1
|
Olusakin J, Kumar G, Basu M, Calarco CA, Fox ME, Alipio JB, Haga C, Turner MD, Keller A, Ament SA, Lobo MK. Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice. Neuropsychopharmacology 2023; 48:1724-1734. [PMID: 37400565 PMCID: PMC10579237 DOI: 10.1038/s41386-023-01639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Use of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence. However, little is known about molecular adaptations across brain regions that underlie these outcomes. We performed RNA sequencing across three reward and two sensory brain areas to study transcriptional programs in perinatal fentanyl exposed juvenile mice. Pregnant dams received 10 μg/ml fentanyl in the drinking water from embryonic day 0 (E0) through gestational periods until weaning at postnatal day 21 (P21). RNA was extracted from nucleus accumbens (NAc), prelimbic cortex (PrL), ventral tegmental area (VTA), somatosensory cortex (S1) and ventrobasal thalamus (VBT) from perinatal fentanyl exposed mice of both sexes at P35. RNA sequencing was performed, followed by analysis of differentially expressed genes (DEGs) and gene co-expression networks. Transcriptome analysis revealed DEGs and gene modules significantly associated with exposure to perinatal fentanyl in a sex-wise manner. The VTA had the most DEGs, while robust gene enrichment occurred in NAc. Genes enriched in mitochondrial respiration were pronounced in NAc and VTA of perinatal fentanyl exposed males, extracellular matrix (ECM) and neuronal migration enrichment were pronounced in NAc and VTA of perinatal fentanyl exposed males, while genes associated with vesicular cycling and synaptic signaling were markedly altered in NAc of perinatal fentanyl exposed female mice. In sensory areas from perinatal fentanyl exposed females, we found alterations in mitochondrial respiration, synaptic and ciliary organization processes. Our findings demonstrate distinct transcriptomes across reward and sensory brain regions, with some showing discordance between sexes. These transcriptome adaptations may underlie structural, functional, and behavioral changes observed in perinatal fentanyl exposed mice.
Collapse
Affiliation(s)
- Jimmy Olusakin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam Kumar
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahashweta Basu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cali A Calarco
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan E Fox
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, USA
| | - Jason B Alipio
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Catherine Haga
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Makeda D Turner
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seth A Ament
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
3
|
Musiał N, Bogucka A, Tretiakow D, Skorek A, Ryl J, Czaplewska P. Proteomic analysis of sialoliths from calcified, lipid and mixed groups as a source of potential biomarkers of deposit formation in the salivary glands. Clin Proteomics 2023; 20:11. [PMID: 36949424 PMCID: PMC10035263 DOI: 10.1186/s12014-023-09402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.
Collapse
Affiliation(s)
- Natalia Musiał
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Aleksandra Bogucka
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
- Institute of Biochemistry, Medical Faculty, Justus Liebig University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
4
|
Darbo E, Pérot G, Darmusey L, Le Guellec S, Leroy L, Gaston L, Desplat N, Thébault N, Merle C, Rochaix P, Valentin T, Ferron G, Chevreau C, Bui B, Stoeckle E, Ranchere-Vince D, Méeus P, Terrier P, Piperno-Neumann S, Collin F, De Pinieux G, Duffaud F, Coindre JM, Blay JY, Chibon F. Distinct Cellular Origins and Differentiation Process Account for Distinct Oncogenic and Clinical Behaviors of Leiomyosarcomas. Cancers (Basel) 2023; 15:cancers15020534. [PMID: 36672483 PMCID: PMC9856933 DOI: 10.3390/cancers15020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In leiomyosarcoma (LMS), a very aggressive disease, a relatively transcriptionally uniform subgroup of well-differentiated tumors has been described and is associated with poor survival. The question raised how differentiation and tumor progression, two apparently antagonist processes, coexist and allow tumor malignancy. We first identified the most transcriptionally homogeneous LMS subgroup in three independent cohorts, which we named 'hLMS'. The integration of multi-omics data and functional analysis suggests that hLMS originate from vascular smooth muscle cells and show that hLMS transcriptional program reflects both modulations of smooth muscle contraction activity controlled by MYOCD/SRF regulatory network and activation of the cell cycle activity controlled by E2F/RB1 pathway. We propose that the phenotypic plasticity of vascular smooth muscle cells coupled with MYOCD/SRF pathway amplification, essential for hLMS survival, concomitant with PTEN absence and RB1 alteration, could explain how hLMS balance this uncommon interplay between differentiation and aggressiveness.
Collapse
Affiliation(s)
- Elodie Darbo
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
- CNRS UMR5800, LaBRI, 33400 Talence, France
- Department of Medical and Biological Sciences, Université de Bordeaux, 33000 Bordeaux, France
| | - Gaëlle Pérot
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Lucie Darmusey
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Department of Medical and Biological Sciences, University of Toulouse 3, 31000 Toulouse, France
| | - Sophie Le Guellec
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Laura Leroy
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Laëtitia Gaston
- Department of Medical Genetics, CHU de Bordeaux, 33000 Bordeaux, France
| | - Nelly Desplat
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
| | - Noémie Thébault
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Candice Merle
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Department of Medical and Biological Sciences, University of Toulouse 3, 31000 Toulouse, France
| | - Philippe Rochaix
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Thibaud Valentin
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Gwenaël Ferron
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Surgical Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Christine Chevreau
- Department of Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Binh Bui
- Department of Oncology, Institut Bergonié, 33000 Bordeaux, France
| | | | | | - Pierre Méeus
- Department of Surgery, Centre Léon Bérard, 69000 Lyon, France
| | - Philippe Terrier
- Department of Pathology, Institut Gustave Roussy, 94800 Villejuif, France
| | | | - Françoise Collin
- Department of Pathology, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Gonzague De Pinieux
- Department of Pathology, Hôpital Universitaire Trousseau, 37170 Tours, France
| | - Florence Duffaud
- Medical Oncology Unit, APHM Hôpital La Timone, Aix Marseille University, 13000 Marseille, France
| | - Jean-Michel Coindre
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
- Department of Pathology, Institut Bergonié, 33000 Bordeaux, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, 69000 Lyon, France
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Frédéric Chibon
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Correspondence: ; Tel.: +33-0582741765
| |
Collapse
|
5
|
Juchniewicz P, Kloska A, Portalska K, Jakóbkiewicz-Banecka J, Węgrzyn G, Liss J, Głodek P, Tukaj S, Piotrowska E. X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Res 2023; 31:4. [PMID: 36695960 PMCID: PMC9877087 DOI: 10.1007/s10577-023-09717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Portalska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Liss
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland ,Research and Development Center, INVICTA, Sopot, Poland
| | - Piotr Głodek
- Research and Development Center, INVICTA, Sopot, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. Int J Mol Sci 2022; 23:ijms23020619. [PMID: 35054801 PMCID: PMC8775919 DOI: 10.3390/ijms23020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
Collapse
|
7
|
Altman MC, Rinchai D, Baldwin N, Toufiq M, Whalen E, Garand M, Syed Ahamed Kabeer B, Alfaki M, Presnell SR, Khaenam P, Ayllón-Benítez A, Mougin F, Thébault P, Chiche L, Jourde-Chiche N, Phillips JT, Klintmalm G, O'Garra A, Berry M, Bloom C, Wilkinson RJ, Graham CM, Lipman M, Lertmemongkolchai G, Bedognetti D, Thiebaut R, Kheradmand F, Mejias A, Ramilo O, Palucka K, Pascual V, Banchereau J, Chaussabel D. Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nat Commun 2021; 12:4385. [PMID: 34282143 PMCID: PMC8289976 DOI: 10.1038/s41467-021-24584-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
As the capacity for generating large-scale molecular profiling data continues to grow, the ability to extract meaningful biological knowledge from it remains a limitation. Here, we describe the development of a new fixed repertoire of transcriptional modules, BloodGen3, that is designed to serve as a stable reusable framework for the analysis and interpretation of blood transcriptome data. The construction of this repertoire is based on co-clustering patterns observed across sixteen immunological and physiological states encompassing 985 blood transcriptome profiles. Interpretation is supported by customized resources, including module-level analysis workflows, fingerprint grid plot visualizations, interactive web applications and an extensive annotation framework comprising functional profiling reports and reference transcriptional profiles. Taken together, this well-characterized and well-supported transcriptional module repertoire can be employed for the interpretation and benchmarking of blood transcriptome profiles within and across patient cohorts. Blood transcriptome fingerprints for the 16 reference cohorts can be accessed interactively via: https://drinchai.shinyapps.io/BloodGen3Module/ .
Collapse
Affiliation(s)
- Matthew C Altman
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA.
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
| | | | - Nicole Baldwin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | | | - Elizabeth Whalen
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | - Scott R Presnell
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Prasong Khaenam
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Aaron Ayllón-Benítez
- Inserm U1219 Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | - Fleur Mougin
- Inserm U1219 Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | | | - Laurent Chiche
- Department of Internal Medicine, Hopital Européen, Marseille, France
| | | | - J Theodore Phillips
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | - Goran Klintmalm
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Chloe Bloom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert J Wilkinson
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
- Wellcome Center for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Observatory, 7925, Cape Town, Republic of South Africa
| | - Christine M Graham
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Marc Lipman
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | - Rodolphe Thiebaut
- Inserm U1219 Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | - Farrah Kheradmand
- Baylor College of Medicine & Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VAMC, Houston, TX, USA
| | - Asuncion Mejias
- Abigail Wexner Research Institute at Nationwide Children's Hospital and the Ohio State University School of Medicine, Columbus, OH, USA
| | - Octavio Ramilo
- Abigail Wexner Research Institute at Nationwide Children's Hospital and the Ohio State University School of Medicine, Columbus, OH, USA
| | - Karolina Palucka
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Damien Chaussabel
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA.
- Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
8
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
9
|
Magnusson JP, Zamboni M, Santopolo G, Mold JE, Barrientos-Somarribas M, Talavera-Lopez C, Andersson B, Frisén J. Activation of a neural stem cell transcriptional program in parenchymal astrocytes. eLife 2020; 9:e59733. [PMID: 32744501 PMCID: PMC7440914 DOI: 10.7554/elife.59733] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.
Collapse
Affiliation(s)
- Jens P Magnusson
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Giuseppe Santopolo
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| |
Collapse
|
10
|
Rinchai D, Syed Ahamed Kabeer B, Toufiq M, Tatari-Calderone Z, Deola S, Brummaier T, Garand M, Branco R, Baldwin N, Alfaki M, Altman MC, Ballestrero A, Bassetti M, Zoppoli G, De Maria A, Tang B, Bedognetti D, Chaussabel D. A modular framework for the development of targeted Covid-19 blood transcript profiling panels. J Transl Med 2020; 18:291. [PMID: 32736569 PMCID: PMC7393249 DOI: 10.1186/s12967-020-02456-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-CoV-2 infection. METHODS We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further selection steps relied on expert curation. Additionally, we developed several custom web applications to support the evaluation of candidates. RESULTS As a proof of principle, we designed three targeted blood transcript panels, each with a different translational connotation: immunological relevance, therapeutic development relevance and SARS biology relevance. CONCLUSION Altogether the work presented here may contribute to the future expansion of immune profiling capabilities via targeted profiling of blood transcript abundance in Covid-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Nicole Baldwin
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX, USA
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alberto Ballestrero
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea De Maria
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Benjamin Tang
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Davide Bedognetti
- Sidra Medicine, Doha, Qatar
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
| | | |
Collapse
|