base editor was fabricated for rapidly evolving bacterial chassis. The dual-base editor was constructed by reprogramming the CRISPR array, nCas9, and cytidine and adenosine deaminase, enabling single or multiple base conversion at the genomic scale by simultaneous C-to-T and A-to-G conversion in vivo. Employing titration of the Cas-deaminase fusion protein, the platform enabled editing any pre-defined genomic loci with tunable conversion efficiency and editable window, generating a repertoire of mutants with highly diversified genomic sequences. Leveraging the genomic diversification platform, we successfully evolved the nisin-resistant capability of Bacillus subtilis through directed evolution of the subunit of lantibiotic ATP-binding cassette. Therefore, our work provides a portable and programmable genomic diversification platform, which is promising to expedite the fabrication of high-performance and robust bacterial chassis used in the development of biomanufacturing and biopharmaceuticals.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| |
Collapse
|
8
|
Standley M, Blay V, Beleva Guthrie V, Kim J, Lyman A, Moya A, Karchin R, Camps M. Experimental and In Silico Analysis of TEM β-Lactamase Adaptive Evolution. ACS Infect Dis 2022; 8:2451-2463. [PMID: 36377311 PMCID: PMC9745794 DOI: 10.1021/acsinfecdis.2c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple mutations often have non-additive (epistatic) phenotypic effects. Epistasis is of fundamental biological relevance but is not well understood mechanistically. Adaptive evolution, i.e., the evolution of new biochemical activities, is rich in epistatic interactions. To better understand the principles underlying epistasis during genetic adaptation, we studied the evolution of TEM-1 β-lactamase variants exhibiting cefotaxime resistance. We report the collection of a library of 487 observed evolutionary trajectories for TEM-1 and determine the epistasis status based on cefotaxime resistance phenotype for 206 combinations of 2-3 TEM-1 mutations involving 17 positions under adaptive selective pressure. Gain-of-function (GOF) mutations are gatekeepers for adaptation. To see if GOF phenotypes can be inferred based solely on sequence data, we calculated the enrichment of GOF mutations in the different categories of epistatic pairs. Our results suggest that this is possible because GOF mutations are particularly enriched in sign and reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein's free energy of folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are structurally and dynamically coupled, even in the absence of ligand.
Collapse
Affiliation(s)
- Melissa Standley
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Vincent Blay
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,
| | - Violeta Beleva Guthrie
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jay Kim
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Audrey Lyman
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Andrés Moya
- Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,Foundation
for the Promotion of Sanitary and Biomedical Research of Valencia
Region (FISABIO), 46021Valencia, Spain,CIBER
in Epidemiology and Public Health (CIBEResp), 28029Madrid, Spain
| | - Rachel Karchin
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Manel Camps
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,
| |
Collapse
|
9
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
10
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosens Bioelectron 2021; 192:113507. [PMID: 34330037 DOI: 10.1016/j.bios.2021.113507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle amplification (RCA) had the prospect of assisting clinic diagnosis with advantage in in situ mRNA detection at single cell level. However, for direct mRNA detection, RCA had relatively low detection specificity and efficiency. Here, we introduced 4-(10, 15, 20-Triphenylporphyrin-5-yl)phenylamine (TPP) modified Au nanoparticle (Au-TPP) to improve the specificity of in-situ RCA. Through photothermal effect, Au-TPP acted as the specific heat source upon irradiation of 635 nm laser. The photothermal mediated RCA would be initiated only when the Au-TPP as well as the padlock anchored adjacently on the same target mRNA. Furthermore, we introduced 'C' form target-specific oligonucleotide linker probes to make generic padlock and Au-TPP for different mRNA targets, so that for a new mRNA target one does not have to redesign the padlock and the Au-TPP probe. By these strategies, we successfully developed a specific and photothermal mediated hyperbranched rolling circle amplification for direct in situ mRNA detection, suitable for both formalin-fixed paraffin-embedded (FFPE) tissue section and frozen tissue section.
Collapse
|
12
|
Alejaldre L, Lemay-St-Denis C, Perez Lopez C, Sancho Jodar F, Guallar V, Pelletier JN. Known Evolutionary Paths Are Accessible to Engineered ß-Lactamases Having Altered Protein Motions at the Timescale of Catalytic Turnover. Front Mol Biosci 2020; 7:599298. [PMID: 33330628 PMCID: PMC7716773 DOI: 10.3389/fmolb.2020.599298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of new protein functions is dependent upon inherent biophysical features of proteins. Whereas, it has been shown that changes in protein dynamics can occur in the course of directed molecular evolution trajectories and contribute to new function, it is not known whether varying protein dynamics modify the course of evolution. We investigate this question using three related ß-lactamases displaying dynamics that differ broadly at the slow timescale that corresponds to catalytic turnover yet have similar fast dynamics, thermal stability, catalytic, and substrate recognition profiles. Introduction of substitutions E104K and G238S, that are known to have a synergistic effect on function in the parent ß-lactamase, showed similar increases in catalytic efficiency toward cefotaxime in the related ß-lactamases. Molecular simulations using Protein Energy Landscape Exploration reveal that this results from stabilizing the catalytically-productive conformations, demonstrating the dominance of the synergistic effect of the E014K and G238S substitutions in vitro in contexts that vary in terms of sequence and dynamics. Furthermore, three rounds of directed molecular evolution demonstrated that known cefotaximase-enhancing mutations were accessible regardless of the differences in dynamics. Interestingly, specific sequence differences between the related ß-lactamases were shown to have a higher effect in evolutionary outcomes than did differences in dynamics. Overall, these ß-lactamase models show tolerance to protein dynamics at the timescale of catalytic turnover in the evolution of a new function.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Claudèle Lemay-St-Denis
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | | | | | - Victor Guallar
- Barcelona Supercomputing Center, Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Joelle N. Pelletier
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Chemistry Department, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:89-102. [PMID: 29943298 DOI: 10.1007/978-981-13-0502-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery of mouse hybridoma technology by Kohler and Milstein in 1975, significant progress has been made in monoclonal antibody production. Advances in B cell immortalization and phage display technologies have generated a myriad of valuable monoclonal antibodies for diagnosis and treatment. Technological breakthroughs in various fields of 'omics have shed crucial insights into cellular heterogeneity of a biological system in which the functional individuality of a single cell must be considered. Based on this important concept, remarkable discoveries in single-cell analysis have made in identifying and isolating functional B cells that produce beneficial therapeutic monoclonal antibodies. In this review, we will discuss three traditional methods of antibody discovery. Recent technological platforms for single-cell antibody discovery will be reviewed. We will discuss the application of the single-cell analysis in finding therapeutic antibodies for human immunodeficiency virus and emerging Zika arbovirus.
Collapse
|
15
|
Pandit S, Dalal V, Mishra G. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:178-184. [PMID: 29783183 DOI: 10.1016/j.plaphy.2018.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Phosphatidic acid (PA) is an important lipid signaling molecule which interacts with Arabidopsis thaliana Sphingosine kinase1 (AtSPHK1) during several abiotic stresses particularly drought stress as a result of Abscisic acid (ABA) signaling in guard cells. PA molecules respond by generating lipid signal and/or by binding and translocating target proteins to membrane. However, site of interaction and role of PA binding to AtSPHK1 is not clear yet. Owing to the importance of AtSPHK1 during stress signaling it is imperative to decipher the site of PA interaction with AtSPHK1. To identify the PA binding region of AtSPHK1, various deletion fragments from N-terminal and C-terminal region were prepared. Results from protein lipid overlay assay using various truncated proteins of AtSPHK1 suggested the involvement of N-terminal region, between 110 and 205 amino acids, in binding with PA. In-silico analyses performed to build homologous structure of AtSPHK1 revealed that PA docking occurs in the hydrophobic cavity of DAG-Kinase domain. Deletion of amino acids 182VSGDGI187 perturbed PA-AtSPHK1 binding, indicating an essential role of these six amino acids in PA-AtSPHK1 binding.
Collapse
Affiliation(s)
- Shatakshi Pandit
- - Department of Botany, University of Delhi, Delhi 110007, India
| | - Vikram Dalal
- - Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Girish Mishra
- - Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
16
|
Novel Synthesis and Phenotypic Analysis of Mutant Clouds for Hepatitis E Virus Genotype 1. J Virol 2018; 92:JVI.01932-17. [PMID: 29167341 DOI: 10.1128/jvi.01932-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Many RNA viruses exist as an ensemble of genetically diverse, replicating populations known as a mutant cloud. The genetic diversity (cloud size) and composition of this mutant cloud may influence several important phenotypic features of the virus, including its replication capacity. We applied a straightforward, bacterium-free approach using error-prone PCR coupled with reverse genetics to generate infectious mutant RNA clouds with various levels of genetic diversity from a genotype 1 strain of hepatitis E virus (HEV). Cloning and sequencing of a genomic fragment encompassing 70% of open reading frame 1 (ORF1) or of the full genome from variants in the resultant clouds showed the occurrence of nucleotide mutations at a frequency on the order of 10-3 per nucleotide copied and the existence of marked genetic diversity, with a high normalized Shannon entropy value. The mutant clouds showed transient replication in cell culture, while wild-type HEV did not. Cross-sectional data from these cell cultures supported the existence of differential effects of clouds of various sizes and compositions on phenotypic characteristics, such as the replication level of (+)-RNA progeny, the amounts of double-stranded RNA (a surrogate for the rate of viral replication) and ORF1 protein, and the expression of interferon-stimulated genes. Since mutant cloud size and composition influenced the viral phenotypic properties, a better understanding of this relationship may help to provide further insights into virus evolution and prediction of emerging viral diseases.IMPORTANCE Several biological or practical limitations currently prevent the study of phenotypic behavior of a mutant cloud in vitro We developed a simple and rapid method for synthesizing mutant clouds of hepatitis E virus (HEV), a single-stranded (+)-RNA [ss(+) RNA] virus, with various and controllable levels of genetic diversity, which could then be used in a cell culture system to study the effects of cloud size and composition on viral phenotype. In a cross-sectional analysis, we demonstrated that a particular mutant cloud which had an extremely high genetic diversity had a replication rate exceeding that of wild-type HEV. This method should thus provide a useful model for understanding the phenotypic behavior of ss(+) RNA viruses.
Collapse
|
17
|
Bratulic S, Badran AH. Modern methods for laboratory diversification of biomolecules. Curr Opin Chem Biol 2017; 41:50-60. [PMID: 29096324 PMCID: PMC6062405 DOI: 10.1016/j.cbpa.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Genetic variation fuels Darwinian evolution, yet spontaneous mutation rates are maintained at low levels to ensure cellular viability. Low mutation rates preclude the exhaustive exploration of sequence space for protein evolution and genome engineering applications, prompting scientists to develop methods for efficient and targeted diversification of nucleic acid sequences. Directed evolution of biomolecules relies upon the generation of unbiased genetic diversity to discover variants with desirable properties, whereas genome-engineering applications require selective modifications on a genomic scale with minimal off-targets. Here, we review the current toolkit of mutagenesis strategies employed in directed evolution and genome engineering. These state-of-the-art methods enable facile modifications and improvements of single genes, multicomponent pathways, and whole genomes for basic and applied research, while simultaneously paving the way for genome editing therapeutic interventions.
Collapse
Affiliation(s)
- Sinisa Bratulic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Cole J, Ferguson A, Segarra VA, Walsh S. Rolling Circle Mutagenesis of GST-mCherry to Understand Mutation, Gene Expression, and Regulation. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2017; 18:jmbe-18-14. [PMID: 28904643 PMCID: PMC5524438 DOI: 10.1128/jmbe.v18i1.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Undergraduates are often familiar with textbook examples of human mutations that affect coding regions and the subsequent disorders, but they may struggle with understanding the implications of mutations in the regulatory regions of genes. We have designed a laboratory sequence that will allow students to explore the effect random mutagenesis can have on protein function, expression, and ultimately phenotype. Students design and perform a safe and time-efficient random mutagenesis experiment using error-prone rolling circular amplification of a plasmid expressing the inducible fusion protein glutathione S-transferase (GST)-mCherry. Mutagenized and wild-type control plasmid DNA, respectively, are then purified and transformed into bacteria to assess phenotypic changes. While bacteria transformed with the wild type control should be pink, some bacterial colonies transformed with mutagenized plasmids will exhibit a different color. Students attempt to identify their mutations by isolating plasmid from these mutant colonies, sequencing, and comparing their mutant sequence to the wild-type sequence. Additionally, students evaluate the potential effects of mutations on protein production by inducing GST-mCherry expression in cultures, generating cell lysates, and analyzing them using SDS-PAGE. Students who have a phenotypic difference but do not obtain a coding region mutation will be able to think critically about plasmid structure and regulation outside of the gene sequence. Students who do not obtain bacterial transformants have the chance to contemplate how mutation of antibiotic resistance genes or replication origins may have contributed to their results. Overall, this series of laboratories exposes students to basic genetic techniques and helps them conceptualize mutation beyond coding regions.
Collapse
Affiliation(s)
- Jessica Cole
- Department of Biology, Portland State University, Portland, OR 97207-0751
| | - Amanda Ferguson
- Department of Biology, Rollins College, Winter Park, FL 32789
| | | | - Susan Walsh
- Department of Biology, Rollins College, Winter Park, FL 32789
| |
Collapse
|
19
|
Saini P, Sareen D. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases. Mol Biotechnol 2017; 59:98-116. [PMID: 28271340 DOI: 10.1007/s12033-017-9996-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epoxide hydrolases (EHs; 3.3.2.x) catalyze the enantioselective ring opening of racemic epoxides to the corresponding enantiopure vicinal diols and remaining equivalent unreacted epoxides. These epoxides and diols are used for the synthesis of chiral drug intermediates. With an upsurge in the methods for identification of novel microbial EHs, a lot of EHs have been discovered and utilized for kinetic resolution of racemic epoxides. However, there is still a constraint on the account of limited EHs being successfully applied on the preparative scale for industrial biotransformations. This limitation has to be overcome before application of identified functional EHs on large scale. Many strategies such as optimizing reaction media, immobilizing EHs and laboratory-scale directed evolution of EHs have been adopted for enhancing the industrial potential of EHs. In this review, these approaches have been highlighted which can serve as a pathway for the enrichment of already identified EHs for their application on an industrial scale in future studies.
Collapse
Affiliation(s)
- Priya Saini
- Department of Biochemistry, Panjab University, Sector 25, BMS Block II, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Sector 25, BMS Block II, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Tachioka M, Sugimoto N, Nakamura A, Sunagawa N, Ishida T, Uchiyama T, Igarashi K, Samejima M. Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:199. [PMID: 27660653 PMCID: PMC5028916 DOI: 10.1186/s13068-016-0613-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Random mutagenesis is a powerful technique to obtain mutant proteins with different properties from the wild-type molecule. Error-prone PCR is often employed for random mutagenesis in bacterial protein expression systems, but has rarely been used in the methylotrophic yeast Pichia pastoris system, despite its significant advantages, mainly because large (μg-level) amounts of plasmids are required for transformation. RESULTS We developed a quick and easy technique for random mutagenesis in P. pastoris by sequential Phi29 DNA polymerase-based amplification methods, error-prone rolling circle amplification (RCA) and multiple displacement amplification (MDA). The methodology was validated by applying it for random mutation of the gene encoding cellulase from the basidiomycete Phanerochaete chrysosporium (PcCel6A), a key enzyme in degradation of cellulosic biomass. In the error-prone RCA step, the concentrations of manganese ion (Mn(2+)) and cellulase gene-containing plasmid were varied, and the products obtained under each condition were subjected to the second MDA step in the absence of Mn(2+). The maximum error rate was 2.6 mutations/kb, as evaluated from the results of large-scale sequencing. Several μg of MDA products was transformed by electroporation into Pichia cells, and the activities of extracellularly expressed PcCel6A mutants towards crystalline and amorphous celluloses were compared with those of wild-type enzyme to identify key amino acid residues affecting degradation of crystalline cellulose. CONCLUSIONS We present a rapid and convenient random mutagenesis method that does not require laborious steps such as ligation, cloning, and synthesis of specific primers. This method was successfully applied to the protein expression system in P. pastoris.
Collapse
Affiliation(s)
- Mikako Tachioka
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Naohisa Sugimoto
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
- Biomaterial in Tokyo Co., Ltd., Fukuoka Lab, Ōnojō, Fukuoka 816-0905 Japan
| | - Akihiko Nakamura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
- Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, 444-8787 Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takuya Ishida
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Taku Uchiyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
21
|
Carbonell P, Currin A, Jervis AJ, Rattray NJW, Swainston N, Yan C, Takano E, Breitling R. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle. Nat Prod Rep 2016; 33:925-32. [PMID: 27185383 PMCID: PMC5063057 DOI: 10.1039/c6np00018e] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/11/2022]
Abstract
Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted.
Collapse
Affiliation(s)
- Pablo Carbonell
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Andrew Currin
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Adrian J. Jervis
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Nicholas J. W. Rattray
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Neil Swainston
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Cunyu Yan
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Eriko Takano
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| | - Rainer Breitling
- Manchester Centre for Fine and Specialty Chemicals (SYNBIOCHEM) , Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , UK . ;
| |
Collapse
|
22
|
Luo X, Huang Y, Chen Y, Tu Z, Hu J, Tavis JE, Huang A, Hu Y. Association of Hepatitis B Virus Covalently Closed Circular DNA and Human APOBEC3B in Hepatitis B Virus-Related Hepatocellular Carcinoma. PLoS One 2016; 11:e0157708. [PMID: 27310677 PMCID: PMC4911053 DOI: 10.1371/journal.pone.0157708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic Hepatitis B Virus (HBV) infections can progresses to liver cirrhosis and hepatocellular carcinoma (HCC). The HBV covalently-closed circular DNA cccDNA is a key to HBV persistence, and its degradation can be induced by the cellular deaminase APOBEC3. This study aimed to measure the distribution of intrahepatic cccDNA levels and evaluate the association between levels of cccDNA and APOBEC3 in HCC patients. Among 49 HCC patients, 35 matched cancerous and contiguous noncancerous liver tissues had detectable cccDNA, and the median intrahepatic cccDNA in the cancerous tissues (CT) was significantly lower than in the contiguous noncancerous tissues (CNCT) (p = 0.0033). RCA (rolling circle amplification), followed by 3D-PCR identified positive amplification in 27 matched HCC patients. Sequence analysis indicated G to A mutations accumulated to higher levels in CT samples compared to CNCT samples, and the dinucleotide context showed preferred editing in the GpA context. Among 7 APOBEC3 genes, APOBEC3B was the only one up-regulated in cancerous tissues both at the transcriptional and protein levels (p < 0.05). This implies APOBEC3B may contribute to cccDNA editing and subsequent degradation in cancerous tissues.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Host-Pathogen Interactions
- Humans
- Hydrolysis
- Liver/enzymology
- Liver/pathology
- Liver/virology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Male
- Middle Aged
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/metabolism
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zeng Tu
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail: (AH); (YH)
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail: (AH); (YH)
| |
Collapse
|
23
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
24
|
Rapid assembly of multiple DNA fragments through direct transformation of PCR products into E. coli and Lactobacillus. Plasmid 2014; 76:40-6. [DOI: 10.1016/j.plasmid.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 11/22/2022]
|
25
|
Schenk MF, Witte S, Salverda MLM, Koopmanschap B, Krug J, de Visser JAGM. Role of pleiotropy during adaptation of TEM-1 β-lactamase to two novel antibiotics. Evol Appl 2014; 8:248-60. [PMID: 25861383 PMCID: PMC4380919 DOI: 10.1111/eva.12200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
Pleiotropy is a key feature of the genotype–phenotype map, and its form and extent have many evolutionary implications, including for the dynamics of adaptation and the evolution of specialization. Similarly, pleiotropic effects of antibiotic resistance mutations may affect the evolution of antibiotic resistance in the simultaneous or fluctuating presence of different antibiotics. Here, we study the role of pleiotropy during the in vitro adaptation of the enzyme TEM-1 β-lactamase to two novel antibiotics, cefotaxime (CTX) and ceftazidime (CAZ). We subject replicate lines for four rounds of evolution to selection with CTX and CAZ alone, and in their combined and fluctuating presence. Evolved alleles show positive correlated responses when selecting with single antibiotics. Nevertheless, pleiotropic constraints are apparent from the effects of single mutations and from selected alleles showing smaller correlated than direct responses and smaller responses after simultaneous and fluctuating selection with both than with single antibiotics. We speculate that these constraints result from structural changes in the oxyanion pocket surrounding the active site, where accommodation of CTX and the larger CAZ is balanced against their positioning with respect to the active site. Our findings suggest limited benefits from the combined or fluctuating application of these related cephalosporins for containing antibiotic resistance.
Collapse
Affiliation(s)
- Martijn F Schenk
- Institute of Genetics, University of Cologne Köln, Germany ; Laboratory of Genetics, Wageningen University Wageningen, The Netherlands
| | - Sariette Witte
- Laboratory of Genetics, Wageningen University Wageningen, The Netherlands
| | | | | | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne Köln, Germany ; Systems Biology of Ageing Cologne (Sybacol), University of Cologne Köln, Germany
| | | |
Collapse
|
26
|
Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS. Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 2014; 36:2381-92. [PMID: 25214212 DOI: 10.1007/s10529-014-1635-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 02/01/2023]
Abstract
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Collapse
Affiliation(s)
- Bee Nar Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia,
| | | | | | | | | | | |
Collapse
|
27
|
Fujii R, Kitaoka M, Hayashi K. Error-prone rolling circle amplification greatly simplifies random mutagenesis. Methods Mol Biol 2014; 1179:23-29. [PMID: 25055768 DOI: 10.1007/978-1-4939-1053-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe a simple and easy protocol to introduce random mutations into plasmid DNA: error-prone rolling circle amplification. A template plasmid is amplified via rolling circle amplification with decreased fidelity in the presence of MnCl2 and is used to transform a host strain resulting in a mutant library with several random point mutations per kilobase through the entire plasmid. The primary advantage of this method is its simplicity. This protocol does not require the design of specific primers or thermal cycling. The reaction mixture can be used for direct transformation of a host strain. This method allows rapid preparation of randomly mutated plasmid libraries, enabling wider application of random mutagenesis.
Collapse
Affiliation(s)
- Ryota Fujii
- Synthetic Chemicals Laboratory, Mitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura, 299-0265, Japan
| | | | | |
Collapse
|
28
|
Tee KL, Wong TS. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 2013; 31:1707-21. [PMID: 24012599 DOI: 10.1016/j.biotechadv.2013.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.
Collapse
Affiliation(s)
- Kang Lan Tee
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, England, United Kingdom
| | | |
Collapse
|
29
|
Protein Engineering as an Enabling Tool for Synthetic Biology. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
30
|
Clementi N, Mancini N, Solforosi L, Castelli M, Clementi M, Burioni R. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. Int J Mol Sci 2012; 13:8273-8292. [PMID: 22942702 PMCID: PMC3430233 DOI: 10.3390/ijms13078273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/16/2022] Open
Abstract
In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.
Collapse
Affiliation(s)
- Nicola Clementi
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-2-2643-5082; Fax: +39-2-2643-4288
| | | | | | | | | | | |
Collapse
|
31
|
Kipnis Y, Dellus-Gur E, Tawfik DS. TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng Des Sel 2012; 25:437-44. [DOI: 10.1093/protein/gzs023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Interactions of sulfur oxidation repressor with its promoters involve different binding geometries. Arch Microbiol 2012; 194:737-47. [DOI: 10.1007/s00203-012-0808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/15/2012] [Accepted: 03/15/2012] [Indexed: 12/27/2022]
|
33
|
Evaluation of circular DNA substrates for whole genome amplification prior to forensic analysis. Forensic Sci Int Genet 2012; 6:185-90. [DOI: 10.1016/j.fsigen.2011.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/03/2011] [Accepted: 04/04/2011] [Indexed: 01/05/2023]
|
34
|
Huovinen T, Brockmann EC, Akter S, Perez-Gamarra S, Ylä-Pelto J, Liu Y, Lamminmäki U. Primer extension mutagenesis powered by selective rolling circle amplification. PLoS One 2012; 7:e31817. [PMID: 22355397 PMCID: PMC3280210 DOI: 10.1371/journal.pone.0031817] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material.
Collapse
Affiliation(s)
- Tuomas Huovinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Simple cloning via direct transformation of PCR product (DNA Multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 2011; 78:1593-5. [PMID: 22194286 DOI: 10.1128/aem.07105-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a general restriction enzyme-free and ligase-free method for subcloning up to three DNA fragments into any location of a plasmid. The DNA multimer generated by prolonged overlap extension PCR was directly transformed in Escherichia coli [e.g., TOP10, DH5α, JM109, and BL21(DE3)] and Bacillus subtilis for obtaining chimeric plasmids.
Collapse
|
36
|
Enhanced error-prone RCA mutagenesis by concatemer resolution. Plasmid 2011; 66:47-51. [DOI: 10.1016/j.plasmid.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022]
|
37
|
Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories. PLoS Comput Biol 2011; 7:e1002184. [PMID: 21966264 PMCID: PMC3178621 DOI: 10.1371/journal.pcbi.1002184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/19/2011] [Indexed: 01/13/2023] Open
Abstract
Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent evolution of β-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants. Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result, given that their coevolution suggests a selective advantage. Thus, β-lactamase adaptation is highly epistatic. Our method can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our ability to assess evolutionary trajectories will help predict the evolution of clinically relevant genes and aid in protein design. Understanding how new biological activities evolve on the molecular level has critical implications for biotechnology and for human health. Here we collect a database of mutations that contribute to the evolution of β-lactamase resistance to inhibitors and to new β-lactam antibiotics in bacterial pathogens, such as Escherichia coli. We compiled a database of TEM β-lactamase sequences evolved under antibiotic pressure and identified functional interactions between individual residue positions. We visualized these complex molecular interactions as a network and used network theory to derive information regarding the origin of individual mutations and their contribution to the observed resistance. Our approach should help interpret sequence databases for clinically relevant proteins undergoing high mutation rates and under selective (drug, immune) pressure, such as surface proteins of pathogens (particularly of RNA viruses such as HIV) or targets for chemotherapy in microbial pathogen or tumor cells. Notably, our approach only requires sequence data; detailed phylogenetic or tertiary structure information for the target gene is not necessary. Our analysis of how individual mutations work together to produce new biological activities should help anticipate evolution driven by a variety of clinically-relevant selections such as drug resistance, virulence, and immunity.
Collapse
|
38
|
Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2011; 34:1015-36. [PMID: 20412308 DOI: 10.1111/j.1574-6976.2010.00222.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TEM-1 β-lactamase is one of the most well-known antibiotic resistance determinants around. It confers resistance to penicillins and early cephalosporins and has shown an astonishing functional plasticity in response to the introduction of novel drugs derived from these antibiotics. Since its discovery in the 1960s, over 170 variants of TEM-1 - with different amino acid sequences and often resistance phenotypes - have been isolated in hospitals and clinics worldwide. Next to this well-documented 'natural' evolution, the in vitro evolution of TEM-1 has been the focus of attention of many experimental studies. In this review, we compare the natural and laboratory evolution of TEM-1 in order to address the question to what extent the evolution of antibiotic resistance can be repeated, and hence might have been predicted, under laboratory conditions. We also use the comparison to gain an insight into the adaptive relevance of hitherto uncharacterized substitutions present in clinical isolates and to predict substitutions not yet observed in nature. Based on new structural insights, we review what is known about substitutions in TEM-1 that contribute to the extension of its resistance phenotype. Finally, we address the clinical relevance of TEM alleles during the past decade, which has been dominated by the emergence of another β-lactamase, CTX-M.
Collapse
|
39
|
Kim YC. Introducing predetermined mutations throughout a target gene using TDEM (transposon-directed base-exchange mutagenesis). Methods Mol Biol 2011; 705:275-293. [PMID: 21125393 DOI: 10.1007/978-1-61737-967-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Transposon-directed base-exchange mutagenesis (TDEM) is an efficient and controllable method for introducing a mutation(s) into a gene. Each round of TDEM removes a predetermined number of bases (up to 11 base pairs) from a randomly selected site within the target gene and replaces them with any length of DNA of predetermined sequence. Therefore, the number of bases to be deleted and inserted can be precisely regulated. Because each round of TDEM generates mutation(s) at a single site, the number of mutations introduced can be determined by the number of cycles of TDEM. Furthermore, using a novel frame-checking procedure, non-functional mutants containing a frameshift or stop codon can be minimized. Thus, TDEM can be used to introduce a limited and predetermined change at each round of mutagenesis, thereby providing a useful tool for studying protein structure and function.
Collapse
Affiliation(s)
- Yun Cheol Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. Methods Mol Biol 2010; 634:239-56. [PMID: 20676989 DOI: 10.1007/978-1-60761-652-8_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Marker genes, such as gusA, lacZ, and gfp, have been applied comprehensively in biological studies. Directed in vitro evolution provides a powerful tool for modifying genes and for studying gene structure, expression, and function. Here, we describe a strategy for directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. The protocol involves two processes of DNA shuffling and screening. The first DNA shuffling and screening process involves eight steps: (1) amplifying the target gene by PCR, (2) cutting the product into random fragments with DNase I, (3) purification of 50-100 bp fragments, (4) reassembly of the fragments in a primerless PCR, (5) amplification of the reassembled product by primer PCR, (6) cloning into expression vector, (7) transformation of E. coli by electroporation, and (8) screening the target mutants using a nitrocellulose filter. The second DNA shuffling and screening process also involves the same eight steps, except that degenerate oligonucleotide primers are based on the sequence of the selected mutant.
Collapse
|
41
|
Luhe AL, Ting ENY, Tan L, Wu J, Zhao H. Engineering of small sized DNAs by error-prone multiply-primed rolling circle amplification for introduction of random point mutations. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc Natl Acad Sci U S A 2010; 107:16506-11. [PMID: 20823261 DOI: 10.1073/pnas.1011428107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage ϕ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of ϕ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)(2)] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique ϕ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make ϕ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics.
Collapse
|
43
|
Schmidt M, Böttcher D, Bornscheuer UT. Directed Evolution of Industrial Biocatalysts. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Nakashima N, Tamura T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 2009; 37:e103. [PMID: 19515932 PMCID: PMC2731896 DOI: 10.1093/nar/gkp498] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we describe a method of simultaneous conditional gene silencing of up to four genes in Escherichia coli by using antisense RNAs. We used antisense RNAs with paired termini, which carried flanking inverted repeats to create paired double-stranded RNA termini; these RNAs have been proven to have high silencing efficacy. To express antisense RNAs, we constructed four IPTG-inducible vectors carrying different but compatible replication origins. When the lacZ antisense RNA was expressed using these vectors, lacZ expression was successfully silenced by all the vectors, but the expression level of the antisense RNA and silencing efficacy differed depending on the used vectors. All the vectors were co-transformable; the antisense RNAs against lacZ, ackA, pta and pepN were co-expressed, and silencing of all the target genes was confirmed. Furthermore, when antisense RNAs were targeted to the mutator genes mutS, mutD (dnaQ) and ndk, which are involved in DNA replication or DNA mismatch repair, spontaneous mutation frequencies increased over 2000-fold. The resulting mutator strain is useful for random mutagenesis of plasmids. The method provides a robust tool for investigating functional relationships between multiple genes or altering cell phenotypes for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan.
| | | |
Collapse
|
45
|
Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U. Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 2009; 13:19-25. [DOI: 10.1016/j.cbpa.2009.01.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/16/2022]
|
46
|
Abstract
Antibodies are indispensable tools for research, diagnostics, and therapy. However, sometimes antibodies with the most favourable specificity profile lack sufficient affinity for a desired application. Here, we describe a method to increase the affinity of recombinant scFv antibody fragments based on random mutagenesis and phage display under stringent conditions. Random mutations are inserted by performing several rounds of error-prone PCR. After construction of a mutated antibody gene library, affinity selection is performed by panning with washing conditions optimized for off-rate-dependent selection. Alternatively, panning in solution with competition can be used to enrich binders with improved binding properties.
Collapse
Affiliation(s)
- Holger Thie
- Institute of Biochemistry and Biotechnology, Technical University Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
47
|
Mohan U, Banerjee UC. Molecular Evolution of a Defined DNA Sequence with Accumulation of Mutations in a Single Round by a Dual Approach to Random Chemical Mutagenesis (DuARCheM). Chembiochem 2008; 9:2238-43. [PMID: 18756549 DOI: 10.1002/cbic.200800259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Utpal Mohan
- Biocatalysis and Protein Engineering Group, Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India
| | | |
Collapse
|
48
|
The growth-promoting and stress response activities of the Bacillus subtilis GTP binding protein Obg are separable by mutation. J Bacteriol 2008; 190:6625-35. [PMID: 18689482 DOI: 10.1128/jb.00799-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis Obg is a ribosome-associating GTP binding protein that is needed for growth, sporulation, and induction of the bacterium's general stress regulon (GSR). It is unclear whether the roles of Obg in sporulation and stress responsiveness are direct or a secondary effect of its growth-promoting functions. The present work addresses this question by an analysis of two obg alleles whose phenotypes argue for direct roles for Obg in each process. The first allele [obg(G92D)] encodes a missense change in the protein's highly conserved "obg fold" region. This mutation impairs cell growth and the ability of Obg to associate with ribosomes but fails to block sporulation or the induction of the GSR. The second obg mutation [obg(Delta22)] replaces the 22-amino-acid carboxy-terminal sequence of Obg with an alternative 26-amino-acid sequence. This Obg variant cofractionates with ribosomes and allows normal growth but blocks sporulation and impairs the induction of the GSR. Additional experiments revealed that the block on sporulation occurs early, preventing the activation of the essential sporulation transcription factor Spo0A, while inhibition of the GSR appears to involve a failure of the protein cascade that normally activates the GSR to effectively catalyze the reactions needed to activate the GSR transcription factor (sigma(B)).
Collapse
|
49
|
Gratz A, Jose J. Protein domain library generation by overlap extension (PDLGO): A tool for enzyme engineering. Anal Biochem 2008; 378:171-6. [DOI: 10.1016/j.ab.2008.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 12/15/2022]
|
50
|
Xiong AS, Peng RH, Zhuang J, Liu JG, Gao F, Xu F, Cai B, Yao QH. A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences. Biol Chem 2008; 388:1291-300. [PMID: 18020945 DOI: 10.1515/bc.2007.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Directed evolution in vitro is a powerful molecular tool for the creation of new biological phenotypes. It is unclear whether it is more efficient to mutate an enzyme randomly or to mutate just the active sites or key sites. In this study, the strategy of a semi-rational design of directed evolution combined with whole sequence and sites was developed. The 1553 bp gene encoding the thermostable beta-galactosidase of Pyrococcus woesei was chemically synthesized and optimized for G+C content and mRNA secondary structures. The synthesized gene product was used as a template or as a wild-type control. On the basis of the first round of DNA shuffling, library construction and screening, one mutant of YH6754 was isolated with higher activity. Eight potential key sites were deduced from the sequence of the shuffled gene, and 16 degenerate oligonucleotides were designed according to those eight amino acids. Two variants of YG6765 and YG8252 were screened in the second part of DNA shuffling, library construction and screening. For comparison, one mutant of YH8757 was screened through the same routine rounds of directed evolution with YH6754 as template. The purified beta-galactosidase from YH8757 exhibited a lower specific activity at 25 degrees C than those purified from mutated YG6755 and YG8252.
Collapse
Affiliation(s)
- Ai-Sheng Xiong
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | | | | | | | | | | | | | | |
Collapse
|