1
|
Wang N, Huang Z, Guan F, Wang J, Chen Y, Wang H, Jin L, Wang Y. HIF-1α induced FGF18 alleviates renal ischemia/reperfusion injury via YAP. FASEB J 2024; 38:e70092. [PMID: 39373977 DOI: 10.1096/fj.202401238r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Acute kidney injury (AKI) is a devastating clinical condition characterized by an abrupt loss of renal function. The pathophysiology of AKI involves diverse processes and elements, of which survival and regeneration have been established to be significant hallmarks. And early studies have confirmed the fundamental role of FGFs in the regulation of AKI pathology, although the association between FGF18 and AKI still remains elusive. Our study demonstrates a substantial up-regulation of FGF18 in the renal tubules of mice subjected to ischemia. Notably, targeted overexpression of FGF18 effectively mitigates the impairment of kidney function induced by AKI. Mechanistically, FGF18 facilitates cell proliferation and anti-apoptosis in RTECs by enhancing the expression of YAP and facilitating its translocation to the nucleus. Aside from that, we also discovered that the substantial expression of FGF18 under ischemic conditions is HIF-1α dependent. This study aims to uncover the inherent mechanism behind the beneficial effects of FGF18 in attenuating AKI. By doing so, it aims to offer novel insights into the development of therapeutic strategies for AKI.
Collapse
Affiliation(s)
- Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhiyuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Fangqian Guan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yinyun Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Hong Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Kwok SH, Liu Y, Bilder D, Kim J. Paraneoplastic renal dysfunction in fly cancer models driven by inflammatory activation of stem cells. Proc Natl Acad Sci U S A 2024; 121:e2405860121. [PMID: 39392665 PMCID: PMC11494367 DOI: 10.1073/pnas.2405860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Tumors can induce systemic disturbances in distant organs, leading to physiological changes that enhance host morbidity. In Drosophila cancer models, tumors have been known for decades to cause hypervolemic "bloating" of the abdominal cavity. Here we use allograft and transgenic tumors to show that hosts display fluid retention associated with autonomously defective secretory capacity of fly renal tubules, which function analogous to those of the human kidney. Excretion from these organs is blocked by abnormal cells that originate from inappropriate activation of normally quiescent renal stem cells (RSCs). Blockage is initiated by IL-6-like oncokines that perturb renal water-transporting cells and trigger a damage response in RSCs that proceeds pathologically. Thus, a chronic inflammatory state produced by the tumor causes paraneoplastic fluid dysregulation by altering cellular homeostasis of host renal units.
Collapse
Affiliation(s)
- Sze Hang Kwok
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuejiang Liu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - Jung Kim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Stransky LA, Gao W, Schmidt LS, Bi K, Ricketts CJ, Ramesh V, James A, Difilippantonio S, Ileva L, Kalen JD, Karim B, Jeon A, Morgan T, Warner AC, Turan S, Unite J, Tran B, Choudhari S, Zhao Y, Linn DE, Yun C, Dhandapani S, Parab V, Pinheiro EM, Morris N, He L, Vigeant SM, Pignon JC, Sticco-Ivins M, Signoretti S, Van Allen EM, Linehan WM, Kaelin WG. Toward a CRISPR-based mouse model of Vhl-deficient clear cell kidney cancer: Initial experience and lessons learned. Proc Natl Acad Sci U S A 2024; 121:e2408549121. [PMID: 39365820 PMCID: PMC11474080 DOI: 10.1073/pnas.2408549121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Collapse
Affiliation(s)
- Laura A. Stransky
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wenhua Gao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kevin Bi
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vijyendra Ramesh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Amy James
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Albert Jeon
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Sevilay Turan
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Joanne Unite
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Bao Tran
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | | | - Changhong Yun
- Pharmacokinetics, Merck & Co., Inc., Boston, MA02115
| | | | - Vaishali Parab
- Pharmacokinetics, Merck & Co., Inc., South San Francisco, CA94080
| | | | - Nicole Morris
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lixia He
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Sean M. Vigeant
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Jean-Christophe Pignon
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
| | - Maura Sticco-Ivins
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Eliezer M. Van Allen
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
4
|
Deepika B, Gowtham P, Raghavan V, Isaac JB, Devi S, Kiran V, Mercy DJ, Sofini PSS, Harini A, Girigoswami A, Girigoswami K. Harmony in nature's elixir: a comprehensive exploration of ethanol and nano-formulated extracts from Passiflora incarnata leaves: unveiling in vitro cytotoxicity, acute and sub-acute toxicity profiles in Swiss albino mice. J Mol Histol 2024; 55:977-994. [PMID: 39158796 DOI: 10.1007/s10735-024-10245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
We analyzed the toxic effect of the ethanolic extract of Passiflora incarnata (EEP) and its nanoformulation (N-EEP) in the in vitro and in vivo models (zebrafish embryos and Swiss albino mice). The EEP composition was verified by phytochemical and GC-MS analysis. The synthesized N-EEP was characterized using UV-visible spectroscopy and scanning electron microscopy. In vitro results showed both EEP and N-EEP have a dose-dependent effect in L132 cells (normal embryonic lung cells). In zebrafish embryos, no developmental changes were observed for both EEP and N-EEP at 200 µg/ml. The acute and sub-acute toxicity of EEP and N-EEP was identified by oral administration in Swiss albino mice. A single-day oral dose of EEP and N-EEP at different concentrations was administered for acute toxicity, and changes in body weight, food, water intake, temperature, respiration rate, skin color changes, and eye color till 72 h was observed. In a sub-acute toxicity study, 28 days oral administration of different concentrations of EEP and N-EEP was done. Hematological analysis, serum hepatic biochemical parameter analysis, and histopathological analysis for the liver, kidney, spleen, intestine, and heart were performed. The results indicated that lower than 600 mg/kg of EEP and N-EEP can safely be used for the remediation of a spectrum of diseases.
Collapse
Affiliation(s)
- Balasubramanian Deepika
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Pemula Gowtham
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Vijayashree Raghavan
- Department of Pathology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, India
| | - Jane Betsy Isaac
- Department of Pathology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, India
| | - Sobita Devi
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Venkatakrishnan Kiran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Devadass Jessy Mercy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - P S Sharon Sofini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - A Harini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
5
|
Stamellou E, Agrawal S, Siegerist F, Buse M, Kuppe C, Lange T, Buhl EM, Alam J, Strieder T, Boor P, Ostendorf T, Gröne HJ, Floege J, Smoyer WE, Endlich N, Moeller MJ. Inhibition of the glucocorticoid receptor attenuates proteinuric kidney diseases in multiple species. Nephrol Dial Transplant 2024; 39:1181-1193. [PMID: 38037533 PMCID: PMC11210988 DOI: 10.1093/ndt/gfad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Glucocorticoids are the treatment of choice for proteinuric patients with minimal change disease (MCD) and primary focal segmental glomerulosclerosis (FSGS). Immunosuppressive as well as direct effects on podocytes are believed to mediate their actions. In this study, we analyzed the anti-proteinuric effects of inhibition of the glucocorticoid receptor (GR) in glomerular epithelial cells, including podocytes. METHODS We employed genetic and pharmacological approaches to inhibit the GR. Genetically, we used Pax8-Cre/GRfl/fl mice to specifically inactivate the GR in kidney epithelial cells. Pharmacologically, we utilized a glucocorticoid antagonist called mifepristone. RESULTS Genetic inactivation of GR, specifically in kidney epithelial cells, using Pax8-Cre/GRfl/fl mice, ameliorated proteinuria following protein overload. We further tested the effects of pharmacological GR inhibition in three models and species: the puromycin aminonucleoside-induced nephrosis model in rats, the protein overload model in mice and the inducible transgenic NTR/MTZ zebrafish larvae with specific and reversible podocyte injury. In all three models, both pharmacological GR activation and inhibition consistently and significantly ameliorated proteinuria. Additionally, we translated our findings to humans, where three nephrotic adult patients with MCD or primary FSGS with contraindications or insufficient responses to corticosteroids were treated with mifepristone. This treatment resulted in a clinically relevant reduction of proteinuria. CONCLUSIONS Thus, across multiple species and proteinuria models, both genetic and pharmacological GR inhibition was at least as effective as pronounced GR activation. While the mechanism remains perplexing, GR inhibition may be a novel and targeted therapeutic approach to treat glomerular proteinuria potentially bypassing adverse actions of steroids.
Collapse
MESH Headings
- Animals
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Mice
- Proteinuria/drug therapy
- Proteinuria/etiology
- Proteinuria/metabolism
- Humans
- Rats
- Podocytes/metabolism
- Podocytes/drug effects
- Podocytes/pathology
- Zebrafish
- Male
- Mifepristone/pharmacology
- Disease Models, Animal
- Glomerulosclerosis, Focal Segmental/drug therapy
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Female
- Kidney Diseases/drug therapy
- Kidney Diseases/etiology
- Kidney Diseases/metabolism
- Puromycin Aminonucleoside
- Hormone Antagonists/pharmacology
- Nephrosis, Lipoid/drug therapy
- Nephrosis, Lipoid/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology and Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Shipra Agrawal
- Division of Nephrology and Hypertension, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Eva Miriam Buhl
- Institute of Pathology and Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Thiago Strieder
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology and Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | | | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA, Greifswald, Germany
| | - Marcus J Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Moon D, Padanilam BJ, Park KM, Kim J. Loss of SAV1 in Kidney Proximal Tubule Induces Maladaptive Repair after Ischemia and Reperfusion Injury. Int J Mol Sci 2024; 25:4610. [PMID: 38731829 PMCID: PMC11083677 DOI: 10.3390/ijms25094610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.
Collapse
Affiliation(s)
- Daeun Moon
- Department of Anatomy, Jeju National University College of Medicine, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Jinu Kim
- Department of Anatomy, Jeju National University College of Medicine, Jeju 63243, Republic of Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Kwok SH, Liu Y, Bilder D, Kim J. Paraneoplastic renal dysfunction in fly cancer models driven by inflammatory activation of stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586173. [PMID: 38585959 PMCID: PMC10996499 DOI: 10.1101/2024.03.21.586173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tumors can induce systemic disturbances in distant organs, leading to physiological changes that enhance host morbidity. In Drosophila cancer models, tumors have been known for decades to cause hypervolemic 'bloating' of the abdominal cavity. Here we use allograft and transgenic tumors to show that hosts display fluid retention associated with autonomously defective secretory capacity of fly renal tubules, which function analogous to those of the human kidney. Excretion from these organs is blocked by abnormal cells that originate from inappropriate activation of normally quiescent renal stem cells (RSCs). Blockage is initiated by IL-6-like oncokines that perturb renal water-transporting cells, and trigger a damage response in RSCs that proceeds pathologically. Thus, a chronic inflammatory state produced by the tumor causes paraneoplastic fluid dysregulation by altering cellular homeostasis of host renal units.
Collapse
Affiliation(s)
- Sze Hang Kwok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuejiang Liu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Jung Kim
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| |
Collapse
|
8
|
Buse M, Cheng M, Jankowski V, Lellig M, Sterzer V, Strieder T, Leuchtle K, Martin IV, Seikrit C, Brinkkoettter P, Crispatzu G, Floege J, Boor P, Speer T, Kramann R, Ostendorf T, Moeller MJ, Costa IG, Stamellou E. Lineage tracing reveals transient phenotypic adaptation of tubular cells during acute kidney injury. iScience 2024; 27:109255. [PMID: 38444605 PMCID: PMC10914483 DOI: 10.1016/j.isci.2024.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Tubular injury is the hallmark of acute kidney injury (AKI) with a tremendous impact on patients and health-care systems. During injury, any differentiated proximal tubular cell (PT) may transition into a specific injured phenotype, so-called "scattered tubular cell" (STC)-phenotype. To understand the fate of this specific phenotype, we generated transgenic mice allowing inducible, reversible, and irreversible tagging of these cells in a murine AKI model, the unilateral ischemia-reperfusion injury (IRI). For lineage tracing, we analyzed the kidneys using single-cell profiling during disease development at various time points. Labeled cells, which we defined by established endogenous markers, already appeared 8 h after injury and showed a distinct expression set of genes. We show that STCs re-differentiate back into fully differentiated PTs upon the resolution of the injury. In summary, we show the dynamics of the phenotypic transition of PTs during injury, revealing a reversible transcriptional program as an adaptive response during disease.
Collapse
Affiliation(s)
- Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Thiago Strieder
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ina V. Martin
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Paul Brinkkoettter
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Timotheus Speer
- Medical Clinic 4, Nephrology, University of Frankfurt und Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Marcus J. Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Schmalkuche K, Schwinzer R, Wenzel N, Valdivia E, Petersen B, Blasczyk R, Figueiredo C. Downregulation of Swine Leukocyte Antigen Expression Decreases the Strength of Xenogeneic Immune Responses towards Renal Proximal Tubular Epithelial Cells. Int J Mol Sci 2023; 24:12711. [PMID: 37628892 PMCID: PMC10454945 DOI: 10.3390/ijms241612711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Xenotransplantation reemerged as a promising alternative to conventional transplantation enlarging the available organ pool. However, success of xenotransplantation depends on the design and selection of specific genetic modifications and on the development of robust assays allowing for a precise assessment of tissue-specific immune responses. Nevertheless, cell-based assays are often compromised by low proliferative capacity of primary cells. Proximal tubular epithelial cells (PTECs) play a crucial role in kidney function. Here, we generated immortalized PTECs (imPTECs) by overexpression of simian virus 40 T large antigen. ImPTECs not only showed typical morphology and phenotype, but, in contrast to primary PTECs, they maintained steady cell cycling rates and functionality. Furthermore, swine leukocyte antigen (SLA) class I and class II transcript levels were reduced by up to 85% after transduction with lentiviral vectors encoding for short hairpin RNAs targeting β2-microglobulin and the class II transactivator. This contributed to reducing xenogeneic T-cell cytotoxicity (p < 0.01) and decreasing secretion of pro-inflammatory cytokines such as IL-6 and IFN-γ. This study showed the feasibility of generating highly proliferative PTECs and the development of tissue-specific immunomonitoring assays. Silencing SLA expression on PTECs was demonstrated to be an effective strategy to prevent xenogeneic cellular immune responses and may strongly support graft survival after xenotransplantation.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Reinhard Schwinzer
- Transregional Collaborative Research Centre 127, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
- Transplantation Laboratory, Clinic for General, Visceral and Transplantation-Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Björn Petersen
- Transregional Collaborative Research Centre 127, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
- Institute of Farm Animal Genetics, Höltystr. 10, 31535 Neustadt am Rübenberge, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| |
Collapse
|
10
|
Huang Y, Yu M, Zheng J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. NATURE NANOTECHNOLOGY 2023; 18:637-646. [PMID: 37069289 PMCID: PMC10917148 DOI: 10.1038/s41565-023-01366-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/03/2023] [Indexed: 05/14/2023]
Abstract
Proximal tubules energetically internalize and metabolize solutes filtered through glomeruli but are constantly challenged by foreign substances during the lifespan. Thus, it is critical to understand how proximal tubules stay healthy. Here we report a previously unrecognized mechanism of mitotically quiescent proximal tubular epithelial cells for eliminating gold nanoparticles that were endocytosed and even partially transformed into large nanoassemblies inside lysosomes/endosomes. By squeezing ~5 µm balloon-like extrusions through dense microvilli, transporting intact gold-containing endocytic vesicles into the extrusions along with mitochondria or other organelles and pinching the extrusions off the membranes into the lumen, proximal tubular epithelial cells re-eliminated >95% of endocytosed gold nanoparticles from the kidneys into the urine within a month. While this organelle-extrusion mechanism represents a new nanoparticle-elimination route, it is not activated by the gold nanoparticles but is an intrinsic 'housekeeping' function of normal proximal tubular epithelial cells, used to remove unwanted cytoplasmic contents and self-renew intracellular organelles without cell division to maintain homoeostasis.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
11
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
12
|
Eymael J, van den Broek M, Miesen L, Monge VV, van den Berge BT, Mooren F, Velez VL, Dijkstra J, Hermsen M, Bándi P, Vermeulen M, de Wildt S, Willemsen B, Florquin S, Wetzels R, Steenbergen E, Kramann R, Moeller M, Schreuder MF, Wetzels JF, van der Vlag J, Jansen J, Smeets B. Human scattered tubular cells represent a heterogeneous population of glycolytic dedifferentiated proximal tubule cells. J Pathol 2023; 259:149-162. [PMID: 36373978 PMCID: PMC10107692 DOI: 10.1002/path.6029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer Eymael
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Laura Miesen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie Villacorta Monge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bartholomeus T van den Berge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fieke Mooren
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vicky Luna Velez
- Department of Molecular Biology, Radboud Institute for Molecular Life Science, Nijmegen, The Netherlands
| | - Jelmer Dijkstra
- Department of Molecular Biology, Radboud Institute for Molecular Life Science, Nijmegen, The Netherlands
| | - Meyke Hermsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Péter Bándi
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Science, Nijmegen, The Netherlands
| | - Saskia de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunology, Amsterdam, The Netherlands
| | - Roy Wetzels
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Steenbergen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcus Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Jack Fm Wetzels
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Narayan P, Bruce AT, Rivera EA, Bertram TA, Jain D. Selected renal cells harbor nephrogenic potential. Front Med (Lausanne) 2022; 9:1062890. [PMID: 36619635 PMCID: PMC9815697 DOI: 10.3389/fmed.2022.1062890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Selected renal cells (SRCs), a renal epithelial cell-enriched platform, are being advanced as an autologous cell-based therapy for the treatment of chronic kidney disease. However, the mechanism underlying its renal reparative and restorative effects remains to be fully elucidated. In this study, we coupled knowledgebase data with empirical findings to demonstrate that genes differentially expressed by SRCs form interactomes within tubules and glomeruli and mediate a suite of renal developmental activities including epithelial cell differentiation, renal vasculature development, and glomerular and nephron development. In culture, SRCs form organoids which self-assemble into tubules in the presence of a scaffold. Implanted into the kidneys of subtotally nephrectomized rats, SRCs are associated with comma- and S-shaped body cell formation and glomerular development, and improvement in renal filtration indices and renal microarchitecture. These data suggest that SRCs harbor nephrogenic potential, which may explain, at least in part, their therapeutic activity.
Collapse
|
14
|
Raghubar AM, Roberts MJ, Wood S, Healy HG, Kassianos AJ, Mallett AJ. Cellular milieu in clear cell renal cell carcinoma. Front Oncol 2022; 12:943583. [PMID: 36313721 PMCID: PMC9614096 DOI: 10.3389/fonc.2022.943583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is globally the most prevalent renal cancer. The cells of origin in ccRCC have been identified as proximal tubular epithelial cells (PTEC); however, the transcriptomic pathways resulting in the transition from normal to malignant PTEC state have remained unclear. Immunotherapy targeting checkpoints have revolutionized the management of ccRCC, but a sustained clinical response is achieved in only a minority of ccRCC patients. This indicates that our understanding of the mechanisms involved in the malignant transition and resistance to immune checkpoint therapy in ccRCC is unclear. This review examines recent single-cell transcriptomics studies of ccRCC to clarify the transition of PTEC in ccRCC development, and the immune cell types, states, and interactions that may limit the response to targeted immune therapy, and finally suggests stromal cells as key drivers in recurrent and locally invasive ccRCC. These and future single-cell transcriptomics studies will continue to clarify the cellular milieu in the ccRCC microenvironment, thus defining actional clinical, therapeutic, and prognostic characteristics of ccRCC.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Matthew J. Roberts
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Urology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Urology, Redcliffe Hospital, Redcliffe, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Wood
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- *Correspondence: Andrew J. Mallett,
| |
Collapse
|
15
|
Scattered Tubular Cells Markers in Macula Densa of Normal Human Adult Kidney. Int J Mol Sci 2022; 23:ijms231810504. [PMID: 36142420 PMCID: PMC9500602 DOI: 10.3390/ijms231810504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The scattered tubular cells (STCs) are a population of resident progenitor tubular cells with expansion, self-renewal and epithelial differentiation abilities. Although these cells are localized within the proximal (PTs) and distal (DTs) tubules in a normal adult kidney, their presence has never been demonstrated in human macula densa (MD). The purpose of the present study is to describe the presence of STCs in MD using specific markers such as prominin-1 (CD133), cytokeratin 7 (KRT7) and vimentin (VIM). Methods: We analyzed two sets of three consecutive serial sections for each sample. The first sections of each set were immunostained for nNOS to identify MD, the second sections were immune-stained for CD133 (specific STCs marker) while the third sections were analyzed for KRT7 (another STCs specific marker) and VIM (that stains the basal pole of the STCs) in the first and second sets, respectively, in order to study the co-expression of KRT7 and VIM with the CD133 marker. Results: CD133 was localized in some MD cells and in the adjacent DT cells. Moreover, CD133 was detected in the parietal epithelial cells of Bowman’s capsule and in some proximal tubules (PT). KRT7-positive cells were identified in MD and adjacent DT cells, while KRT7 positivity was mostly confined in both DT and collecting ducts (CD) in the other areas of the renal parenchyma. CD133 and KRT7 were co-expressed in some MD and adjacent DT cells. Some of the latter cells were positive both for CD133 and VIM. CD133 was always localized in the apical part of the cells, whereas the VIM expression was evident only in the cellular basal pole. Although some cells of MD expressed VIM or CD133, none of them co-expressed VIM and CD133. Conclusions: The presence of STCs was demonstrated in human adult MD, suggesting that this structure has expansion, self-renewal and epithelial differentiation abilities, similar to all other parts of renal tubules.
Collapse
|
16
|
Buse M, Moeller MJ, Stamellou E. What We Have Learned so far From Single Cell Sequencing in Acute Kidney Injury. Front Physiol 2022; 13:933677. [PMID: 35755431 PMCID: PMC9217124 DOI: 10.3389/fphys.2022.933677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Acute Kidney injury is a major clinical problem associated with increased morbidity and mortality. Despite, intensive research the clinical outcome remains poor and apart from supportive therapy no other specific therapy exists. Single cell technologies have enabled us to get deeper insights into the transcriptome of individual cells in complex tissues like the kidney. With respect to kidney injury, this would allow us to better define the unique role of individual cell populations in the pathophysiology of acute kidney injury and progression to chronic kidney disease. In this mini review, we would like to give an overview and discuss the current major findings in the field of acute kidney injury through Single-Cell technologies.
Collapse
Affiliation(s)
- Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marcus J Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|