1
|
Malaweera A, Huang L, McMahon L. Benefits and Pitfalls of Uraemic Toxin Measurement in Peritoneal Dialysis. J Clin Med 2025; 14:1395. [PMID: 40004925 PMCID: PMC11857055 DOI: 10.3390/jcm14041395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease is a global health burden with a rising incidence and prevalence in developed and developing nations. Once established, it results in a progressive accumulation of a myriad of uraemic toxins. Peritoneal dialysis (PD) uses the body's peritoneal membrane to remove these toxins across a semipermeable membrane to restore and maintain homeostasis. Traditionally, dialysis adequacy has been measured through clearance of urea and creatinine. However, numerous studies have shown marginal links comparing the clearance of urea and creatinine with clinical outcomes reflected in the recent changes to the ISPD guidelines on dialysis adequacy. Instead, attention has focused on protein-bound uraemic toxins (PBTs). Produced by gut bacteria, these molecules are highly protein-bound and poorly removed by either dialysis or absorptive agents. Elevated concentrations of molecules such as p-cresyl sulfate and indoxyl sulfate have been associated with abnormal cellular function and poor patient outcomes. However, widespread use of these measures to determine dialysis adequacy has been limited by the need for specialized techniques required for measurement. Altering the gut microbiome to reduce generation of PBTs through increased dietary fiber might be an alternate approach to better patient outcomes, with some initial positive reports. This report explores advantages and limitations of measuring uraemic toxins in PD, now and in the foreseeable future.
Collapse
Affiliation(s)
- Aruni Malaweera
- Department of Renal Medicine, Eastern Health, 5, Arnold Street, Box Hill, Melbourne, VIC 3128, Australia; (L.H.); (L.M.)
| | | | | |
Collapse
|
2
|
Delgado-Marin M, Sánchez-Esteban S, Cook-Calvete A, Jorquera-Ortega S, Zaragoza C, Saura M. Indoxyl Sulfate-Induced Valve Endothelial Cell Endothelial-to-Mesenchymal Transition and Calcification in an Integrin-Linked Kinase-Dependent Manner. Cells 2024; 13:481. [PMID: 38534325 PMCID: PMC10969166 DOI: 10.3390/cells13060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a significant concern for cardiovascular health and is closely associated with chronic kidney disease (CKD). Aortic valve endothelial cells (VECs) play a significant role in the onset and progression of CAVD. Previous research has suggested that uremic toxins, particularly indoxyl sulfate (IS), induce vascular calcification and endothelial dysfunction, but the effect of IS on valve endothelial cells (VECs) and its contribution to CAVD is unclear. Our results show that IS reduced human VEC viability and increased pro-calcific markers RUNX2 and alkaline phosphatase (ALP) expression. Additionally, IS-exposed VECs cultured in pro-osteogenic media showed increased calcification. Mechanistically, IS induced endothelial-to-mesenchymal transition (EndMT), evidenced by the loss of endothelial markers and increased expression of mesenchymal markers. IS triggered VEC inflammation, as revealed by NF-kB activation, and decreased integrin-linked kinase (ILK) expression. ILK overexpression reversed the loss of endothelial phenotype and RUNX2, emphasizing its relevance in the pathogenesis of CAVD in CKD. Conversely, a lower dose of IS intensified some of the effects in EndMT caused by silencing ILK. These findings imply that IS affects valve endothelium directly, contributing to CAVD by inducing EndMT and calcification, with ILK acting as a crucial modulator.
Collapse
Affiliation(s)
- Maria Delgado-Marin
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (M.D.-M.); (S.S.-E.); (A.C.-C.); (S.J.-O.)
| | - Sandra Sánchez-Esteban
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (M.D.-M.); (S.S.-E.); (A.C.-C.); (S.J.-O.)
| | - Alberto Cook-Calvete
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (M.D.-M.); (S.S.-E.); (A.C.-C.); (S.J.-O.)
| | - Sara Jorquera-Ortega
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (M.D.-M.); (S.S.-E.); (A.C.-C.); (S.J.-O.)
| | - Carlos Zaragoza
- Cardiovascular Research University Francisco de Vitoria and Hospital Ramon y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (M.D.-M.); (S.S.-E.); (A.C.-C.); (S.J.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Lalayiannis AD, Soeiro EMD, Moysés RMA, Shroff R. Chronic kidney disease mineral bone disorder in childhood and young adulthood: a 'growing' understanding. Pediatr Nephrol 2024; 39:723-739. [PMID: 37624528 PMCID: PMC10817832 DOI: 10.1007/s00467-023-06109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chronic kidney disease (CKD) mineral and bone disorder (MBD) comprises a triad of biochemical abnormalities (of calcium, phosphate, parathyroid hormone and vitamin D), bone abnormalities (turnover, mineralization and growth) and extra-skeletal calcification. Mineral dysregulation leads to bone demineralization causing bone pain and an increased fracture risk compared to healthy peers. Vascular calcification, with hydroxyapatite deposition in the vessel wall, is a part of the CKD-MBD spectrum and, in turn, leads to vascular stiffness, left ventricular hypertrophy and a very high cardiovascular mortality risk. While the growing bone requires calcium, excess calcium can deposit in the vessels, such that the intake of calcium, calcium- containing medications and high calcium dialysate need to be carefully regulated. Normal physiological bone mineralization continues into the third decade of life, many years beyond the rapid growth in childhood and adolescence, implying that skeletal calcium requirements are much higher in younger people compared to the elderly. Much of the research into the link between bone (de)mineralization and vascular calcification in CKD has been performed in older adults and these data must not be extrapolated to children or younger adults. In this article, we explore the physiological changes in bone turnover and mineralization in children and young adults, the pathophysiology of mineral bone disease in CKD and a potential link between bone demineralization and vascular calcification.
Collapse
Affiliation(s)
- Alexander D Lalayiannis
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK.
| | | | - Rosa M A Moysés
- Sao Paulo University Faculty of Medicine, Universidade de Sao Paulo Faculdade de Medicina, São Paulo, Brazil
| | - Rukshana Shroff
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK
| |
Collapse
|
4
|
Adamidis PS, Florentin M, Liberopoulos E, Koutsogianni AD, Anastasiou G, Liamis G, Milionis H, Barkas F. Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study. J Cardiovasc Dev Dis 2024; 11:60. [PMID: 38392274 PMCID: PMC10889667 DOI: 10.3390/jcdd11020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND AIM Serum alkaline phosphatase (ALP) activity has been associated with atherosclerotic cardiovascular disease (ASCVD). We aimed to investigate the association of ALP with ASCVD in patients with dyslipidemia. METHODS We conducted a retrospective cohort study including consecutive adults with dyslipidemia followed-up for ≥3 years (from 1999 to 2022) in the outpatient Lipid Clinic of Ioannina University General Hospital, Greece. The primary endpoint was the association between baseline ALP and incident ASCVD after adjusting for traditional risk factors (i.e., sex, age, hypertension, diabetes, smoking, and dyslipidemia), baseline ASCVD, and lipid-lowering treatment. ALP levels were stratified by tertiles as follows: low: <67 U/L, middle: 67-79 U/L, high: ≥79 U/L. RESULTS Overall, 1178 subjects were included; 44% were males, and their median age was 57 years (range: 49-65). During a 6-year median follow-up (interquartile range: IQR: 4-9), 78 new ASCVD events (6.6%) occurred. A statistically significant association between baseline ALP levels and incident ASCVD was demonstrated (Odds Ratio, OR: 6.99; 95% Confidence Interval, CI: 2.29-21.03, p = 0.001). Subjects in the highest ALP tertile had the highest odds for ASCVD when compared with those in the lowest tertile (OR: 2.35; 95% CI: 1.24-4.41, p = 0.008). CONCLUSIONS The present study indicates an association between ALP and the development of ASCVD in patients with dyslipidemia, which underscores the potential of ALP as a predictive tool or a therapeutic target in the realm of ASCVD prevention within this population.
Collapse
Affiliation(s)
- Petros Spyridonas Adamidis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Matilda Florentin
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos Liberopoulos
- 1st Propedeutic Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Amalia Despoina Koutsogianni
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgia Anastasiou
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - George Liamis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Haralampos Milionis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
6
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Chang L, Tian R, Guo Z, He L, Li Y, Xu Y, Zhang H. Low-protein diet supplemented with inulin lowers protein-bound toxin levels in patients with stage 3b-5 chronic kidney disease: a randomized controlled study. NUTR HOSP 2023; 40:819-828. [PMID: 37409723 DOI: 10.20960/nh.04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Objective: this study aimed to evaluate whether low-salt low-protein diet (LPD) supplemented with 10 g of inulin could lower serum toxin levels in patients with chronic kidney disease (CKD), thereby providing evidence for adjusting dietary prescriptions of inhospital patients and outpatient nutrition consultants. Methods: we randomized 54 patients with CKD into two groups. Dietary protein intake compliance was evaluated using a 3-day dietary diary and 24-h urine nitrogen levels. The primary outcomes were indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and secondary outcomes included inflammation marker levels, nutritional status, and renal function. We assessed 89 patients for eligibility, and a total of 45 patients completed the study, including 23 and 22 in the inulin-added and control groups, respectively. Results: PCS values decreased in both groups after intervention: inulin-added group, ∆PCS -1.33 (-4.88, -0.63) μg/mL vs. LPD group, -4.7 (-3.78, 3.69) μg/mL (p = 0.058). PCS values reduced from 7.52 to 4.02 μg/mL (p < 0.001) in the inulin-added group (p < 0.001). Moreover, IS decreased from 3.42 (2.53, 6.01) μg/mL to 2.83 (1.67, 4.74) μg/mL after adding inulin; ∆IS was -0.64 (-1.48, 0.00) μg/mL, and a significant difference was observed compared with the control group (p = 0.004). The inflammation index decreased after intervention. Conclusion: dietary fiber supplementation may reduce serum IS and PCS levels and modulate their inflammatory status in predialysis CKD patients.
Collapse
Affiliation(s)
- Liyang Chang
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Rongrong Tian
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Zili Guo
- College of Pharmaceutical Sciences. Zhejiang University of Technology
| | - Luchen He
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Yanjuan Li
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Yao Xu
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Hongmei Zhang
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| |
Collapse
|
9
|
Ahmed S, de Vries JC, Lu J, Stuart MHV, Mihăilă SM, Vernooij RWM, Masereeuw R, Gerritsen KGF. Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review. Int J Mol Sci 2023; 24:13197. [PMID: 37686004 PMCID: PMC10487432 DOI: 10.3390/ijms241713197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Joost C. de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Milan H. Verrijn Stuart
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Robin W. M. Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| |
Collapse
|
10
|
Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10050207. [PMID: 37233174 DOI: 10.3390/jcdd10050207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The global prevalence of chronic kidney disease (CKD) has increased in recent years. Adverse cardiovascular events have become the main cause of life-threatening events in patients with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification, especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in patients with CKD. Some features and risk factors are unique to vascular calcification in patients with CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin accumulation, and other novel factors. The study on the mechanism of vascular calcification in patients with renal insufficiency can provide a basis and new target for the prevention and treatment of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to discuss the recent research data on the pathogenesis and factors involved in vascular calcification, mainly focusing on coronary artery calcification, in patients with CKD.
Collapse
Affiliation(s)
- Zhuoming Dai
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
11
|
Ribeiro A, Liu F, Srebrzynski M, Rother S, Adamowicz K, Wadowska M, Steiger S, Anders HJ, Schmaderer C, Koziel J, Lech M. Uremic Toxin Indoxyl Sulfate Promotes Macrophage-Associated Low-Grade Inflammation and Epithelial Cell Senescence. Int J Mol Sci 2023; 24:ijms24098031. [PMID: 37175735 PMCID: PMC10179130 DOI: 10.3390/ijms24098031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Feiyue Liu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Matthias Srebrzynski
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Simone Rother
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
12
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
13
|
Teng RD, Yang CH, Chung CL, Sheu JR, Hsieh CY. Attenuation of indoxyl sulfate-induced cell damage by cinchonidine-a Cinchona alkaloid-through the downregulation of p53 signaling pathway by promoting MDM2 cytoplasmic-nuclear shuttling in endothelial cells. Life Sci 2023; 318:121477. [PMID: 36796718 DOI: 10.1016/j.lfs.2023.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Renocardiac syndromes are a critical concern among patients with chronic kidney disease (CKD). High level of indoxyl sulfate (IS), a protein-bound uremic toxin, in plasma is known to promote the pathogenesis of cardiovascular diseases by impairing endothelial function. However, the therapeutic effects of the adsorbent of indole, a precursor of IS, on renocardiac syndromes is still debated. Therefore, novel therapeutic approaches should be developed to treat IS-associated endothelial dysfunction. In the present study, we have found that cinchonidine, a major Cinchona alkaloid, exhibited superior cell-protective effects among the 131 test compounds in IS-stimulated human umbilical vein endothelial cells (HUVECs). IS-induced cell death, cellular senescence, and impairment of tube formation in HUVECs were substantially reversed after treatment with cinchonidine. Despite the cinchonidine did not alter reactive oxygen species formation, cellular uptake of IS and OAT3 activity, RNA-Seq analysis showed that the cinchonidine treatment downregulated p53-modulated gene expression and substantially reversed IS-caused G0/G1 cell cycle arrest. Although the mRNA levels of p53 were not considerably downregulated by cinchonidine in IS-treated HUVECs, the treatment of cinchonidine promoted the degradation of p53 and the cytoplasmic-nuclear shuttling of MDM2. Cinchonidine exhibited cell-protective effects against the IS-induced cell death, cellular senescence, and impairment of vasculogenic activity in HUVECs through the downregulation of p53 signaling pathway. Collectively, cinchonidine may be a potential cell-protective agent to rescue IS-induced endothelial cell damage.
Collapse
Affiliation(s)
- Ruei-Dun Teng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Candellier A, Issa N, Grissi M, Brouette T, Avondo C, Gomila C, Blot G, Gubler B, Touati G, Bennis Y, Caus T, Brazier M, Choukroun G, Tribouilloy C, Kamel S, Boudot C, Hénaut L. Indoxyl-sulfate activation of the AhR- NF-κB pathway promotes interleukin-6 secretion and the subsequent osteogenic differentiation of human valvular interstitial cells from the aortic valve. J Mol Cell Cardiol 2023; 179:18-29. [PMID: 36967106 DOI: 10.1016/j.yjmcc.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1β, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.
Collapse
Affiliation(s)
- Alexandre Candellier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Nervana Issa
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Maria Grissi
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Théo Brouette
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Carine Avondo
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Cathy Gomila
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Gérémy Blot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Brigitte Gubler
- Department of Immunology, Amiens University Hospital, Amiens, France; Department of Molecular Oncobiology, Amiens University Hospital, 80054, France; EA4666 - HEMATIM, CURS, Picardie Jules Verne University, Amiens 80054, France
| | - Gilles Touati
- Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Youssef Bennis
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Thierry Caus
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Michel Brazier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Christophe Tribouilloy
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiology, Amiens University Hospital, Amiens, France
| | - Saïd Kamel
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Cédric Boudot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Lucie Hénaut
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
15
|
Mitrović M, Stanković-Popović V, Tolinački M, Golić N, Soković Bajić S, Veljović K, Nastasijević B, Soldatović I, Svorcan P, Dimković N. The Impact of Synbiotic Treatment on the Levels of Gut-Derived Uremic Toxins, Inflammation, and Gut Microbiome of Chronic Kidney Disease Patients-A Randomized Trial. J Ren Nutr 2023; 33:278-288. [PMID: 35995418 DOI: 10.1053/j.jrn.2022.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Altering dysbiotic gut flora through synbiotic supplementation has recently been recognized as a potential treatment strategy to reduce the levels of gut-derived uremic toxins and decrease inflammation. Assessing its efficacy and safety has been the main goal of our randomized, double-blind, placebo-controlled study. METHODS A total of 34 nondialyzed chronic kidney disease patients, aged ≥18 years, with an estimated glomerular filtration rate between 15 and 45 mL/minute, were randomized either to an intervention group (n = 17), receiving synbiotic (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium lactis, 32 billion colony forming units per day plus 3.2 g of inulin), or control group (n = 17), receiving placebo during 12 weeks. The impact of treatment on the dynamic of serum levels of gut-derived uremic toxins, total serum indoxyl sulfate, p-cresyl sulfate, and trimethylamine N-oxide, was defined as the primary outcome of the study. Secondary outcomes included changes in the stool microbiome, serum interleukin-6 levels, high-sensitivity C-reactive protein, estimated glomerular filtration rate, albuminuria, diet, gastrointestinal symptom dynamics, and safety. Serum levels of uremic toxins were determined using ultraperformance liquid chromatography. The stool microbiome analysis was performed using the 16S ribosomal ribonucleic acid gene sequencing approach. RESULTS Synbiotic treatment significantly modified gut microbiome with Bifidobacteria, Lactobacillus, and Subdoligranulum genera enrichment and consequently reduced serum level of indoxyl sulfate (ΔIS -21.5% vs. 5.3%, P < .001), improved estimated glomerular filtration rate (ΔeGFR 12% vs. 8%, P = .029), and decreased level of high-sensitivity C-reactive protein (-39.5 vs. -8.5%, P < .001) in treated patients. Two patients of the intervention arm complained of increased flatulence. No other safety issues were noted. CONCLUSION Synbiotics could be available, safe, and an effective therapeutic strategy we could use in daily practice in order to decrease levels of uremic toxins and microinflammation in chronic kidney disease patients.
Collapse
Affiliation(s)
- Miloš Mitrović
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia.
| | - Verica Stanković-Popović
- Nephrology Clinic, Clinical Center Serbia, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Soković Bajić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Veljović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branislav Nastasijević
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences University of Belgrade, -National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Petar Svorcan
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Dimković
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Ni SH, OuYang XL, Liu X, Lin JH, Li Y, Sun SN, Deng JP, Han XW, Zhang XJ, Li H, Huang YS, Chen ZX, Lian ZM, Wang ZK, Long WJ, Wang LJ, Yang ZQ, Lu L. A molecular phenotypic screen reveals that lobetyolin alleviates cardiac dysfunction in 5/6 nephrectomized mice by inhibiting osteopontin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154412. [PMID: 36191549 DOI: 10.1016/j.phymed.2022.154412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the major cause of mortality in patients with advanced chronic kidney diseases. The predominant abnormality observed among this population is cardiac dysfunction secondary to myocardial remodelings, such as hypertrophy and fibrosis, emphasizing the need to develop potent therapies that maintain cardiac function in patients with end-stage renal disease. AIMS To identify potential compounds and their targets as treatments for cardiorenal syndrome type 4 (CRS) using molecular phenotyping and in vivo/in vitro experiments. METHODS Gene expression was assessed using bioinformatics and verified in animal experiments using 5/6 nephrectomized mice (NPM). Based on this information, a molecular phenotyping strategy was pursued to screen potential compounds. Picrosirius red staining, wheat germ agglutinin staining, Echocardiography, immunofluorescence staining, and real-time quantitative PCR (qPCR) were utilized to evaluate the effects of compounds on CRS in vivo. Furthermore, qPCR, immunofluorescence staining and flow cytometry were applied to assess the effects of these compounds on macrophages/cardiac fibroblasts/cardiomyocytes. RNA-Seq analysis was performed to locate the targets of the selected compounds. Western blotting was performed to validate the targets and mechanisms. The reversibility of these effects was tested by overexpressing Osteopontin (OPN). RESULTS OPN expression increased more remarkably in individuals with uremia-induced cardiac dysfunction than in other cardiomyopathies. Lobetyolin (LBT) was identified in the compound screen, and it improved cardiac dysfunction and suppressed remodeling in NPM mice. Additionally, OPN modulated the effect of LBT on cardiac dysfunction in vivo and in vitro. Further experiments revealed that LBT suppressed OPN expression via the phosphorylation of c-Jun N-terminal protein kinase (JNK) signaling pathway. CONCLUSIONS LBT improved CRS by inhibiting OPN expression through the JNK pathway. This study is the first to describe a cardioprotective effect of LBT and provides new insights into CRS drug discovery.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Lu OuYang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin-Hai Lin
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhi-Ming Lian
- Guangzhou integrated traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhen-Kui Wang
- Guangzhou integrated traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
17
|
Li Q, Zhang S, Wu QJ, Xiao J, Wang ZH, Mu XW, Zhang Y, Wang XN, You LL, Wang SN, Song JN, Zhao XN, Wang ZZ, Yan XY, Jin YX, Jiang BW, Liu SX. Serum total indoxyl sulfate levels and all-cause and cardiovascular mortality in maintenance hemodialysis patients: a prospective cohort study. BMC Nephrol 2022; 23:231. [PMID: 35764943 PMCID: PMC9238151 DOI: 10.1186/s12882-022-02862-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The association between serum total indoxyl sulfate (tIS), and cardiovascular disease (CVD) and all-cause mortality is a matter of debate. In the current study we sought to determine the association, if any, between serum tIS, and all-cause and CVD-associated mortality in patients on maintenance hemodialysis (MHD). METHODS A prospective cohort study was conducted involving 500 MHD patients at Dalian Municipal Central Hospital from 31 December 2014 to 31 December 2020. Serum tIS levels were measured at baseline and classified as high (≥44.16 ng/ml) or low (< 44.16 ng/ml) according to the "X-tile" program. Besides, the associations between continuous serum tIS and outcomes were also explored. Predictors were tested for colinearity using variance inflation factor analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression models. Restricted cubic spline model was performed to assess dose-response relationships between tIS concentration and all-cause and CVD mortality. RESULTS During a 58-month median follow-up period, 224 deaths (132 CVD deaths) were documented. After adjustment for potential confounders, the serum tIS level was positively associated with all-cause mortality (HR = 1.02, 95% = 1.01-1.03); however, we did not detect a significant association when tIS was a dichotomous variable. Compared with the MHD population with a serum tIS level < 44.16 ng/ml, the adjusted HR for CVD mortality among those with a serum tIS level ≥ 44.16 ng/ml was 1.76 (95% = 1.10-2.82). Furthermore, we also noted the same association when the serum tIS level was a continuous variable. CONCLUSION The serum tIS level was associated with higher risk of all-cause and CVD mortality among MHD patients. Further prospective large-scale studies are required to confirm this finding.
Collapse
Affiliation(s)
- Qian Li
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Shuang Zhang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Xiao
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Zhi-Hong Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Xiang-Wei Mu
- School of Maritime Economics and Management, Dalian Maritime University, Dalian, China
| | - Yu Zhang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Xue-Na Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Lian-Lian You
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Sheng-Nan Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Jia-Ni Song
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Xiu-Nan Zhao
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Zhen-Zhen Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Xin-Yi Yan
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Yu-Xin Jin
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China.,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China
| | - Bo-Wen Jiang
- School of Maritime Economics and Management, Dalian Maritime University, Dalian, China
| | - Shu-Xin Liu
- Department of Nephrology, Dalian Municipal Central Hospital, No.826, Xinan Road, Dalian, Liaoning, 116033, P. R. China. .,Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, Dalian, China.
| |
Collapse
|
18
|
Ventura C, Marques C, Cadete J, Vilar M, Pedrosa JFS, Pinto F, Fernandes SN, da Rosa RR, Godinho MH, Ferreira PJT, Louro H, Silva MJ. Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. J Xenobiot 2022; 12:91-108. [PMID: 35645290 PMCID: PMC9149940 DOI: 10.3390/jox12020009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Catarina Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - João Cadete
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Madalena Vilar
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Jorge F. S. Pedrosa
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Fátima Pinto
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Susete Nogueira Fernandes
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Rafaela Raupp da Rosa
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Maria Helena Godinho
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Paulo J. T. Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| |
Collapse
|
19
|
El Chamieh C, Liabeuf S, Massy Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins (Basel) 2022; 14:280. [PMID: 35448889 PMCID: PMC9028122 DOI: 10.3390/toxins14040280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an elevated prevalence of atheromatous (ATH) and/or non-atheromatous (non-ATH) cardiovascular disease (CVD) due to an array of CKD-related risk factors, such as uremic toxins (UTs). Indeed, UTs have a major role in the emergence of a spectrum of CVDs, which constitute the leading cause of death in patients with end-stage renal disease. The European Uremic Toxin Work Group has identified over 100 UTs, more than 25 of which are dietary or gut-derived. Even though relationships between UTs and CVDs have been described in the literature, there are few reviews on the involvement of the most toxic compounds and the corresponding physiopathologic mechanisms. Here, we review the scientific literature on the dietary and gut-derived UTs with the greatest toxicity in vitro and in vivo. A better understanding of these toxins' roles in the elevated prevalence of CVDs among CKD patients might facilitate the development of targeted treatments. Hence, we review (i) ATH and non-ATH CVDs and the respective levels of risk in patients with CKD and (ii) the mechanisms that underlie the influence of dietary and gut-derived UTs on CVDs.
Collapse
Affiliation(s)
- Carolla El Chamieh
- Center for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles-Saint-Quentin-en-Yvelines University (UVSQ), INSERM UMRS 1018, F-94807 Villejuif, France;
| | - Sophie Liabeuf
- Pharmacology Department, Amiens University Hospital, F-80000 Amiens, France
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Ziad Massy
- Nephrology Department, Ambroise Paré University Hospital, APHP, F-92100 Paris, France
| |
Collapse
|
20
|
Yu H, Zhou C, Hu D, Li C, Wang Q, Xue W, Peng A. Uremic toxin indoxyl sulfate induces dysfunction of vascular smooth muscle cells via integrin-β1/ERK signaling pathway. Clin Exp Nephrol 2022; 26:640-648. [PMID: 35333997 DOI: 10.1007/s10157-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) are reported to be one of the major culprits in chronic kidney disease-cardiovascular disease (CKD-CVD) development, yet its mechanism is not fully clear. Our previous study confirmed elevated expression of integrin-β1 (ITGβ1) in vascular smooth muscle cells of uremic patients. Thus, this study aimed to explore the relationship between PBUTs and ITGβ1 in uremic vasculature injury. METHODS Human umbilical vein smooth muscle cells (HUVSMCs) and endothelial cells (HUVECs) were treated with two representative PUBTs, indoxyl sulfate (IS) and p-cresyl sulfate (PC). Both cells were measured for the expression of ITGβ1 and downstream signaling pathways and assayed for proliferation, migration, adhesion and apoptosis. RESULTS The IS treatments were observed with significantly up-regulated ITGβ1 in HUVSMCs but not in HUVECs, while PC did not induce ITGβ1 alteration in either HUVSMCs or HUVECs. Furthermore, overexpression of ITGβ1 revealed activated downstream signal-regulated kinase (ERK) signaling pathway with promoted focal adhesion, migration, proliferation but no apoptosis in HUVSMCs by IS. These functional and pathway alterations could be significantly suppressed by RNA interference of ITGβ1. More importantly, the application of ERK1/2 inhibitor significantly suppressed the focal adhesion, migration and proliferation of HUVSMCs. CONCLUSION We first demonstrated that ITGβ1/ERK signaling pathway mediated abnormal focal adhesion, migration and proliferation of vascular smooth muscle cells stimulated by IS. ITGβ1/ERK signaling may serve as a novel therapeutic target for CKD-CVD.
Collapse
Affiliation(s)
- Haibo Yu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyu Zhou
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dayong Hu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Changbin Li
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Wang
- Department of Nephrology, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Wen Xue
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Ai Peng
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Serum concentrations of free indoxyl and p-cresyl sulfate are associated with mineral metabolism variables and cardiovascular risk in hemodialysis patients. J Nephrol 2022; 35:1457-1465. [PMID: 35175580 DOI: 10.1007/s40620-022-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are uremic toxins associated with cardiovascular outcome in CKD patients. The present work is an analysis of the association of serum free, total IS and PCS with cardiovascular events and calcium-phosphate metabolism variables in hemodialysis patients. METHODS Serum levels of total and free IS and PCS were measured in 139 hemodialysis patients. Their relationship with calcium-phosphate metabolism variables were tested in an observational cohort study. In addition, their association with cardiovascular events was investigated during a 4-year follow-up. RESULTS Patients in the highest tertile (T3) of serum free IS showed lower serum 1,25(OH)2D compared to patients in the middle (T2) and lowest tertile (T1); in addition to this, T3 patients showed lower serum irisin than T1 patients and lower serum PTH than all the other subjects (T1 + T2) combined. Serum PTH was also measured during the two years after the baseline measurement and was higher in patients in the T1 than in those in the T3 of serum free IS. Cox regression analysis showed that cardiovascular risk was lower in T1 patients than in those in the T3 of serum free PCS, both using a univariate (OR 2.55, 95% CI 1.2-5.43; p = 0.015) or multivariate model (OR 2.48, 95% CI 1.12-5.51; p = 0.003). CONCLUSIONS Serum free IS may be associated with PTH and 1,25(OH)2D secretion, whereas free PCS may predict cardiovascular risk in hemodialysis patients.
Collapse
|
22
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
23
|
Bourne LE, Patel JJ, Davies BK, Neven E, Verhulst A, D'Haese PC, Wheeler-Jones CPD, Orriss IR. N-acetylcysteine (NAC) differentially affects arterial medial calcification and bone formation: The role of l-cysteine and hydrogen sulphide. J Cell Physiol 2021; 237:1070-1086. [PMID: 34658034 DOI: 10.1002/jcp.30605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.
Collapse
Affiliation(s)
- Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ellen Neven
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
24
|
Mason DL, Godugu K, Nnani D, Mousa SA. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. Clin Transl Sci 2021; 15:353-360. [PMID: 34599865 PMCID: PMC8841464 DOI: 10.1111/cts.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Hyperphosphatemia is present in most patients with end‐stage renal disease (ESRD) and has been associated with increased cardiovascular mortality. Phosphate binders (calcium‐based and calcium free) are the mainstay pharmacologic treatment to lower phosphorus levels in patients with ESRD. We evaluated biochemical markers of vascular calcification, inflammation, and endothelial dysfunction in patients with chronic kidney disease (CKD) treated with sevelamer carbonate (SC) versus calcium acetate (CA). Fifty patients with CKD (stages 3 and 4) were enrolled and assigned to treatment with SC and CA for 12 weeks. At the end of the study the biomarkers of vascular calcification, inflammation, and endothelial dysfunction were analyzed. A significant increase in HDL‐cholesterol was observed with SC but not with CA in patients with CKD. Treatment with SC reduced serum phosphate, calcium phosphate, and FGF‐23 levels and there was no change with CA treatment. The inflammatory markers IL‐8, IFN‐γ, and TNFα decreased with response to both treatments. The levels of IL‐6 significantly increased with CA treatment and no change was observed in the SC treatment group. SC showed favorable effects on anti‐inflammatory and vascular calcification biomarkers compared to CA treatment in patients with CKD stages 3 and 4 with normal phosphorous values.
Collapse
Affiliation(s)
- Darius L Mason
- Methodist Le Bonheur Healthcare, Memphis, Tennessee, USA.,Department of Clinical Pharmacy & Translational Science, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Daryl Nnani
- Department of Pharmacy, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
25
|
Rodrigues FG, Ormanji MS, Heilberg IP, Bakker SJL, de Borst MH. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest 2021; 51:e13588. [PMID: 33948936 PMCID: PMC8459296 DOI: 10.1111/eci.13588] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the 'gut-bone-vascular axis' in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD.
Collapse
Affiliation(s)
- Fernanda G Rodrigues
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milene S Ormanji
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ita P Heilberg
- Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil.,Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Indoxyl sulfate enhances endothelin-1-induced contraction via impairment of NO/cGMP signaling in rat aorta. Pflugers Arch 2021; 473:1247-1259. [PMID: 34021781 DOI: 10.1007/s00424-021-02581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The microbiome-derived tryptophan metabolite, indoxyl sulfate, is considered a harmful vascular toxin. Here, we examined the effects of indoxyl sulfate on endothelin-1 (ET-1)-induced contraction in rat thoracic aortas. Indoxyl sulfate (10-3 M, 60 min) increased ET-1-induced contraction but did not affect isotonic high-K+-induced contraction. The ET-1-induced contraction was enhanced by endothelial denudation in both control and indoxyl sulfate-treated groups. BQ123 (10-6 M), an ETA receptor antagonist, reduced the ET-1-induced contraction in both control and indoxyl sulfate groups. BQ788 (10-6 M), an ETB receptor antagonist, increased the contraction in the control group but had no effect on the indoxyl sulfate group. Conversely, indoxyl sulfate inhibited relaxation induced by IRL1620, an ETB receptor agonist. L-NNA, an NO synthase (NOS) inhibitor, increased the ET-1-induced contractions in both the control and indoxyl sulfate groups, whereas L-NPA (10-6 M), a specific neuronal NOS inhibitor, did not affect the ET-1-induced contraction in both groups. However, ODQ, an inhibitor of soluble guanylyl cyclase, increased the ET-1-induced contraction in both groups. Organic anion transporter (OAT) inhibitor probenecid (10-3 M) and antioxidant N-acetyl-L-cysteine (NAC; 5 × 10-3 M) inhibited the effects of indoxyl sulfate. A cell-permeant superoxide scavenger reduced the ET-1-induced contraction in the indoxyl sulfate group. The aortic activity of SOD was reduced by indoxyl sulfate. The present study revealed that indoxyl sulfate augments ET-1-induced contraction in rat aortae. This enhancement may be due to the impairment of NO/cGMP signaling and may be attributed to impairment of the antioxidant systems via cellular uptake through OATs.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
27
|
Kim MG, Yang J, Jo SK. Intestinal microbiota and kidney diseases. Kidney Res Clin Pract 2021; 40:335-343. [PMID: 34233442 PMCID: PMC8476297 DOI: 10.23876/j.krcp.21.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Large microbial communities reside in the gut as an endogenous organ and interact with the host physiology through symbiotic relationships, affecting health. Recent advances in high-throughput sequencing techniques have made it possible to better understand these complex microbial communities and their effects on hosts. Animal and clinical studies have provided considerable evidence to show that the microbiota plays an important role in chronic kidney disease, acute kidney injury, nephrolithiasis, and kidney transplantation by altering the functions of the intestinal barrier, regulating local and systemic inflammation, controlling production of metabolic components, and affecting immune responses. Although the exact mechanism underlying the microbial shift and its impact on disease progression remains uncertain, the kidney-gut interaction clearly plays a significant role in onset and progression of kidney disease and, therefore, holds promise as a therapeutic target. Here, we review recent literature pertaining to the bidirectional relationship between microbes and humans in various kidney diseases and discuss the future direction of microbial research in nephrology.
Collapse
Affiliation(s)
- Myung-Gyu Kim
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Yang
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Kyung Jo
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Lu CL, Zheng CM, Lu KC, Liao MT, Wu KL, Ma MC. Indoxyl-Sulfate-Induced Redox Imbalance in Chronic Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10060936. [PMID: 34207816 PMCID: PMC8228088 DOI: 10.3390/antiox10060936] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The accumulation of the uremic toxin indoxyl sulfate (IS) induces target organ damage in chronic kidney disease (CKD) patients, and causes complications including cardiovascular diseases, renal osteodystrophy, muscle wasting, and anemia. IS stimulates reactive oxygen species (ROS) production in CKD, which impairs glomerular filtration by a direct cytotoxic effect on the mesangial cells. IS further reduces antioxidant capacity in renal proximal tubular cells and contributes to tubulointerstitial injury. IS-induced ROS formation triggers the switching of vascular smooth muscular cells to the osteoblastic phenotype, which induces cardiovascular risk. Low-turnover bone disease seen in early CKD relies on the inhibitory effects of IS on osteoblast viability and differentiation, and osteoblastic signaling via the parathyroid hormone. Excessive ROS and inflammatory cytokine releases caused by IS directly inhibit myocyte growth in muscle wasting via myokines’ effects. Moreover, IS triggers eryptosis via ROS-mediated oxidative stress, and elevates hepcidin levels in order to prevent iron flux in circulation in renal anemia. Thus, IS-induced oxidative stress underlies the mechanisms in CKD-related complications. This review summarizes the underlying mechanisms of how IS mediates oxidative stress in the pathogenesis of CKD’s complications. Furthermore, we also discuss the potential role of oral AST-120 in attenuating IS-mediated oxidative stress after gastrointestinal adsorption of the IS precursor indole.
Collapse
Affiliation(s)
- Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei 23561, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan;
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Kun-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
- Correspondence: (K.-L.W.); (M.-C.M.)
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan
- Correspondence: (K.-L.W.); (M.-C.M.)
| |
Collapse
|
29
|
Wang SC, Lai YH, Liu CH, Wang CH, Hsu BG, Tsai JP. Association between serum indoxyl sulfate levels with carotid-femoral pulse wave velocity in patients with chronic kidney disease. Ren Fail 2021; 43:796-802. [PMID: 33941031 PMCID: PMC8110183 DOI: 10.1080/0886022x.2021.1921797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The role of indoxyl sulfate (IS), an important protein-bound uremic toxin, in arterial stiffness (AS) in patients with chronic kidney disease (CKD) is unclear. MATERIALS AND METHODS We investigated the association between serum IS levels and AS in a cross-sectional study of 155 patients with CKD. Patients in the AS group was defined as carotid-femoral pulse wave velocity (cfPWV) value >10 m/s measured by a validated tonometry system (SphygmoCor), while values ≤10 m/s were regarded as without AS group Serum IS was measured by liquid chromatography-mass spectrometry analysis. RESULTS Of these CKD patients, AS was present in 51 (32.9%) patients, who were older, had a higher rate of diabetes, higher systolic blood pressure (SBP), and higher IS levels compared to those without AS. By multivariable logistic regression analysis, IS (adjusted odds ratio [aOR] 1.436, 95% confidence interval [CI] 1.085-1.901, p = 0.011), age (aOR 1.058, 95% CI 1.021-1.097, p = 0.002), and SBP (aOR 1.019, 95%CI 1.000-1.038, p = 0.049) were independent predictors of AS. By multivariable stepwise linear regression analysis, logarithmically transformed IS, age, DM, and SBP were significantly correlated with cfPWV. The area under the receiver-operating characteristic curve for serum log-IS was 0.677 (95%CI 0.598-0.750, p = 0.0001) to predict the development of AS in patients with CKD. CONCLUSION These finding demonstrate that in addition to older and higher SBP, a high serum IS level is a significant biomarker associated with AS in patients with CKD.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Hsien Lai
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Department of Pharmacology, Tzu Chi University, Hualien, Taiwan.,Cardiovascular Research Centre, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
30
|
Gesper M, Nonnast ABH, Kumowski N, Stoehr R, Schuett K, Marx N, Kappel BA. Gut-Derived Metabolite Indole-3-Propionic Acid Modulates Mitochondrial Function in Cardiomyocytes and Alters Cardiac Function. Front Med (Lausanne) 2021; 8:648259. [PMID: 33829028 PMCID: PMC8019752 DOI: 10.3389/fmed.2021.648259] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The gut microbiome has been linked to the onset of cardiometabolic diseases, in part facilitated through gut microbiota-dependent metabolites such as trimethylamine-N-oxide. However, molecular pathways associated to heart failure mediated by microbial metabolites remain largely elusive. Mitochondria play a pivotal role in cellular energy metabolism and mitochondrial dysfunction has been associated to heart failure pathogenesis. Aim of the current study was to evaluate the impact of gut-derived metabolites on mitochondrial function in cardiomyocytes via an in vitro screening approach. Methods: Based on a systematic Medline research, 25 microbial metabolites were identified and screened for their metabolic impact with a focus on mitochondrial respiration in HL-1 cardiomyocytes. Oxygen consumption rate in response to different modulators of the respiratory chain were measured by a live-cell metabolic assay platform. For one of the identified metabolites, indole-3-propionic acid, studies on specific mitochondrial complexes, cytochrome c, fatty acid oxidation, mitochondrial membrane potential, and reactive oxygen species production were performed. Mitochondrial function in response to this metabolite was further tested in human hepatic and endothelial cells. Additionally, the effect of indole-3-propionic acid on cardiac function was studied in isolated perfused hearts of C57BL/6J mice. Results: Among the metabolites examined, microbial tryptophan derivative indole-3-propionic acid could be identified as a modulator of mitochondrial function in cardiomyocytes. While acute treatment induced enhancement of maximal mitochondrial respiration (+21.5 ± 7.8%, p < 0.05), chronic exposure led to mitochondrial dysfunction (-18.9 ± 9.1%; p < 0.001) in cardiomyocytes. The latter effect of indole-3-propionic acids could also be observed in human hepatic and endothelial cells. In isolated perfused mouse hearts, indole-3-propionic acid was dose-dependently able to improve cardiac contractility from +26.8 ± 11.6% (p < 0.05) at 1 μM up to +93.6 ± 14.4% (p < 0.001) at 100 μM. Our mechanistic studies on indole-3-propionic acids suggest potential involvement of fatty acid oxidation in HL-1 cardiomyocytes. Conclusion: Our data indicate a direct impact of microbial metabolites on cardiac physiology. Gut-derived metabolite indole-3-propionic acid was identified as mitochondrial modulator in cardiomyocytes and altered cardiac function in an ex vivo mouse model.
Collapse
Affiliation(s)
- Maren Gesper
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Alena B H Nonnast
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nina Kumowski
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Robert Stoehr
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Katharina Schuett
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ben A Kappel
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins (Basel) 2021; 13:toxins13020142. [PMID: 33668632 PMCID: PMC7917723 DOI: 10.3390/toxins13020142] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive loss of renal function. The gradual decline in kidney function leads to an accumulation of toxins normally cleared by the kidneys, resulting in uremia. Uremic toxins are classified into three categories: free water-soluble low-molecular-weight solutes, protein-bound solutes, and middle molecules. CKD patients have increased risk of developing cardiovascular disease (CVD), due to an assortment of CKD-specific risk factors. The accumulation of uremic toxins in the circulation and in tissues is associated with the progression of CKD and its co-morbidities, including CVD. Although numerous uremic toxins have been identified to date and many of them are believed to play a role in the progression of CKD and CVD, very few toxins have been extensively studied. The pathophysiological mechanisms of uremic toxins must be investigated further for a better understanding of their roles in disease progression and to develop therapeutic interventions against uremic toxicity. This review discusses the renal and cardiovascular toxicity of uremic toxins indoxyl sulfate, p-cresyl sulfate, hippuric acid, TMAO, ADMA, TNF-α, and IL-6. A focus is also placed on potential therapeutic targets against uremic toxicity.
Collapse
|
32
|
Grund A, Sinha MD, Haffner D, Leifheit-Nestler M. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease-A Pediatric Perspective. Front Pediatr 2021; 9:702719. [PMID: 34422725 PMCID: PMC8372151 DOI: 10.3389/fped.2021.702719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are a hallmark in pediatric patients with chronic kidney disease (CKD) contributing to an enhanced risk of all-cause and CV morbidity and mortality in these patients. The bone-derived phosphaturic hormone fibroblast growth factor (FGF) 23 progressively rises with declining kidney function to maintain phosphate homeostasis, with up to 1,000-fold increase in patients with kidney failure requiring dialysis. FGF23 is associated with the development of left ventricular hypertrophy (LVH) and thereby accounts to be a CVD risk factor in CKD. Experimentally, FGF23 directly induces hypertrophic growth of cardiac myocytes in vitro and LVH in vivo. Further, clinical studies in adult CKD have observed cardiotoxicity associated with FGF23. Data regarding prevalence and determinants of FGF23 excess in children with CKD are limited. This review summarizes current data and discusses whether FGF23 may be a key driver of LVH in pediatric CKD.
Collapse
Affiliation(s)
- Andrea Grund
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Manish D Sinha
- Department of Paediatric Nephrology, King's College London, Evelina London Children's Hospital, London, United Kingdom
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| |
Collapse
|
33
|
Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel) 2020; 12:toxins12120812. [PMID: 33371477 PMCID: PMC7767516 DOI: 10.3390/toxins12120812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23, cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials for their potential vascular benefits. Further advanced studies are still warranted to validate the beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
34
|
He X, Wang Z, Wei L, Cheng X, Chen L, Gao F, Jiang H. Indoxyl sulfate promotes osteogenic differentiation of vascular smooth muscle cells by miR-155-5p-dependent downregulation of matrix Gla protein via ROS/NF-κB signaling. Exp Cell Res 2020; 397:112301. [PMID: 32979364 DOI: 10.1016/j.yexcr.2020.112301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
Abstract
Vascular calcification (VC) is a major risk factor for increasing cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). Indoxyl sulfate (IS), a representative uremic toxin, is closely associated with VC in CKD patients. Matrix Gla protein (MGP) plays pivotal role in VC as a calcification inhibitor. The aim of this work was to explore whether MGP was involved in IS-induced VC. Here, we demonstrated the role of MGP in the IS-induced osteogenic differentiation of human aortic smooth muscle cells (HASMCs). The methods included Von Kossa staining, immunohistochemistry, Alizarin Red staining, quantitative real-time PCR and western blotting. MGP was decreased in calcified arteries both in CKD patients and rats. In vitro, IS suppressed MGP expression in HASMCs by activating ROS/NF-κB signaling in parallel with osteogenic differentiation, which was mitigated by inhibiting ROS and NF-κB with diphenyleneiodonium and Bay11-7082. Further investigation showed that IS induced NF-κB-responsive microRNA (miR)-155-5p mediating MGP downregulation. Overexpression of miR-155-5p with mimics aggravated IS-induced MGP reduction and osteogenic differentiation. In contrast, these conditions were diminished by silencing miR-155-5p. We demonstrate that IS promotes the HASMCs phenotype switch by suppressing MGP expression via ROS/NF-κB/miR-155-5p signaling and provide a new insight for the pathogenesis of IS-induced VC.
Collapse
Affiliation(s)
- Xin He
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhigang Wang
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Limin Wei
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xin Cheng
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fanfan Gao
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
35
|
Ciceri P, Tettamanti G, Galassi A, Magagnoli L, Fabresse N, Alvarez JC, Massy ZA, Messa P, Cozzolino M. Pro-calcifying analysis of uraemic serum from patients treated with medium cut-off membrane in a prospective, cross-over study. Clin Kidney J 2020; 14:1798-1807. [PMID: 34221387 PMCID: PMC8243281 DOI: 10.1093/ckj/sfaa216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background The retention of a large number of solutes that are normally excreted or metabolized by the kidney is responsible for the symptoms typical in uraemic patients. These molecules are defined as uraemic toxins and can be classified into three groups: small water-soluble molecules, middle molecules and protein-bound toxins. Recently, efforts were put towards developing dialysis membranes that allow the removal of large middle molecules without clinically relevant albumin loss. These membranes are the medium cut-off (MCO) membranes that allow the removal of middle molecules up to ∼50 000 Da. Methods We performed a prospective, open-label, controlled, cross-over pilot study comparing expanded haemodialysis (HDx) (novel MCO membrane Theranova 400) and conventional haemodialysis (HD) in 20 prevalent HD patients. Ten patients used conventional HD high-flux dialyser and 10 patients used HDx for 3 months; later the patients switched and received the other treatment for a further 3 months. We then analysed the pro-calcifying effect of uraemic serum in a model of high phosphate(Pi)-induced calcification in vascular smooth muscle cells (VSMCs). Results In this study, every patient was the control of himself and, interestingly, we found a tendency of less pro-calcifying potential from HDx-treated patients' serum compared with HD. Studying pathogenetic processes involved in high Pi-induced calcium deposition, we found that uraemic serum of HDx-treated patients induced less VSMC necrosis compared with uraemic serum of HD patients. Nevertheless, no differences were found between the different dialytic treatments in the serum potential to induce apoptosis and to modulate the expression of a panel of genes involved in VSMC simil-osteoblastic differentiation such as bone morphogenetic protein 2, runt-related transcription factor 2, osteocalcin, matrix Gla protein, osteopontin, elastin and collagen I α1. In an effort to characterize the difference in uraemic toxin profile during the two different dialytic treatments, we measured a panel of 10 uraemic toxins and 3 precursors, finding a significant increased removal during HDx of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, tryptophane and some of its metabolites, such as 3-indoxyl sulphate, indole 3-acetic acid and kynurenine. Conclusions These preliminary data are promising, although larger patients' groups are needed to better understand the effects of HDx on vascular calcification.
Collapse
Affiliation(s)
- Paola Ciceri
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione Ca' Granda IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgia Tettamanti
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Nicolas Fabresse
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France
| | - Jean-Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France.,INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt/Paris, Paris, France.,Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin (UVSQ), Villejuif, France
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione Ca' Granda IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Lin TJ, Hsu BG, Wang JH, Lai YH, Dongoran RA, Liu CH. Serum indoxyl sulfate as a potential biomarker of aortic arterial stiffness in coronary artery disease. Nutr Metab Cardiovasc Dis 2020; 30:2320-2327. [PMID: 32912784 DOI: 10.1016/j.numecd.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Indoxyl sulfate (IS), a dietary tryptophan metabolite, acts as a cardiotoxin and uremic toxin. High IS levels are associated with chronic kidney disease and cardiovascular diseases. This study investigated the association between serum IS levels and aortic arterial stiffness (AAS) in coronary artery disease (CAD) patients. METHODS AND RESULTS The carotid-femoral pulse wave velocity (cfPWV) was measured by the SphygmoCor system and patients with values of >10 m/s were classified in the AAS group. The baseline characteristics were recorded and measured (including biochemical and clinical data). Serum IS levels were determined using liquid chromatography-mass spectrometry. AAS occurred in 50 (34.7%) of 144 patients with CAD. They were older, had higher IS levels and percentages of diabetes, systolic blood pressure, blood urea nitrogen, and creatinine but lower estimated glomerular filtration rates. The IS level and older age significantly correlated with AAS [odds ratio (OR) = 3.834, p = 0.031; OR = 1.095, p = 0.002, respectively]. Furthermore, the serum IS level (β = 0.167, adjusted R2 change: 0.026, p = 0.027) had a significant positive correlation with cfPWV. CONCLUSIONS Taken together, higher serum IS levels are potential independent biomarkers for AAS in patients with CAD. Therefore, early checking of serum IS levels may help prevent CAD progression and have clinical implications in the near future.
Collapse
Affiliation(s)
- Tsung-Jen Lin
- Ph. D. Program in Pharmacology and Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Department of Pharmacology, Tzu Chi University, Hualien, 97004, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan; School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ji-Hung Wang
- School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | - Yu-Hsien Lai
- Ph. D. Program in Pharmacology and Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | - Rachmad Anres Dongoran
- Ph. D. Program in Pharmacology and Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; National Agency of Drug and Food Control of Republic of Indonesia, Jakarta, 10560, Indonesia; Department of Pharmacology, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chin-Hung Liu
- Department of Pharmacology, Tzu Chi University, Hualien, 97004, Taiwan; CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan.
| |
Collapse
|
37
|
Meng F, Fan L, Sun L, Yu Q, Wang M, Sun C. Serum biomarkers of the calcium-deficient rats identified by metabolomics based on UPLC/Q-TOF MS/MS. Nutr Metab (Lond) 2020; 17:99. [PMID: 33292300 PMCID: PMC7708254 DOI: 10.1186/s12986-020-00507-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously identified the urinary biomarkers to diagnose calcium deficiency and nutritional rickets by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS). To find biomarkers of calcium deficiency and further confirm these biomarkers in serum, we performed serum metabolomics analysis of calcium-deficient rats. METHODS A calcium-deficient rat model was established with a low-calcium diet for 12 weeks. Serum metabolomics based UPLC/Q-TOF MS/MS and multivariate statistical analysis was performed to identify the alterations in metabolites associated with calcium deficiency in rats. RESULTS Bone mineral density, serum parathyroid hormone and alkaline phosphatase were significantly decreased in the low-calcium diet group (LCG) compared to the normal calcium diet group (NCG). Serum metabolic-profiling analysis could definitively distinguish between the LCG and NCG and identified 24 calcium-deficient biomarkers. Three metabolites (indoxyl sulfate, phosphate, and taurine) of the 24 biomarkers were found in our previous urinary metabolomics study of rats with a calcium deficiency and nutritional rickets. The areas under the curve (AUCs) of these three biomarkers were greater than 0.8, and the combination of any two biomarkers was higher than 0.95. CONCLUSION Dietary calcium deficiency induced the alterations of metabolites in the serum of rats, and the three identified biomarkers had relatively high diagnostic values for calcium deficiency in rats.
Collapse
Affiliation(s)
- Fanyu Meng
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Lina Fan
- Department of Nutrition, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Lin Sun
- Department of Statistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Qingli Yu
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China.
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
38
|
Indoxyl sulfate induces ROS production via the aryl hydrocarbon receptor-NADPH oxidase pathway and inactivates NO in vascular tissues. Life Sci 2020; 265:118807. [PMID: 33232689 DOI: 10.1016/j.lfs.2020.118807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022]
Abstract
AIMS The uremic toxin indoxyl sulfate (IS) was reported to be the cause of cardiovascular disease associated with chronic kidney disease. Therefore, we evaluated the direct influences of IS on vascular function, focusing on the superoxide anion (O2-) and nitric oxide (NO)/soluble guanylate cyclase (sGC) pathways. MAIN METHODS Isolated rat thoracic aortas with and without vascular endothelium were incubated with IS for 4 h in a physiological solution. In some experiments, several inhibitors were treated 30 min before the addition of IS. O2- production was measured by the chemiluminescence method, and the vascular reactivity to different vasorelaxants was examined using organ chamber technique. KEY FINDINGS 1) Experiments using endothelium-intact vascular rings: IS significantly increased O2- production. The increase was suppressed by addition of the NADPH oxidase inhibitor apocynin, the antioxidant ascorbic acid and the aryl hydrocarbon receptor (AhR) inhibitor CH223191. Furthermore, IS attenuated the acetylcholine (ACh)-induced vasorelaxantion, which was suppressed by addition of the above drugs. 2) Experiments using endothelium-denuded vascular rings: IS significantly increased O2- production and also attenuated sodium nitroprusside (SNP)-induced vasorelaxation. These influences of IS were normalized only by ascorbic acid addition. On the other hand, IS did not affect the vasorelaxation by the sGC stimulator BAY 41-2272. SIGNIFICANCE This study suggested that IS causes O2- production in vascular tissues, thereby attenuating ACh- and SNP-induced vasorelaxation, probably through NO inactivation. Furthermore, it is reasonable to consider that IS-promoted O2- production in the presence of vascular endothelium is through binding to AhR and the activation of NADPH oxidase.
Collapse
|
39
|
Wang L, Xiang F, Ji J, Ding X, Shen B, Chen J, Chen Y, Xue N, Zhang L, Jiang X, Cao X. Indoxyl sulfate and high-density lipoprotein cholesterol in early stages of chronic kidney disease. Ren Fail 2020; 42:1157-1163. [PMID: 33191829 PMCID: PMC7671672 DOI: 10.1080/0886022x.2020.1845731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background High IS level has been demonstrated to be associated with vascular calcification and lymphocyte functional disorders, which are both risk factors of CVD. Low HDL-c level is a risk factor of CVD in CKD patients. This study was designed to explore the potential relationship between IS and HDL-c levels in early stages of CKD population. Methods Patients of CKD stage 1-3 were enrolled in this cross-sectional study. Correlations between HDL-c and IS levels were investigated among various clinicopathological variables through independent samples t test and multivariate logistic regression. Results A total of 205 CKD patients (96 men) aged 43.27 ± 13.80 years old were included in this research. There were 96 patients (46 men) in CKD stage1 and 109 (50 men) in CKD stage 2 or stage 3. IS levels were significantly higher in CKD 2 + 3 group (1.50 ± 1.74 μg/ml vs. 0.94 ± 0.66 μg/ml, p = 0.007), while HDL-c levels were lower (1.19 ± 0.39 mmol/L vs. 1.33 ± 0.45 mmol/L, p = 0.017) compared to CKD 1 group. Among all the patients, a negative correlation was observed between IS and HDL-c levels (r = −0.244, p = 0.001). IS level was an independent risk factor for low HDL-c (<1.04 mmol/L) incidence even after controlling for potential confounders including concomitant disease, age, sex, blood pressure, BMI and laboratory biochemical test including eGFR (OR = 1.63, 95% CI: 1.11–2.39, p = 0.013). IS and HDL-c were both risk factors for predicting CKD stage 3. Conclusions In early CKD stages, low HDL-c level is associated with increased IS levels, which may be an important contributor in the development of dyslipidemia in CKD patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yunqin Chen
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
40
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
41
|
Matsumoto T, Kojima M, Takayanagi K, Taguchi K, Kobayashi T. Role of S-Equol, Indoxyl Sulfate, and Trimethylamine N-Oxide on Vascular Function. Am J Hypertens 2020; 33:793-803. [PMID: 32300778 PMCID: PMC7481967 DOI: 10.1093/ajh/hpaa053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota have been emerging as important contributors to the regulation of host homeostasis. Accordingly, several substances converted by gut microbiota can have beneficial or adverse effects on human health. Among them, S-equol, which is produced from the isoflavone daidzein in the human and animal gut by certain microbiota, exerts estrogenic and antioxidant activities. Indoxyl sulfate, which is metabolized in the liver from indole converted from dietary tryptophan by bacterial tryptophanases in the colon, is known as a protein-bound uremic toxin. Trimethylamine N-oxide, which is generated via the oxidization of gut microbiota-derived trimethylamine by hepatic flavin monooxygenases, is known as an accelerator of atherosclerosis. The aforementioned gut-derived substances could be potential regulators of systematic tissue/organ function, including the vascular system. Macro- and microvascular complications of cardiovascular and metabolic diseases, including atherosclerosis, hypertension, and diabetes, occur systemically and represent the principal cause of morbidity and mortality. Vascular endothelial and smooth muscle dysfunction play pivotal roles in the development and progression of vasculopathies. We herein review the link between the aforementioned gut-derived substances and endothelial and vascular smooth muscle cell function. This information will provide a conceptual framework that would allow the development of novel preventive and/or therapeutic approaches against vasculopathies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| |
Collapse
|
42
|
Molecular Mechanisms Underlying the Cardiovascular Toxicity of Specific Uremic Solutes. Cells 2020; 9:cells9092024. [PMID: 32887404 PMCID: PMC7565564 DOI: 10.3390/cells9092024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence strongly suggests a causal link between chronic kidney disease (CKD) and cardiovascular disease (CVD). Compared with non-CKD patients, patients with CKD suffer disproportionately from CVD and derive suboptimal benefits from interventions targeting conventional CVD risk factors. Uremic toxins (UTs), whose plasma levels rapidly rise as CKD progresses, represent a unique risk factor in CKD, which has protean manifestations on CVD. Among the known UTs, tryptophan metabolites and trimethylamine N-oxide are well-established cardiovascular toxins. Their molecular mechanisms of effect warrant special consideration to draw translational value. This review surveys current knowledge on the effects of specific UTs on different pathways and cell functions that influence the integrity of cardiovascular health, with implication for CVD progression. The effect of UTs on cardiovascular health is an example of a paradigm in which a cascade of molecular and metabolic events induced by pathology in one organ in turn induces dysfunction in another organ. Deciphering the molecular mechanisms underlying such cross-organ pathologies will help uncover therapeutic targets to improve the management of CVD in patients with CKD.
Collapse
|
43
|
Lee CT, Ng HY, Kuo WH, Tain YL, Leung FF, Lee YT. The role of TRPM7 in vascular calcification: Comparison between phosphate and uremic toxin. Life Sci 2020; 260:118280. [PMID: 32800835 DOI: 10.1016/j.lfs.2020.118280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
AIMS Vascular calcification is a common complication in patients with chronic kidney disease and associated with increased morbidity and mortality. The role of TRPM7 in vascular smooth muscle cell (VSMC) transformation during vascular calcification is not clear. We aim to investigate the effects of phosphate and indoxyl sulphate on the expression of TRPM7 and calcification-related molecules in VSMC. MAIN METHODS Human aortic smooth muscle cells (HASMC) were treated with phosphate (3.3 mM) or indoxyl sulphate (500 μM and 1000 μM). 2-APB, a channel blocker of TRPM7 was added simultaneously in blocking experiment. Cells were then examined grossly and alizarin red solution was employed for calcification assessment. Lastly, cells were harvested for gene expression and protein abundance analysis. KEY FINDINGS Phosphate treatment induced significant increase in BMP2, RUNX2, BMP7, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and TRPM7, but 1-alpha hydroxylase, klotho, DKK1 and sclerostin were not changed. The addition of 2-APB prevented increase of BMP2, RUNX2, BMP7, VDR, CaSR and TRPM7. Indoxyl sulphate treatment was associated with decrease in TRPM7 and DKK1, but increase in RUNX2, BMP2 and VDR were noted. There were no significant alterations in BMP7, CaSR, klotho,1-alpha hydroxylase and sclerostin. Co-treatment with 2-APB reversed the increase in VDR. SIGNIFICANCE Both phosphate and indoxyl sulphate induced calcification in VSMC but it was more prominent in phosphate. TRPM7 was upregulated by phosphate but downregulated in indoxyl sulphate treatment. Vascular calcification was reduced by blocking TRPM7 with 2-APB and there was partial anti-calcification effect in indoxyl sulphate.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Hung Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Foong-Fah Leung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Yu W, Xiao L, Que Y, Li S, Chen L, Hu P, Xiong R, Seta F, Chen H, Tong X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165912. [PMID: 32777344 DOI: 10.1016/j.bbadis.2020.165912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear. METHODS & RESULTS To address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation. CONCLUSIONS Our data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Xiong
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hao Chen
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
45
|
Chang JF, Hsieh CY, Liou JC, Liu SH, Hung CF, Lu KC, Lin CC, Wu CC, Ka SM, Wen LL, Wu MS, Zheng CM, Ko WC. Scavenging Intracellular ROS Attenuates p-Cresyl Sulfate-Triggered Osteogenesis through MAPK Signaling Pathway and NF-κB Activation in Human Arterial Smooth Muscle Cells. Toxins (Basel) 2020; 12:toxins12080472. [PMID: 32722241 PMCID: PMC7472002 DOI: 10.3390/toxins12080472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Osteogenesis in human arterial smooth muscle cell (HASMC) is a key feature of uremic vascular calcification (UVC). Concerning pro-oxidant properties of p-cresyl sulfate (PCS), the therapeutic effect of reactive oxygen species (ROS) scavenger on PCS triggered inflammatory signaling transduction in osteogenesis was investigated in this translational research. Based on severity level of chronic kidney disease (CKD), arterial specimens with immunohistochemistry stain were quantitatively analyzed for UVC, oxidative injury and osteogenesis along with PCS concentrations. To mimic human UVC, HASMC model was used to explore whether PCS-induced ROS could trigger mitogen-activated protein kinase (MAPK) pathways with nuclear factor-κB (NF-κB) translocation that drive context-specific gene/protein expression, including Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). In parallel with PCS accumulation, CKD arteries corresponded with UVC severity, oxidative DNA damage (8-hydroxy-2′-deoxyguanosine), Runx2 and ALP. PCS directly phosphorylated extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/P38 (pERK/pJNK/pP38) and modulated NF-κB translocation to promote expressions of Runx2 and ALP in HASMC. Notably, intracellular ROS scavenger attenuated pERK signaling cascade and downstream osteogenic differentiation. Collectively, our data demonstrate PCS induces osteogenesis through triggering intracellular ROS, pERK/pJNK/pP38 MAPK pathways and NF-κB translocation to drive Runx2 and ALP expressions, culminating in UVC. Beyond mineral dysregulation, osteocytic conversion in HASMC could be the stimulation of PCS. Thus PCS may act as a pro-osteogenic and pro-calcific toxin. From the perspective of translational medicine, PCS and intracellular ROS could serve as potential therapeutic targets for UVC in CKD patients.
Collapse
Affiliation(s)
- Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (M.-S.W.); (C.-M.Z.)
| | - Chih-Yu Hsieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (M.-S.W.); (C.-M.Z.)
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Jian-Chiun Liou
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Shih-Hao Liu
- Division of Pathology, En-Chu-Kong Hospital, New Taipei City 237, Taiwan;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical, Yuanpei University, Hsinchu 300, Taiwan;
| | - Chang-Chin Wu
- Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
- Department of Orthopaedic Surgery, En-Chu-Kong Hospital, New Taipei City 237, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
| | - Li-Li Wen
- Department of Clinical Laboratory, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (M.-S.W.); (C.-M.Z.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (M.-S.W.); (C.-M.Z.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chin Ko
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-22-708-2121
| |
Collapse
|
46
|
Evenepoel P, Dejongh S, Verbeke K, Meijers B. The Role of Gut Dysbiosis in the Bone-Vascular Axis in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12050285. [PMID: 32365480 PMCID: PMC7290823 DOI: 10.3390/toxins12050285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the 'calcification paradox' or the bone-vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone-vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone-vascular axis may open avenues for novel therapeutics, including nutriceuticals.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-344591; Fax: +32-16-344599
| | - Sander Dejongh
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven—University of Leuven, B-3000 Leuven, Belgium
| | - Bjorn Meijers
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
47
|
Jaminon AMG, Dai L, Qureshi AR, Evenepoel P, Ripsweden J, Söderberg M, Witasp A, Olauson H, Schurgers LJ, Stenvinkel P. Matrix Gla protein is an independent predictor of both intimal and medial vascular calcification in chronic kidney disease. Sci Rep 2020; 10:6586. [PMID: 32313061 PMCID: PMC7171129 DOI: 10.1038/s41598-020-63013-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/17/2020] [Indexed: 11/08/2022] Open
Abstract
Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification (VC) and requires carboxylation by vitamin K to exert calcification inhibition. Chronic kidney disease (CKD) patients undergo early vascular aging often involving extensive VC. The present cross-sectional study investigated the association between circulating dp-ucMGP levels, MGP expression in vascular tissue and MGP polymorphisms. In 141 CKD stage 5 patients, CAC score was significantly increased in the highest tertile of dp-ucMGP (p = 0.002), and a high medial VC score was associated with elevated dp-ucMGP levels. MGP vascular expression was associated with increased circulating dp-ucMGP and CAC scores. MGP SNP analysis revealed that patients homozygous for the C allele of the rs1800801 variant had a higher CAC score (median 15 [range 0-1312]) compared to patients carrying a T allele (median 0 [range 0-966] AU). These results indicate that plasma levels of dp-ucMGP are an independent predictor of increased VC in CKD5 patients and correlate with both higher CAC scores and degree of medial calcification. Additionally, high vascular expression of MGP was associated with higher CAC scores and plasma dp-ucMGP levels. Taken together, our results support that MGP is involved in the pathogenesis of VC.
Collapse
Affiliation(s)
- Armand M G Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Lu Dai
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jonaz Ripsweden
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Magnus Söderberg
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Bouabdallah J, Zibara K, Issa H, Lenglet G, Kchour G, Caus T, Six I, Choukroun G, Kamel S, Bennis Y. Endothelial cells exposed to phosphate and indoxyl sulphate promote vascular calcification through interleukin-8 secretion. Nephrol Dial Transplant 2020; 34:1125-1134. [PMID: 30481303 DOI: 10.1093/ndt/gfy325] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vascular calcification (VC) is amplified during chronic kidney disease, partly due to uraemic toxins such as inorganic phosphate (Pi) and indoxyl sulphate (IS) that trigger osteogenic differentiation of vascular smooth muscle cells (VSMCs). These toxins also alter endothelial cell (EC) functions but whether this contributes to VC is unknown. Here, we hypothesized that ECs exposed to Pi and IS promote VSMC calcification. METHODS Human umbilical vein ECs were treated with Pi, IS or both, and then the conditioned media [endothelial cell conditioned medium (EC-CM)] was collected. Human aortic SMCs (HASMCs) were exposed to the same toxins, with or without EC-CM, and then calcification and osteogenic differentiation were evaluated. Procalcifying factors secreted from ECs in response to Pi and IS were screened. Rat aortic rings were isolated to assess Pi+IS-induced calcification at the tissue level. RESULTS Pi and Pi+IS induced HASMCs calcification, which was significantly exacerbated by EC-CM. Pi+IS induced the expression and secretion of interleukin-8 (IL-8) from ECs. While IL-8 treatment of HASMCs stimulated the Pi+IS-induced calcification in a concentration-dependent manner, IL-8 neutralizing antibody, IL-8 receptors antagonist or silencing IL-8 gene expression in ECs before collecting EC-CM significantly prevented the EC-CM procalcifying effect. IL-8 did not promote the Pi+IS-induced osteogenic differentiation of HASMCs but prevented the induction of osteopontin (OPN), a potent calcification inhibitor. In rat aortic rings, IS also promoted Pi-induced calcification and stimulated the expression of IL-8 homologues. Interestingly, in the Pi+IS condition, IL-8 receptor antagonist lifted the inhibition of OPN expression and partially prevented aortic calcification. CONCLUSION These results highlight a novel role of IL-8, whose contribution to VC in the uraemic state results at least from interaction between ECs and VSMCs.
Collapse
Affiliation(s)
- Jeanne Bouabdallah
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France
| | - Kazem Zibara
- ER045 Laboratory, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Hawraa Issa
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France.,ER045 Laboratory, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Gaëlle Lenglet
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France
| | - Ghada Kchour
- ER045 Laboratory, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Thierry Caus
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France.,Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Isabelle Six
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France
| | - Gabriel Choukroun
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France.,Department of Nephrology, Amiens University Hospital, Amiens, France
| | - Saïd Kamel
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France.,Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Youssef Bennis
- MP3CV Laboratory, EA7517, FHU REMOD-VHF, University of Picardie Jules Verne, Amiens, France.,Department of Pharmacology, Amiens University Hospital, Amiens, France
| |
Collapse
|
49
|
Opdebeeck B, D’Haese PC, Verhulst A. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Toxins (Basel) 2020; 12:toxins12010058. [PMID: 31963891 PMCID: PMC7020422 DOI: 10.3390/toxins12010058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
The protein-bound uremic toxins, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are considered to be harmful vascular toxins. Arterial media calcification, or the deposition of calcium phosphate crystals in the arteries, contributes significantly to cardiovascular complications, including left ventricular hypertrophy, hypertension, and impaired coronary perfusion in the elderly and patients with chronic kidney disease (CKD) and diabetes. Recently, we reported that both IS and PCS trigger moderate to severe calcification in the aorta and peripheral vessels of CKD rats. This review describes the molecular and cellular mechanisms by which these uremic toxins induce arterial media calcification. A complex interplay between inflammation, coagulation, and lipid metabolism pathways, influenced by epigenetic factors, is crucial in IS/PCS-induced arterial media calcification. High levels of glucose are linked to these events, suggesting that a good balance between glucose and lipid levels might be important. On the cellular level, effects on endothelial cells, which act as the primary sensors of circulating pathological triggers, might be as important as those on vascular smooth muscle cells. Endothelial dysfunction, provoked by IS and PCS triggered oxidative stress, may be considered a key event in the onset and development of arterial media calcification. In this review a number of important outstanding questions such as the role of miRNA’s, phenotypic switching of both endothelial and vascular smooth muscle cells and new types of programmed cell death in arterial media calcification related to protein-bound uremic toxins are put forward and discussed.
Collapse
|
50
|
Kuo KL, Zhao JF, Huang PH, Guo BC, Tarng DC, Lee TS. Indoxyl sulfate impairs valsartan-induced neovascularization. Redox Biol 2020; 30:101433. [PMID: 31972507 PMCID: PMC6974788 DOI: 10.1016/j.redox.2020.101433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Studies revealed that the use of renin-angiotensin-aldosterone system antagonism is not associated with a statistically significant reduction in the risk of cardiovascular events in patients with chronic kidney disease (CKD) compared with that in the general population. We tested the hypothesis that indoxyl sulfate (IS) can interfere with the protective effect of valsartan-mediated on endothelial function in vitro and neovascularization in mice underwent subtotal nephrectomy. In human aortic endothelial cells, we first demonstrated that IS impaired the valsartan-mediated phosphorylation of eNOSThr495, nitric oxide production and tube formation via NADPH oxidase (NOX) and protein kinase C (PKC) phosphorylation, but this effect was suppressed by cotreatment with apocynin and calphostin C. In vivo, IS attenuated valsartan-induced angiogenesis in Matrigel plugs in mice. Moreover, in subtotal nephrectomy mice who underwent hindlimb ischemic surgery, valsartan significantly increased the mobilization of endothelial progenitor cells in circulation as well as the reperfusion of blood flow and density of CD31+ capillaries in ischemic limbs. However, IS attenuated the protective effect of valsartan-induced neovascularization and increased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Cotreatment of apocynin and calphostin C reversed the IS impaired-neovascularization and decreased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Our study suggests that the NOX/PKC/eNOS signaling pathway plays a pivotal role in the IS-mediated inhibition of valsartan-conferred beneficial effects on endothelial function in vitro and neovascularization in subtotal nephrectomy mice. We proposed a novel causative role for IS in cardiovascular complications in CKD patients. The use of renin-angiotensin-aldosterone system antagonism fails to reduce in the risk cardiovascular events in patients with CKD. Indoxyl sulfate interferes with the protective effect of angiotensin II receptor blocker-mediated neovascularization in CKD mice. Indoxyl sulfate interferes with the beneficial effect of of valsartan on endothelial function by activating the NOX/PKC signaling pathway. This article proposed a novel causative role for indoxyl sulfate in cardiovascular complications in CKD patients.
Collapse
Affiliation(s)
- Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Po-Hsun Huang
- Institutes of Clinical Medicine, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Divisions of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Der-Cherng Tarng
- Institutes of Clinical Medicine, Taipei, Taiwan; Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Department of Medicine and Immunology Research Centre, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|