1
|
Abdalla M, El-Arabey AA, Gai Z. MiR-34a regulates renal circadian rhythms during cisplatin-induced nephrotoxicity. Hum Cell 2024; 38:32. [PMID: 39709581 DOI: 10.1007/s13577-024-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Mohnad Abdalla
- Research Institute of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Amr Ahmed El-Arabey
- Center of Bee Research and Its Products, King Khalid University, P. O. Box 9004, 61413, Abha, Saudi Arabia.
- Applied College, King Khalid University, P. O. Box 9004, 61413, Abha, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Zhongtao Gai
- Research Institute of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| |
Collapse
|
2
|
Dugbartey GJ, Alornyo KK, Dapaa-Addo CO, Botchway E, Kwashie EK, Harley Y. Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100206. [PMID: 39524210 PMCID: PMC11550178 DOI: 10.1016/j.crphar.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major global public health concern. This has put economic burden on the public healthcare system and causing significant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence making these drugs a "necessary evil". In recent times, antioxidant therapy has been explored as a potential pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharmacological management of many kidney diseases through its antioxidant and other therapeutic properties by activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of kidney diseases while giving hope to these patients.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Emmanuel Botchway
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Emmanuel K. Kwashie
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Yvonne Harley
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| |
Collapse
|
3
|
Gad F, Abdelghaffar Emam M, Eldeeb AA, Abdelhameed AA, Soliman MM, Alotaibi KS, Albattal SB, Abughrien B. Mitigative Effects of l-Arginine and N-Acetyl Cysteine against Cisplatin-Induced Testicular Dysfunction and Toxicity through the Regulation of Antioxidant, Anti-inflammatory, and Antiapoptotic Markers: Role of miR-155 and miR-34c Expression. ACS OMEGA 2024; 9:27680-27691. [PMID: 38947789 PMCID: PMC11209920 DOI: 10.1021/acsomega.4c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Testicular dysfunction is a common adverse effect of cisplatin (CIS) administration as a chemotherapeutic drug. The current study has outlined the role of micro-RNAs (miR-155 and 34c) in CIS-induced testicular dysfunction and evaluated the protective effect of N-acetyl cysteine (NAC) and/or l-arginine (LA). Seven groups of Albino rats were used for this study. The control (C) group received physiological saline; the CIS group was injected CIS (7 mg/kg IP, once) on day 21 of the experiment; the NAC group was administered NAC (150 mg/kg intragastric, for 28 days); and the LA group was injected LA (50 mg/kg IP, for 28 days). NAC+CIS, LA+CIS, and NAC+LA+CIS groups received the above regime. CIS significantly reduced serum testosterone, LH, and FSH concentrations with decline of testicular enzyme activities. CIS caused significant elevation in testicular oxidative-stress biomarkers, inflammation-associated cytokines, and apoptosis markers, along with overexpression of miR-155 and low miR-34c expression. Additionally, marked testicular degenerative changes were observed in the examined histological section; a significant decrease in the expression of PCNA with significant increase in expressions of F4/80 and BAX was confirmed. The administration of NAC or LA upregulated testicular functions and improved histopathological and immunohistochemical changes as well as miRNA expression compared with the CIS-administered group. Rats receiving both NAC and LA showed a more significant ameliorative effect compared with groups receiving NAC or LA alone. In conclusion, NAC or LA showed an ameliorative effect against CIS-induced testicular toxicity and dysfunction through the regulation of antioxidant, anti-inflammatory, and antiapoptotic markers and via modulating miR-155 and miR-34c expression.
Collapse
Affiliation(s)
- Fatma
A. Gad
- Clinical
Pathology Department, Faculty of Veterinary Medicine, Benha University, P.O. Box13736 Benha, Egypt
| | - Mahmoud Abdelghaffar Emam
- Histology
Department., Faculty of Veterinary Medicine, Benha University, P.O. Box 13736 Benha, Egypt
| | - Abeer A. Eldeeb
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Abeer A. Abdelhameed
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Mohamed Mohamed Soliman
- Department
of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O.
Box 11099, Taif 21944, Saudi Arabia
| | - Khalid S. Alotaibi
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B. Albattal
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Badia Abughrien
- Anatomy and
Histology Department, Faculty of Veterinary Medicine, Tripoli University, 15673 Tripoli, Libya
| |
Collapse
|
4
|
Saif-Elnasr M, El-Ghlban S, Bayomi AI, El-Sayyad GS, Maghraby MS. Gallic acid and/or cerium oxide nanoparticles synthesized by gamma-irradiation protect cisplatin-induced nephrotoxicity via modulating oxidative stress, inflammation and apoptosis. Arch Biochem Biophys 2023; 740:109594. [PMID: 37023935 DOI: 10.1016/j.abb.2023.109594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Cisplatin is one of the most significant anticancer. However, its use is associated with numerous toxicities especially nephrotoxicity. The main aim of this work was to examine the protective effect of Gallic acid (GA) and/or cerium oxide nanoparticles (CONPs) synthesized by gamma-irradiation on cisplatin-induced nephrotoxicity in rats. To do that, 48 adult male albino rats were separated into eight groups and received GA (100 mg/kg orally) and/or CONPs (15 mg/kg i. p.) for 10 days before injection with a single dose of cisplatin (7.5 mg/kg i. p.). The findings showed that cisplatin treatment impaired kidney functioning as shown by elevated serum levels of urea and creatinine. Additionally, the oxidative stress indicators (MDA and NO), levels of NF-kB, pro-inflammatory cytokines (IL1-and TNF-) and pro-apoptotic proteins (BAX and caspase-3) were raised after cisplatin injection, while levels of intrinsic anti-oxidants (CAT, SOD, and GSH) and anti-apoptotic protein (Bcl-2) were reduced. Moreover, renal toxicity was confirmed by alteration in normal histological architecture of the kidneys. On the other hand, pretreatment with CONPs and/or GA ameliorated cisplatin-induced nephrotoxicity as evidenced by improvement of renal function parameters and levels of oxidative stress, inflammatory and apoptotic markers in renal tissue along with the renal histopathological changes. This study clarifies how GA and CONPs protect against cisplatin-induced nephrotoxicity and demonstrates any potential synergism between them. Therefore, they can be considered as promising nephroprotective agents during chemotherapy.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Samah El-Ghlban
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt
| | - Asmaa I Bayomi
- Zoology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed Said Maghraby
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt.
| |
Collapse
|
5
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:nu15071732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA’s renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-Induced Reproductive Toxicity and Oxidative Stress: Ameliorative Effect of Kinetin. Antioxidants (Basel) 2022; 11:antiox11050863. [PMID: 35624727 PMCID: PMC9137797 DOI: 10.3390/antiox11050863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt;
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Hend Ali Anwar
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
8
|
Loss of Proximal Tubular Sirtuin 6 Aggravates Unilateral Ureteral Obstruction-Induced Tubulointerstitial Inflammation and Fibrosis by Regulation of β-Catenin Acetylation. Cells 2022; 11:cells11091477. [PMID: 35563783 PMCID: PMC9100256 DOI: 10.3390/cells11091477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Renal fibrosis is a significant pathologic change associated with progressive kidney disease. Sirt6 is an NAD+-dependent deacetylase and mono-ADP ribosyltransferase known to play diverse roles in the processes attendant to aging, metabolism, and carcinogenesis. However, the role of proximal tubule-specific Sirt6 in renal fibrosis remains elusive. This study investigates the effect of proximal tubule-specific Sirt6 knockdown on unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial inflammation and fibrosis. Renal fibrosis in wild type and PT-Sirt6KO (Sirt6flox/flox; Ggt1-Cre+) mice was induced by UUO surgery. After seven days, histologic examination and Western blot analysis were performed to examine extracellular matrix (ECM) protein expression. We evaluated inflammatory cytokine and cell adhesion molecule expression after ureteral obstruction. The therapeutic effect of Sirt6 activator MDL-800 on UUO-induced tubulointerstitial inflammation and fibrosis was assessed. The loss of Sirt6 in the proximal tubules aggravated UUO-induced tubular injury, ECM deposition, F4/80 positive macrophage infiltration, and proinflammatory cytokine and chemokine expression. Sirt6 activator MDL-800 mitigated UUO-induced renal tubulointerstitial inflammation and fibrosis. In an in vitro experiment, MDL-800 decreases the transforming growth factor (TGF)-β1-induced activation of myofibroblast and ECM production by regulating Sirt6-dependent β-catenin acetylation and the TGF-β1/Smad signaling pathway. In conclusion, proximal tubule Sirt6 may play an essential role in UUO-induced tubulointerstitial inflammation and fibrosis by regulating Sirt6-dependent β-catenin acetylation and ECM protein promoter transcription.
Collapse
|
9
|
Pei Z, Wu M, Yu H, Long G, Gui Z, Li X, Chen H, Jia Z, Xia W. Isoliquiritin Ameliorates Cisplatin-Induced Renal Proximal Tubular Cell Injury by Antagonizing Apoptosis, Oxidative Stress and Inflammation. Front Med (Lausanne) 2022; 9:873739. [PMID: 35433741 PMCID: PMC9005826 DOI: 10.3389/fmed.2022.873739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by morbidity, mortality, and cost. Cis-diamminedichloroplatinum (cisplatin) is a chemotherapeutic agent used to treat solid tumors and hematological malignancies, but its side effects, especially nephrotoxicity, limit its clinical application. Isoliquiritin (ISL), one of the major flavonoid glycoside compounds in licorice, has been reported to have anti-apoptotic, antioxidant, and anti-inflammatory activities. However, the effect and mechanism of ISL on cisplatin-induced renal proximal tubular cell injury remain unknown. In this study, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cells (HK2) were administered increasing concentrations of ISL from 7.8125 to 250 μM. Moreover, mPTC and HK2 cells were pretreated with ISL for 6–8 h, followed by stimulation with cisplatin for 24 h. CCK-8 assay was performed to evaluate the cell viability. Apoptosis and reactive oxygen species (ROS) of cells were measured by using flow cytometer and western blotting. Our results showed that ISL had no obvious effect on cell viability. ISL decreased cisplatin-induced cell injury in a dose-dependent manner. ISL also protected against cisplatin-induced cell apoptosis. Meanwhile, the enhanced protein levels of Bax, cleaved caspase-3/caspase-3 ratio, levels of Pp-65/p-65, levels of IL-6, and the production of ROS induced by cisplatin were significantly attenuated by ISL treatment. Moreover, ISL markedly increased the protein levels of Bcl-2 and SOD2, which were reduced by cisplatin stimulation. These results showed that ISL ameliorated cisplatin-induced renal proximal tubular cell injury by antagonizing apoptosis, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zhiyin Pei
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Gui
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Abdulghani M, Naser A. Estimation of pharmacokinetic parameters of alpha-lipoic acid in the chicks model. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i02.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and objective: Alpha-lipoic acid is a drug used to treat diabetic neuropathy, and it has other uses as a dietary supplement. The target of the study was to investigate the concentration of therapeutic doses of Alpha-lipoic acid in the blood plasma of broiler chicks to define the pharmacokinetic parameters.
Methods: A randomized controlled study was performed on thirty-five healthy broiler chicks of seven days old, chicks were injected into the peritoneum with a single dose of analgesic ED50 80mg /kg b.wt, following injection of the drug, blood samples were collected at 0.25, 0.5, 1, 2, 4, 24 h (five chicks per time) from the jugular vein. Then the blood plasma was obtained, the concentrations of Alpha-lipoic acid in blood plasma samples were determined utilizing UV Spectrometric Method, the pharmacokinetic parameters were determined by the PKSolver program. Time versus concentration curve for Alpha-lipoic acid was obtained from the program. The pharmacokinetic parameters were determined with non-compartmental models.
Results: The concentration of Alpha-lipoic acid in the blood plasma of chicks injected with Alpha lipoic at a dose (80 mg/kg) were 134.6±7.17, 178.5±4.10 ,192.4±7.83 ,158.5±11.05 ,147.1±10.16, 122.8±7.09 µg/ml at times 0.25, 0.5, 1, 2, 4, and 24 hours respectively. The maximum plasma concentration was 192.4µg/ml during a period of 1 hour of injection. The terminal elimination half-life was 65hours, the terminal phase elimination rate constant was 0.011 h-1 , the mean residence time was 94h, and the area under the curve from time 0 to infinity was 14960 µg.h/ml.
Conclusions: Our study concluded that the peak of the analgesic effect of alpha lipoic acid was one hour after treatment; furthermore, it is characterized by a long elimination half-life and a poor clearance from the chick’s body, which is reflected in the long effects of its pharmacological properties
Collapse
|
11
|
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinically critical disease exhibiting an acute decline in renal function. The lack of an effective prevention and treatment method equates to a high morbidity and mortality rate. Consequently, over the past few decades, many therapeutic drugs with different mechanisms of action have been proposed and gradually applied to the clinic. The involved drug mechanisms evaluated have included hemodynamic modulation, anti-inflammatory, antioxidant, repair agents, metabolic derangement and mitochondrial function. AREAS COVERED The authors of this review provide the reader with a reference point for the latest advances in pharmacotherapy in acute kidney injury. This is achieved by the evaluation of the latest data collected on potential therapeutic drugs with different mechanisms of action, as well as their preclinical and clinical impact on AKI. EXPERT OPINION Presently, the vast majority of drugs are still in clinical development, which is a huge challenge. Nevertheless, in addition to current chemical drugs and gene therapy strategies, the advent of mesenchymal stem cell treatments and other emerging pharmaceutical strategies could enable clinicians to better treat AKI. Due to the nonselective distribution and low bioavailability of some of the latest pharmaceutical strategies, there is hope that these treatment options may provide more efficacious avenues.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Zou
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojing Cao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
The Effects of Satureja hortensis L. Extract on Cisplatin-Induced Behavioral Alterations in the Tail Suspension Test. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In order to evaluate the effects of Satureja hortensis L. extract on cisplatin-induced behavioral alterations in the tail suspension test (TST), we included 35 male Wistar albino rats in this study, divided into 7 equal groups. Cisplatin was administered (single dose of 7.5 mg/kg, i.p., on the fifth day) alone, and in groups with orally administered (for 10 days) Satureja hortensis L. extract (50, 100, and 200 mg/kg), and silymarin (100 mg/kg) in individual groups. The behavioral testing was performed in TST, and the following parameters were obtained: the latency to the first immobility, the number of immobility episodes, and the total duration of immobility. Cisplatin application increased the latency to the first immobility, but decreased the number of immobility episodes and the total duration of immobility. Oral administration of Satureja hortensis L. extract in a dose of 100 mg/kg attenuated cisplatin-induced alterations, and those effects were similar to silymarin group. The extract in a dose of 200 mg/kg diminished cisplatin-induced effect only for the total duration of immobility, while in a dose of 50 mg/kg, the extract had no impact on cisplatin effects. Although common use of this methodology would lead to a conclusion that cisplatin produced antidepressant effect, comparison with certain literature data allows the conclusion that this action of cisplatin may be attributed to its anxiogenic action that was attenuated by antioxidant supplementation (Satureja hortensis L.) in an adequate dose (100 mg/kg).
Collapse
|
13
|
Kong L, Fan D, Zhou L, Wei S. The influence of modified molecular (D/L-serine) chirality on the theragnostics of PAMAM-based nanomedicine for acute kidney injury. J Mater Chem B 2021; 9:9023-9030. [PMID: 34635887 DOI: 10.1039/d1tb01674a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a severe clinical disease with extremely high morbidity and mortality. It is challenging to find a simple method for early detection of AKI and monitoring the treatment results. Renal tubular damage and inflammation are early events in AKI. Renal tubular damage is conducive to the accumulation of small-sized nanoparticles in the kidney, and inflammation is related to the excessive production of H2O2. Recent studies proved that chiral molecule modification of nanomaterials is a powerful strategy to regulate their biodistribution. Thus, L-serine and D-serine modified poly(amidoamine) (PAMAM) dendrimers were synthesized and used as fluorescent probe (NPSH) carriers to obtain L-SPH and D-SPH, respectively. D-SPH has a strong accumulation capability in the kidney of AKI mice. Then, the H2O2 fluorescent probe can detect the excessively produced H2O2 to generate fluorescence to diagnose AKI. Subsequently, the anti-inflammatory drug manganese pentacarbonyl bromide (CORM) was loaded in D-SPH to obtain D-SPHC with AKI theragnostic functions. Simultaneously, the D-SPHC fluorescence signal intensity change during the treatment can be used to monitor the recovery process. This study is the first report of chiral materials used in the diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Lulu Kong
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Di Fan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China. .,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
14
|
Abstract
PURPOSE Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity. PROCEDURES Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters. RESULTS In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology. CONCLUSION [68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
Collapse
|
15
|
Zhao Y, Yan T, Xiong C, Chang M, Gao Q, Yao S, Wu W, Yi X, Xu G. Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Leprdb/db mice. BMJ Open Diabetes Res Care 2021; 9:9/1/e002260. [PMID: 34183321 PMCID: PMC8240563 DOI: 10.1136/bmjdrc-2021-002260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/05/2021] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) develops in about 40% of patients with type 2 diabetes and remains the leading cause of end-stage renal disease. The mechanisms of DN remain to be elucidated. Oxidative stress is thought to be involved in the development of DN but antioxidant therapy has produced conflicting results. Therefore, we sought to define the role of antioxidant in retarding the development of DN in this study. RESEARCH DESIGN AND METHODS We generated a new antioxidant/diabetes mouse model, LiasH/HLeprdb/db mice, by crossing db/db mice with LiasH/H mice, which have overexpressed Lias gene (~160%) compared with wild type, and also correspondingly increased endogenous antioxidant capacity. The new model was used to investigate whether predisposed increased endogenous antioxidant capacity was able to retard the development of DN. We systemically and dynamically examined main pathological alterations of DN and antioxidant biomarkers in blood and kidney mitochondria. RESULTS LiasH/HLeprdb/db mice alleviated major pathological alterations in the early stage of DN, accompanied with significantly enhanced antioxidant defense. The model targets the main pathogenic factors by exerting multiple effects such as hypoglycemic, anti-inflammation, and antioxidant, especially protection of mitochondria. CONCLUSION The antioxidant animal model is not only very useful for elucidating the underlying mechanisms of DN but also brings insight into a new therapeutic strategy for clinical applications.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Tingting Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Xianwen Yi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, American Samoa
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
16
|
Zuo J, Wang SM, Jiang X, Cao M, Zhang Z, Shi T, Qin HL, Tang W. Design, synthesis and biological evaluation of novel arylpropionic esters for the treatment of acute kidney injury. Bioorg Chem 2020; 105:104455. [PMID: 33197847 DOI: 10.1016/j.bioorg.2020.104455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is associated with a strong inflammatory response, and inhibiting the response effectively prevents or ameliorates AKI. A series of novel arylpropionic esters were designed, synthesized and evaluated their biological activity in LPS-stimulated RAW264.7 cells. Novel arylpropionic esters bearing multi-functional groups showed significant anti-inflammatory activity, in which, compound 13b exhibited the most potent activity through dose-dependent inhibiting the production of nitric oxide (NO, IC50 = 3.52 μM), TNF-α and IL-6 (84.1% and 33.6%, respectively), as well as suppressing the expression of iNOS, COX-2 and TLR4 proteins. In C57BL/6 mice with cisplatin-induced AKI, compound 13b improved kidney function, inhibited inflammatory development, and reduced pathological damage of kidney tissues. In brief, this arylpropionic ester scaffold may be developed as anti-inflammatory agents.
Collapse
Affiliation(s)
- Jiawei Zuo
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shi-Meng Wang
- School of Life Science, Wuchang University of Technology, Wuhan 430223, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xia Jiang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Mengxin Cao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Tianlu Shi
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Oktan MA, Heybeli C, Ural C, Kocak A, Bilici G, Cavdar Z, Ozbal S, Arslan S, Yilmaz O, Cavdar C. Alpha-lipoic acid alleviates colistin nephrotoxicity in rats. Hum Exp Toxicol 2020; 40:761-771. [PMID: 33111558 DOI: 10.1177/0960327120966043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colistin methanesulfonate (CMS), a clinical form of colistin, is widely used as a last-line treatment for multidrug-resistant (MDR) gram-negative bacterial infections in critically ill patients presenting a considerably high mortality rate. However, nephrotoxicity is considered to be a critical adverse effect that limits CMS's clinical use. Alpha-lipoic acid (ALA) is a strong antioxidant that is effective in preventing nephrotoxicity in many models. The aim of this study was to investigate ALA's ability to protect against nephrotoxicity induced by colistin in rats. Male Wistar albino rats were randomly divided into four groups. Group 1 was the control group (Control; n = 6), in which isotonic saline was administered to the rats. Group 2 was the ALA group (ALA; n = 6) in which rats received 100 mg/kg ALA. Groups 3 was the CMS (CMS; n = 7) in which 450.000 IU/kg/day of CMS was administered to the rats. Groups 4 was the CMS + ALA group (n = 6), in which rats were injected with 100 mg/kg of ALA 30 min before administration of CMS. All injections were performed intraperitoneally at 1, 4, 7, and 10 days. Urine was collected by using a metabolic cage for 24 h after each administration. The rats were euthanized under ether anesthesia after 24 h of the last administration. Blood and kidney samples then were collected for histological and biochemical analysis. ALA pretreatment could reverse the effects of colistin-induced nephrotoxicity, partly through its suppressing effect on Nox4 and caspase-3, which in turn results in its antioxidant and antiapoptotic effect. Therefore, ALA may be an effective strategy for the management of colistin nephrotoxicity.
Collapse
Affiliation(s)
- Mehmet Asi Oktan
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cihan Heybeli
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Ayse Kocak
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Gokcen Bilici
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Sevki Arslan
- Faculty of Science, Department of Biology, Pamukkale University, Denizli, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Caner Cavdar
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
18
|
Cavdar Z, Oktan MA, Ural C, Kocak A, Calisir M, Heybeli C, Yildiz S, Ozbal S, Arslan S, Ergur BU, Yilmaz O, Cavdar C. Alpha lipoic acid attenuates iron induced oxidative acute kidney injury in rats. Biotech Histochem 2020; 96:409-417. [PMID: 32921159 DOI: 10.1080/10520295.2020.1812001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Iron has been implicated in oxidative tissue injury owing to its ability to generate reactive oxygen species (ROS). We investigated the reno-protective effects of alpha lipoic acid (ALA) by investigating its effects on the kidney isoform of NADPH oxidase (Nox4) and the specific signaling pathways, p38 MAPK and PI3K/Akt, which participate in apoptosis and survival, respectively. We established four groups of seven rats: control, 100 mg/kg ALA, 80 mg/kg iron sucrose (IS) and IS + ALA. IS and ALA were injected intravenously and rats were sacrificied after 6 h. The mRNA expression of the subunits of NADPH oxidase, Nox4 and p22phox; tumor necrosis factor-alpha (TNF-α); and kidney injury molecule-1 (KIM-1) were measured using quantitative real time polymerase chain reaction (qRT-PCR). Active caspase-3 protein expression was evaluated by immunostaining. Also, p38 MAPK and PI3K/Akt signaling pathways were analyzed using western blot. ALA suppressed the mRNA expression of Nox4, p22phox, TNF-α and KIM-1. Active caspase-3 protein expression induced by IS was decreased by ALA. ALA also suppressed p38 MAPK and activated the PI3K/Akt signaling pathway following IS administration. We found that ALA may be an effective strategy for preventing oxidative acute kidney injury caused by IS.
Collapse
Affiliation(s)
- Zahide Cavdar
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Asi Oktan
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ayse Kocak
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Meryem Calisir
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cihan Heybeli
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serkan Yildiz
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Caner Cavdar
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
19
|
Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicol Rep 2020; 7:1178-1186. [PMID: 32995293 PMCID: PMC7501485 DOI: 10.1016/j.toxrep.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (CP) is a powerful antineoplastic chemotherapeutic agent with broad-spectrum properties. Acute and cumulative cardiotoxicity are major limiting factors for CP therapy. Various pathogenic pathways have been suggested to CP-induced cardiotoxicity; oxidative damage, ER stress, and programmed cell death/apoptosis. The present study aimed to assess the signaling mechanisms related to the advantageous effects of rosuvastatin (RSV) and simvastatin (SMV) against CP-related cardiac ER stress dependent apoptotic death in rats. Acute cardiotoxicity was induced by a single dose of CP (10 mg/kg, i.p.) on the 10th day of the experiment. RSV (10 mg/ kg/day) and SMV (10 mg/kg/day) were orally administered for 15 days. CP-treated rats showed significant alterations in electrocardiographic recordings and elevation in serum cardiac function biomarkers; troponin T content, lactate dehydrogenase and creatine kinase-MB levels as well as boost in the cardiac oxidative stress biomarkers. In addition, CP exposure resulted in GRP78 induction; an ER stress and elevation marker at calpain-1 content as well as activation of activated caspase-3 (ACASP3) and caspase-12 were reflected on CP-triggered apoptosis evidenced by elevation in the Bax/Bcl-2 ratio. However, RSV and SMV administration mitigate those adverse CP effects. Statins administration prominently alleviated CP-induced cardiac abnormalities exerting improvement in the ECG pattern and cardiac enzyme biomarkers. Interestingly, statins; RSV and SMV, disrupted CP-induced ER stress and the consequent apoptotic cell death evidenced by downregulation of ER-chaperone GRP78, calpain-1, ACASP3 and caspase-12 as well as decline in the Bax/Bcl-2 ratio. From all the previous findings, it can be suggested that statins namely; RSV and SMV, play protective role against CP-induced cardiac injury by regulating ER stress-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Dalia O Saleh
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Dina F Mansour
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Rasha E Mostafa
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| |
Collapse
|
20
|
Yin M, Li N, Makinde EA, Olatunji OJ, Ni Z. N6-2-hydroxyethyl-adenosine ameliorate cisplatin induced acute kidney injury in mice. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1760149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Min Yin
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Na Li
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | | | | | - Ziyuan Ni
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
21
|
Renoprotective Effects of a New Free Radical Scavenger, XH-003, against Cisplatin-Induced Nephrotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9820168. [PMID: 32377314 PMCID: PMC7189338 DOI: 10.1155/2020/9820168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
Acute renal injury has an incidence of 25%–30% in patients with tumors who are treated with cisplatin and in patients for whom no specific drugs are available for treatment. Amifostine is the only FDA-approved chemoprotective drug; however, its clinical application is limited because of side effects. The small-molecule antioxidant XH-003, an acute radiation syndrome- (ARS-) protective drug independently developed in our laboratory, with 100% intellectual property rights, overcomes the side effects of amifostine but retains its high efficacy. In this study, XH-003 showed a chemoprotective effect similar to that of amifostine. A mechanistic study showed that XH-003 could significantly reduce cisplatin-induced increases in serum creatinine and urea nitrogen, increase the activity of antioxidant enzymes (SOD, CAT, and GSH-Px), reduce oxidative stress and tissue inflammation, and alleviate renal tissue damage by blocking the activity of the mitochondrial apoptosis pathway. Most importantly, XH-003 could reduce the accumulation of cisplatin in renal tissue by regulating the expression of proteins involved in cisplatin uptake and excretion, such as organic cation transporter 2 and MRP2. Moreover, in an in vivo xenotransplantation model, XH-003 did not interfere with the antitumor effect of cisplatin. These data provide strong evidence that the ARS-protective agent has a great potential for protecting against chemotherapy-induced toxicity. Thus, XH-003 can be considered in antitumor therapy.
Collapse
|
22
|
Geohagen BC, Weiser DA, Loeb DM, Nordstroem LU, LoPachin RM. Enolate-forming compounds provide protection from platinum neurotoxicity. Chem Biol Interact 2020; 317:108961. [PMID: 31978392 PMCID: PMC7069230 DOI: 10.1016/j.cbi.2020.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 11/16/2022]
Abstract
Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.
Collapse
Affiliation(s)
- Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Daniel A Weiser
- Departments of Pediatrics and Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA.
| | - David M Loeb
- Departments of Pediatrics and Developmental & Molecular Biology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| |
Collapse
|
23
|
Quan Y, Park W, Jin J, Kim W, Park SK, Kang KP. Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κBTGF-β1/Smad Signaling Pathway. Int J Mol Sci 2020; 21:ijms21020402. [PMID: 31936371 PMCID: PMC7014106 DOI: 10.3390/ijms21020402] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is a common feature of all progressive chronic kidney diseases. Sirtuin 3 (SIRT3) is one of the mitochondrial sirtuins, and plays a role in the regulation of mitochondrial biogenesis, oxidative stress, fatty acid metabolism, and aging. Recently, honokiol (HKL), as a pharmaceutical SIRT3 activator, has been observed to have a protective effect against pressure overload-induced cardiac hypertrophy by increasing SIRT3 activity. In this study, we investigated whether HKL, as a SIRT3 activator, also has protective effects against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the nuclear factor-κB (NF-κB)/transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. We found that HKL decreased the UUO-induced increase in tubular injury and extracellular matrix (ECM) deposition in mice. HKL also decreased myofibroblast activation and proliferation in UUO kidneys and NRK-49F cells. Finally, we showed that HKL treatment decreased UUO-induced mitochondrial fission and promoted mitochondrial fusion through SIRT3-dependent effects. In conclusion, activation of SIRT3 via HKL treatment might have beneficial effects on UUO-induced renal fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the NF-κB/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yi Quan
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Woong Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Jixiu Jin
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Won Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Sung Kwang Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| |
Collapse
|
24
|
Volarevic V, Markovic BS, Jankovic MG, Djokovic B, Jovicic N, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N, Lukic ML. Galectin 3 protects from cisplatin-induced acute kidney injury by promoting TLR-2-dependent activation of IDO1/Kynurenine pathway in renal DCs. Theranostics 2019; 9:5976-6001. [PMID: 31534532 PMCID: PMC6735380 DOI: 10.7150/thno.33959] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.
Collapse
|
25
|
|
26
|
Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Eser G. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22562-22574. [PMID: 31165450 DOI: 10.1007/s11356-019-05505-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Zingerone (ZO), one of the active components of ginger (Zingiber officinale), is a phenolic alkanone with antioxidant, antiapoptotic, and anti-inflammatory properties. Cisplatin (CP) is a widely used chemotherapeutic drug for solid tumors, but its therapeutic use is limited due to dose-dependent nephrotoxicity. In the present study, we investigated the ameliorative effect of ZO against CP-induced nephrotoxicity. Intraperitoneal administration of single-dose CP (7 mg/kg body weight) on the first day enhanced kidney lipid peroxidation and reduced antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). CP increased serum urea and creatinine levels and disrupted histological integrity while causing a decrease aquaporin 1 (AQP1) level in the kidney tissues. CP induced inflammatory responses by elevating the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-33 (IL-33) and nuclear factor kappa B (NF-κB), and activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, it also caused oxidative DNA damage and activation of apoptotic pathway by increasing of 8-hydroxy-2'-deoxyguanosine (8-OHdG), p53, cysteine aspartate-specific protease-3 (caspase-3), and Bcl-2-associated x protein (bax) while decreasing B cell lymphoma-2 (Bcl-2). However, treatment with ZO at a dose of 25 and 50 mg/kg b.wt. for 7 days significantly decreased oxidative stress, apoptosis, inflammation, and histopathological alterations while increased AQP1 levels in the kidney tissue. The results of the current study suggested that ZO as an effective natural product attenuates CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
27
|
Antioxidant Effects of Satureja hortensis L. Attenuate the Anxiogenic Effect of Cisplatin in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8307196. [PMID: 31467638 PMCID: PMC6701305 DOI: 10.1155/2019/8307196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Abstract
Numerous adverse effects of cisplatin-based therapy are usually accompanied by enhanced oxidative damage and cell apoptosis in various tissues. Even neurotoxic manifestations of cisplatin administration, such as the anxiogenic effect, appear along with the increased oxidative stress and apoptotic indicators in certain brain regions. Thirty-five Wistar albino male rats were divided into seven groups: control, cisplatin (received a single dose of cisplatin: 7.5 mg/kg), three groups with oral administration of Satureja hortensis L. methanolic extract (SH) (low: 50 mg/kg, middle: 100 mg/kg, and high dose: 200 mg/kg) along with cisplatin application, a group with the extract in high dose alone, and a silymarin group (cisplatin and silymarin: 100 mg/kg), in order to evaluate the antioxidant effects of SH on cisplatin-induced increase in the anxiety level. After completing 10-day pretreatments, behavioral testing was performed in the open field and the elevated plus maze, followed by an investigation of oxidative stress and apoptosis parameters in hippocampal tissue samples. Cisplatin administration resulted in anxiogenic-like behavior, increased lipid peroxidation, and proapoptotic markers accompanied by the decline in antioxidant and antiapoptotic defense. The administration of extract alone did not significantly alter any of the estimated parameters. When applied along with cisplatin, SH in a dose of 100 mg/kg induced the significant anxiolytic effect with concomitant recovery of antioxidant and antiapoptotic activity indicators, while both lower and higher doses of the extract failed to improve the adverse effects of cisplatin administration. The beneficial effects of the middle dose of SH were equivalent to the same dose of silymarin, as a “golden standard.” Our results indicate that the antioxidant supplementation with SH in an optimal dose significantly improved the oxidative status and it had antiapoptotic effect in the rat hippocampus disturbed by cisplatin administration, which was accompanied with attenuation of cisplatin-induced anxiogenic effect.
Collapse
|
28
|
Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxid Redox Signal 2019; 31:134-152. [PMID: 30403161 DOI: 10.1089/ars.2018.7537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.
Collapse
Affiliation(s)
- Vera A Reitsema
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bastiaan S Star
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent D de Jager
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- 2 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,3 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
El-Shitany NAEA, Abbas AT, Ali SS, Eid B, Harakeh S, Neamatalla T, Al-Abd A, Mousa S. Nanoparticles Ellagic Acid Protects Against Cisplatin-induced Hepatotoxicity in Rats Without Inhibiting its Cytotoxic Activity. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.465.477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Zhang Z, Zhao H, Ge D, Wang S, Qi B. β-Casomorphin-7 Ameliorates Sepsis-Induced Acute Kidney Injury by Targeting NF-κB Pathway. Med Sci Monit 2019; 25:121-127. [PMID: 30610183 PMCID: PMC6330023 DOI: 10.12659/msm.912730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to investigate the protective effect of β-casomorphin-7 (β-CM-7) and its possible mechanisms on acute kidney injury (AKI). Material/Methods Rats were randomly divided into a sham group, a cecal ligation and puncture (CLP) group, and a CLP+β-CM-7 group. Kidney index, kidney function, and histopathology changes were assessed. The expression of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (Kim-1), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and p-IκBα in kidney tissues were detected by Western blotting. Inflammatory and oxidative stress factors were detected by ELISA kits. Results The results showed that treatment with β-CM-7 reduced the levels of creatinine (Cre), blood urea nitrogen (BUN), NGAL, and Kim-1 induced by CLP, weakening the pathological damage. In the CLP + β-CM-7 group, the tumor necrosis factor-α (TNF-α) level and the DNA-binding activity of NF-κB p65 were significantly reduced and the interleukin-10 (IL-10) level was significantly increased compared with the CLP group. b-CM-7 decreased the expression of p-IκBα/IκBα. In addition, β-CM-7 increased the activity of superoxide dismutase (SOD) and decreased the level of malondialdehyde (MDA) in kidney tissue. Conclusions β-CM-7 attenuated sepsis-induced AKI through reducing inflammation and oxidative stress and by inhibition of nuclear factor (NF)-κB activities. This study provides a new therapeutic agent for attenuating sepsis-induced kidney injury.
Collapse
Affiliation(s)
- ZhiJie Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Huatang Zhao
- Department of Anesthesiology, Taishan Medical University Affiliated Liaocheng Second People's Hospital, Linqing, Shandong, China (mainland)
| | - DongJian Ge
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Shanshan Wang
- Department of Anesthesiology, Huaiyin Hospital of Huaian City, Huai'an, Jiangsu, China (mainland)
| | - Bin Qi
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
31
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Neamatallah T, El-Shitany NA, Abbas AT, Ali SS, Eid BG. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway. Food Funct 2018; 9:3743-3754. [PMID: 29897076 DOI: 10.1039/c8fo00653a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protective effects of both manuka and talh honeys were assessed using a rat model of cisplatin (CISP)-induced hepatotoxicity and nephrotoxicity. The results revealed that both honeys exerted a protective effect against CISP-induced hepatotoxicity and nephrotoxicity as demonstrated by decreasing liver and kidney function. Manuka honey also prevented CISP-induced histopathological changes observed in the liver and decreased the changes seen in the kidneys. Talh honey decreased CISP-induced liver histopathological changes but had no effect on CISP-induced kidney histopathological changes. Both honeys reduced the oxidative stress in the liver. Conversely, they have no effect on kidney oxidative stress, except that manuka honey increased CAT activity. GC-MS analysis showed the presence of the antioxidant octadecanoic acid in talh honey while heneicosane and hydrocinnamic acid were present at a higher content in manuka honey. The molecular mechanism was to limit the expression of inflammatory signals, including COX-2 and NF-κB, and the expression of the apoptotic signal, BAX and caspase-3 while inducing Bcl-2 expression.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | |
Collapse
|
33
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
34
|
Kim D, Park W, Lee S, Kim W, Park SK, Kang KP. Absence of Sirt3 aggravates cisplatin nephrotoxicity via enhanced renal tubular apoptosis and inflammation. Mol Med Rep 2018; 18:3665-3672. [PMID: 30106119 PMCID: PMC6131565 DOI: 10.3892/mmr.2018.9350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Cisplatin‑based chemotherapy is commonly used in the treatment of solid tumors; however, this agent is limited by its adverse effects on normal tissues, including the kidneys, ears and peripheral nerves. Mechanisms of cisplatin nephrotoxicity are proposed to involve oxidative stress, inflammation, cellular apoptosis and cell cycle regulation. Sirtuin 3 (Sirt3) is a member of the sirtuin family of NAD+‑dependent enzymes with homology to Saccharomyces cerevisiae gene silent information regulator 2. Sirt3 is located in mitochondria and is involved in mitochondrial energy metabolism and function; however, the role of Sirt3 in cisplatin nephrotoxicity remains unclear. In the present study, whether Sirt3 has anti‑inflammatory and anti‑apoptotic effects on cisplatin‑induced nephrotoxicity was investigated in mice. Sirt3 knockout mice (Sirt3(‑/‑)) and corresponding wild type mice were employed in the present study. Cisplatin nephrotoxicity was induced by intraperitoneal injection of cisplatin (20 mg/kg). After 3 days following cisplatin treatment, blood and kidney tissues were harvested. Renal function and histology were evaluated. Tubular apoptosis, cell adhesion molecule expression, and inflammatory cells were evaluated by immunohistochemistry and western blot analysis. Following the induction of cisplatin nephrotoxicity, renal function was significantly aggravated in Sirt3 knockout (KO) mice. Tubular injury and inflammatory cell infiltration were significantly increased in Sirt3KO mice compared with wild type mice. Terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end label‑positive tubular cells and renal monocyte chemoattractant protein‑1 expression levels were increased in Sirt3KO mice compared with in wild type mice. In summary, the absence of Sirt3 aggravated in renal injury by increasing renal inflammation and tubular apoptosis. The results of the present study suggested that Sirt3 may have an important role in cisplatin‑induced nephrotoxicity.
Collapse
Affiliation(s)
- Dal Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Woong Park
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Sik Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Sung Kwang Park
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| |
Collapse
|
35
|
Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis. Int Immunopharmacol 2018; 61:8-19. [DOI: 10.1016/j.intimp.2018.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022]
|
36
|
Chen S, Liu G, Long M, Zou H, Cui H. Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 2018; 184:19-26. [DOI: 10.1016/j.jinorgbio.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
|
37
|
Soliman AF, Anees LM, Ibrahim DM. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:819-832. [PMID: 29736620 DOI: 10.1007/s00210-018-1506-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 01/24/2023]
Abstract
Despite their clinical benefits in cancer treatment, the deleterious effects on heart following chemo/radiotherapy are of increasing importance. Zingerone, a natural polyphenol, possesses multiple biological activities, such as antioxidant and anti-inflammatory. Thus, the current study was designed to assess the potential cardioprotective effects of zingerone against cisplatin or γ-radiation. Zingerone was given by intragastric intubation (25 mg/kg) daily for three successive weeks prior to the induction of cardiotoxicity using a single dose of cisplatin (20 mg/kg, i.p.) or a whole body γ-irradiation at a single dose of 6 Gy. Zingerone pre-treatment significantly reduced the abnormalities in heart histology and the increase in the cardiotoxicity indices, serum lactate dehydrogenase, and creatine kinase-MB activities, as well as plasma cardiac troponin T and B-natriuretic peptide, induced by cisplatin or γ-radiation. Further, zingerone, except for superoxide dismutase, notably ameliorated the state of oxidative stress as evidenced by a significant decrease in malondialdehyde level accompanied with a significant increase in the reduced glutathione content and catalase activity. Additionally, zingerone mitigated the increase in the inflammatory markers including serum level of tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein expression. Moreover, zingerone alleviated the elevation of caspase-3 gene expression and the prominent nuclear DNA fragmentation and attenuated the decrease in mitochondrial complexes' activities. This study sheds the light on a probable protective role of zingerone as an antioxidant, anti-inflammatory, and antiapoptotic agent against cisplatin- or γ-radiation-induced cardiotoxicity and holds a potential in regard to therapeutic intervention for chemo/radiotherapy mediated cardiac damage.
Collapse
Affiliation(s)
- Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Lobna M Anees
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin Sci (Lond) 2018; 132:825-838. [PMID: 29581249 DOI: 10.1042/cs20171625] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis-diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro, FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI.
Collapse
|
39
|
Nho JH, Jung HK, Lee MJ, Jang JH, Sim MO, Jeong DE, Cho HW, Kim JC. Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo. Toxicol Res 2018; 34:133-141. [PMID: 29686775 PMCID: PMC5903139 DOI: 10.5487/tr.2018.34.2.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
Anti-cancer drugs such as cisplatin and doxorubicin are effectively used more than radiotherapy. Cisplatin is a chemotherapeutic drug, used for treatment of various forms of cancer. However, it has side effects such as ototoxicity and nephrotoxicity. Cisplatin-induced nephrotoxicity increases tubular damage and renal dysfunction. Consequently, we investigated the beneficial effect of cynaroside on cisplatin-induced kidney injury using HK-2 cell (human proximal tubule cell line) and an animal model. Results indicated that 10 μM cynaroside diminished cisplatin-induced apoptosis, mitochondrial dysfunction and caspase-3 activation, cisplatin-induced upregulation of caspase-3/MST-1 pathway decreased by treatment of cynaroside in HK-2 cells. To confirm the effect of cynaroside on cisplatin-induced kidney injury in vivo, we used cisplatin exposure animal model (20 mg/kg, balb/c mice, i.p., once a day for 3 days). Renal dysfunction, tubular damage and neutrophilia induced by cisplatin injection were decreased by cynaroside (10 mg/kg, i.p., once a day for 3 days). Results indicated that cynaroside decreased cisplatin-induced kidney injury in vitro and in vivo, and it could be used for improving cisplatin-induced side effects. However, further experiments are required regarding toxicity by high dose cynaroside and caspase-3/MST-1-linked signal transduction in the animal model.
Collapse
Affiliation(s)
- Jong-Hyun Nho
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Ho-Kyung Jung
- National Development Institute of Korean Medicine, Jangheung, Korea.,College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Mu-Jin Lee
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Ji-Hun Jang
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Mi-Ok Sim
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Da-Eun Jeong
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Hyun-Woo Cho
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
40
|
Humanes B, Camaño S, Lara JM, Sabbisetti V, González-Nicolás MÁ, Bonventre JV, Tejedor A, Lázaro A. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol Dial Transplant 2018; 32:1645-1655. [PMID: 28340076 DOI: 10.1093/ndt/gfx005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
Background Cisplatin is a potent chemotherapeutic drug whose nephrotoxic effect is a major complication and a dose-limiting factor for antitumoral therapy. There is much evidence that inflammation contributes to the pathogenesis of cisplatin-induced nephrotoxicity. We found that cilastatin, a renal dehydropeptidase-I inhibitor, has protective effects in vitro and in vivo against cisplatin-induced renal damage by inhibiting apoptosis and oxidation. Here, we investigated the potential use of cilastatin to protect against cisplatin-induced kidney injury and inflammation in rats. Methods Male Wistar rats were divided into four groups: control, cilastatin-control, cisplatin and cilastatin-cisplatin. Nephrotoxicity was assessed 5 days after administration of cisplatin based on blood urea nitrogen, creatinine, glomerular filtration rate (GFR), kidney injury molecule (KIM)-1 and renal morphology. Inflammation was measured using the electrophoretic mobility shift assay, immunohistochemical studies and evaluation of inflammatory mediators. Results Compared with the control rats, cisplatin-administered rats were affected by significant proximal tubule damage, decreased GFR, increased production of inflammatory mediators and elevations in urea, creatinine and tissue KIM-1 levels. Cilastatin prevented these changes in renal function and ameliorated histological damage in cisplatin-administered animals. Cilastatin also reduced pro-inflammatory cytokine levels, activation of nuclear factor-κB and CD68-positive cell concentrations. Conclusions Cilastatin reduces cisplatin-induced nephrotoxicity, which is associated with decreased inflammation in vivo. Although the exact role of decreased inflammation in nephroprotection has not been fully elucidated, treatment with cilastatin could be a novel strategy for the prevention of cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Blanca Humanes
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sonia Camaño
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jose Manuel Lara
- Department of Pathology, IiSGM-Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Venkatta Sabbisetti
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Li Z, Xu K, Zhang N, Amador G, Wang Y, Zhao S, Li L, Qiu Y, Wang Z. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int 2018; 93:881-892. [PMID: 29373150 DOI: 10.1016/j.kint.2017.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase associated with numerous aspects of health and physiology. Overexpression of SIRT6 has emerged as a protector in cardiac tissues against pathologic cardiac hypertrophy. However, the mechanism of this protective effect is not fully understood. Here, both in vivo and in vitro results demonstrated that SIRT6 overexpression can attenuate cisplatin-induced kidney injury in terms of renal dysfunction, inflammation and apoptosis. In addition, SIRT6 knockout aggravated kidney injury caused by cisplatin. We also found that SIRT6 bound to the promoters of ERK1 and ERK2 and deacetylated histone 3 at Lys9 (H3K9) thereby inhibiting ERK1/2 expression. Furthermore, inhibition of ERK1/2 activity eliminated aggravation of kidney injury caused by SIRT6 knock out. Thus, our findings uncover the protective effect of SIRT6 on the kidney and define a new mechanism by which SIRT6 regulates inflammation and apoptosis. This may provide a new therapeutic target for kidney injury under stress.
Collapse
Affiliation(s)
- Zhongchi Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Kang Xu
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Nannan Zhang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Gabriel Amador
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanying Wang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Sen Zhao
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Liyuan Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China; School of Medicine, Tsinghua University, Beijing, People's Republic of China.
| |
Collapse
|
42
|
Protective Effects of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, against Cisplatin-Induced Nephrotoxicity in Mice. Mediators Inflamm 2017; 2017:4139439. [PMID: 29317794 PMCID: PMC5727799 DOI: 10.1155/2017/4139439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used antihyperglycemic agents for the treatment of type 2 diabetes mellitus. Recently, the pleiotropic actions of DPP-4 inhibitors have drawn much attention. In the present study, we aimed to examine whether gemigliptin, a recently developed DPP-4 inhibitor, could protect against cisplatin-induced nephrotoxicity. We showed that pretreatment with gemigliptin attenuated cisplatin-induced renal dysfunction, as shown by analysis of plasma creatinine levels and blood urea nitrogen and histological damage. Elevated plasma levels of active glucagon-like peptide-1 were observed in gemigliptin-pretreated mice after cisplatin treatment, compared to that in cisplatin alone-treated mice. Gemigliptin attenuated cisplatin-induced apoptotic cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and Western blot analysis in the kidneys. Gemigliptin also decreased the plasma levels of tumor necrosis factor-α and monocyte chemoattractant protein-1 and attenuated nuclear staining of nuclear factor kappa-B p65 in the kidneys. In addition, gemigliptin increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the kidneys of cisplatin-treated mice. Taken together, these results suggest that pretreatment with gemigliptin protects against cisplatin-induced nephrotoxicity in mice, possibly via inhibition of apoptotic cell death and inflammatory responses through induction of HO-1 and NQO1 expression.
Collapse
|
43
|
Kim SC, Ko YS, Lee HY, Kim MG, Jo SK, Cho WY. Blocking junctional adhesion molecule C promotes the recovery of cisplatin-induced acute kidney injury. Korean J Intern Med 2017; 32:1053-1061. [PMID: 28192890 PMCID: PMC5668392 DOI: 10.3904/kjim.2016.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Recent findings have demonstrated the occurrence of neutrophil transendothelial migration in the reverse direction (reverse TEM) and that endothelial junctional adhesion molecule C (JAM-C) is a negative regulator of reverse TEM. In this study, we tested the effects of a JAM-C blocking antibody on the resolution of kidney injuries and inflammation in a mouse model of cisplatin-induced acute kidney injury (AKI). METHODS Cisplatin was administered via intraperitoneal injection. A JAM-C blocking antibody or a control immunoglobulin G was administered intraperitoneal at 1.5 mg/kg, with the injection being delayed until day 4 following cisplatin administration to restrict the effect of antibodies on recovery. RESULTS After cisplatin injection, serum creatinine and histologic injuries peaked on day 4. Treatment with a JAM-C blocking antibody on days 4 and 5 promoted the functional and histologic recovery of cisplatin-induced AKI on days 5 and 6. Facilitating recovery with a JAM-C blocking antibody correlated with significantly increased circulating intercellular adhesion molecule 1+ Tamm-Horsfall protein+ neutrophils and significantly decreased renal neutrophil infiltration, indicating that facilitating reverse the TEM of neutrophils from the kidney to the peripheral circulation partially mediated the resolution of inflammation and recovery. CONCLUSIONS These results demonstrated that reverse TEM is involved in the resolution of neutrophilic inflammation in cisplatin-induced AKI and that JAM-C is an important regulator of this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Won-Yong Cho
- Correspondence to Won-Yong Cho, M.D. Department of Internal Medicine, Korea University Anam Hospital, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-920-5599 Fax: +82-2-927-5344 E-mail:
| |
Collapse
|
44
|
Ustuner MA, Kaman D, Colakoglu N. Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin. Tissue Cell 2017; 49:691-696. [PMID: 29066103 DOI: 10.1016/j.tice.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats. METHODS Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM+CoQ10 and Group 5 as GM+BFT for 8days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed. RESULTS Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM+BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM+CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli. CONCLUSION The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.
Collapse
Affiliation(s)
| | - Dilara Kaman
- Department of Medical Biochemistry, Firat University School of Medicine, Elazığ, Turkey.
| | - Neriman Colakoglu
- Department of Histology and Embryology, Firat University School of Medicine, Elazığ, Turkey
| |
Collapse
|
45
|
Bahar E, Lee GH, Bhattarai KR, Lee HY, Kim HK, Handigund M, Choi MK, Han SY, Chae HJ, Yoon H. Protective role of quercetin against manganese-induced injury in the liver, kidney, and lung; and hematological parameters in acute and subchronic rat models. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2605-2619. [PMID: 28919711 PMCID: PMC5592961 DOI: 10.2147/dddt.s143875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Manganese (Mn) is an important mineral element required in trace amounts for development of the human body, while over- or chronic-exposure can cause serious organ toxicity. The current study was designed to evaluate the protective role of quercetin (Qct) against Mn-induced toxicity in the liver, kidney, lung, and hematological parameters in acute and subchronic rat models. Male Sprague Dawley rats were divided into control, Mn (100 mg/kg for acute model and 15 mg/kg for subchronic model), and Mn + Qct (25 and 50 mg/kg) groups in both acute and subchronic models. Our result revealed that Mn + Qct groups effectively reduced Mn-induced ALT, AST, and creatinine levels. However, Mn + Qct groups had effectively reversed Mn-induced alteration of complete blood count, including red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets, and white blood cells. Meanwhile, the Mn + Qct groups had significantly decreased neutrophil and eosinophil and increased lymphocyte levels relative to the Mn group. Additionally, Mn + Qct groups showed a beneficial effect against Mn-induced macrophages and neutrophils. Our result demonstrated that Mn + Qct groups exhibited protective effects on Mn-induced alteration of GRP78, CHOP, and caspase-3 activities. Furthermore, histopathological observation showed that Mn + Qct groups effectively counteracted Mn-induced morphological change in the liver, kidney, and lung. Moreover, immunohistochemically Mn + Qct groups had significantly attenuated Mn-induced 8-oxo-2′-deoxyguanosine immunoreactivity. Our study suggests that Qct could be a substantially promising organ-protective agent against toxic Mn effects and perhaps against other toxic metal chemicals or drugs.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
| | - Geum-Hwa Lee
- Department of Pharmacology, Medical School, Chonbuk National University
| | | | - Hwa-Young Lee
- Department of Pharmacology, Medical School, Chonbuk National University
| | - Hyun-Kyoung Kim
- Department of Pharmacology, Medical School, Chonbuk National University
| | - Mallikarjun Handigund
- Department of Laboratory Medicine, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology, Medical School, Chonbuk National University
| | - Sun-Young Han
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
| | - Han-Jung Chae
- Department of Pharmacology, Medical School, Chonbuk National University
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
| |
Collapse
|
46
|
Potočnjak I, Broznić D, Kindl M, Kropek M, Vladimir-Knežević S, Domitrović R. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation. Food Chem Toxicol 2017; 107:215-225. [DOI: 10.1016/j.fct.2017.06.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
|
47
|
Chen H, Busse LW. Novel Therapies for Acute Kidney Injury. Kidney Int Rep 2017; 2:785-799. [PMID: 29270486 PMCID: PMC5733745 DOI: 10.1016/j.ekir.2017.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology. The old paradigm of identifying renal injury based on location-prerenal, intrarenal, and postrenal-is now being supplanted with a new paradigm based on observable kidney injury patterns. The pathophysiology of AKI on a molecular and microanatomical level includes inflammation, immune dysregulation, oxidative injury, and impaired microcirculation. Treatment has traditionally been supportive, including the avoidance of nephrotoxins, judicious volume and blood pressure management, hemodynamic monitoring, and renal replacement therapy. Fluid overload and chloride-rich fluids are now implicated in the development of AKI, and resuscitation with a balanced, buffered solution at a conservative rate will mitigate risk. Novel therapies, which address specific observable kidney injury patterns include direct oxygen-free radical scavengers such as α-lipoic acid, curcumin, sodium-2-mercaptoethane sulphonate, propofol, and selenium. In addition, angiotensin II and adenosine receptor antagonists hope to ameliorate kidney injury via manipulation of renal hemodynamics and tubulo-glomerular feedback. Alkaline phosphatase, sphingosine 1 phosphate analogues, and dipeptidylpeptidase-4 inhibitors counteract kidney injury via manipulation of inflammatory pathways. Finally, genetic modifiers such as 5INP may mitigate AKI via transcriptive processes.
Collapse
Affiliation(s)
- Huaizhen Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laurence William Busse
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
48
|
El-Sayed ESM, Mansour AM, El-Sawy WS. Alpha lipoic acid prevents doxorubicin-induced nephrotoxicity by mitigation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 02/05/2023]
Affiliation(s)
- El-Sayed M. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Ahmed M. Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Waleed S. El-Sawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Assiut Egypt
| |
Collapse
|
49
|
Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2017; 31:15-25. [DOI: 10.1007/s40620-017-0392-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 12/22/2022]
|
50
|
Abdelkader NF, Saad MA, Abdelsalam RM. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J Neurochem 2017; 141:449-460. [DOI: 10.1111/jnc.13978] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Muhammed A. Saad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|