1
|
Ji H, Sun H, Zhang Y, Zhao Z, Gao X, Wang C, Yang Y, Zhang X, Gao J, Man D, Yang Q, Yang Y, Yue C, Chen C, Ding X, Ni T. Effectiveness and safety of hydrogen inhalation therapy as an additional treatment for hypertension in real-world practice: a retrospective, observational study in China. Front Cardiovasc Med 2024; 11:1391282. [PMID: 39600611 PMCID: PMC11588699 DOI: 10.3389/fcvm.2024.1391282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Aim To evaluate the real-life effectiveness and safety of hydrogen inhalation (HI) therapy as an additional treatment in Chinese adults with hypertension. Methods This observational, retrospective clinical study included hypertensive patients receiving routine antihypertensives with or without HI initiation from 2018 to 2023. Participants were assigned to the HI group or non-HI group (control group) after propensity score matching. The changes in mean systolic blood pressure (SBP) level during the 24-week follow-up period in different groups were examined primarily. The secondary outcome was the changes in diastolic blood pressure (DBP) and blood pressure (BP) control rate during the study. Several subgroup and sensitivity analyses were performed to confirm the robustness of our main findings. Adverse event (AE) was also assessed in patients of both groups. Results In total, we selected 2,364 patients into the analysis. Both mean SBP and DBP levels significantly decreased in the HI group compared to control group at each follow-up visit with the between group difference of -4.63 mm Hg (95% CI, -6.51 to -2.74) at week 8, -6.69 mm Hg (95% CI, -8.54 to -4.85) at week 16, -7.81 mm Hg (95% CI, -9.57 to -6.04) at week 24 for SBP, and -1.83 mm Hg (95% CI, -3.21 to -0.45) at week 8, -2.57 mm Hg (95% CI, -3.97 to -1.17) at week 16, -2.89 mm Hg (95% CI, -4.24 to -1.54) at week 24 for DBP. Patients in the HI group were more likely to attain controlled BP at the follow-up period with odds ratio of 1.44 (95% CI, 1.21-1.72) at week 8, 1.90 (95% CI, 1.59-2.27) at week 16, and 2.24 (95% CI, 1.87-2.68) at the end. The trends of subgroup and sensitivity analyses were mostly consistent with the main analysis. The incidences of AEs were similar between the HI group and control group with all p-value >0.05. Conclusion The HI therapy is related to significant amelioration in BP levels with acceptable safety profile in Chinese hypertensive adults after 24 weeks of treatment, building a clinical ground for further research to evaluate the antihypertensive effect of HI therapy.
Collapse
Affiliation(s)
- Hongxiang Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hualin Sun
- Graduate School, Chengde Medical University, Chengde, Hebei, China
| | - Yinghui Zhang
- Nursing Department, Qingzhou People's Hospital, Qingzhou, Shandong, China
| | - Ziyi Zhao
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xin Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chunhe Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yang Yang
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Xiaodong Zhang
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Jianyong Gao
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Dequan Man
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Qian Yang
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Ying Yang
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Chengbin Yue
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Changjiang Chen
- School of Health Management, Hengxing University, Qingdao, Shandong, China
| | - Xiaoheng Ding
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tongshang Ni
- School of Health Management, Hengxing University, Qingdao, Shandong, China
- Center of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Mouzakis FL, Hima F, Kashefi A, Greven J, Rink L, van der Vorst EPC, Jankowski J, Mottaghy K, Spillner J. Molecular Hydrogen and Extracorporeal Gas Exchange: A Match Made in Heaven? An In Vitro Pilot Study. Biomedicines 2024; 12:1883. [PMID: 39200347 PMCID: PMC11351264 DOI: 10.3390/biomedicines12081883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Extracorporeal circulation (ECC) is frequently implemented in a vast array of modalities such as hemodialysis, cardiopulmonary bypass, extracorporeal membrane oxygenation (ECMO), and others. Patients receiving any such therapy are frequently encumbered with chronic inflammation, which is inherently accompanied by oxidative stress. However, ECC treatments themselves are also responsible for sustaining or promoting inflammation. On these grounds, an in vitro study was designed to investigate the therapeutic potential of molecular hydrogen (H2) against pro-inflammatory agents in ECC settings. Five miniature ECMO circuits and a small vial (Control) were primed with heparinized blood from healthy adult donors (n = 7). Three of the ECMO systems were injected with lipopolysaccharide (LPS), out of which one was additionally treated with an H2 gas mixture. After 6 h, samples were drawn for the assessment of specific biomarkers (MCP-1, MPO, MDA-a, TRX1, and IL-6). Preliminary results indicate a progressive oxidative and inflammatory response between the six systems. Circulation has triggered inflammation and blood trauma, but the staggering influence of LPS in this outcome is indisputable. Accordingly, hydrogen's remedial potential becomes immediately apparent as biomarker concentrations tend to be lower in the H2-handled circuit. Future research should have distinct objectives (e.g., dosage/duration/cycle of hydrogen administration) in order to ascertain the optimal protocol for patient treatment.
Collapse
Affiliation(s)
- Foivos Leonidas Mouzakis
- ECC Lab, Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Flutura Hima
- Department of Thoracic Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ali Kashefi
- ECC Lab, Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, 80336 München, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6200 MD Maastricht, The Netherlands
| | - Khosrow Mottaghy
- ECC Lab, Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Jan Spillner
- Department of Thoracic Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Moribe R, Minami M, Hirota R, J-P NA, Kabayama S, Eitoku M, Yamasaki K, Kuroiwa H, Suganuma N. Health Effects of Electrolyzed Hydrogen Water for the Metabolic Syndrome and Pre-Metabolic Syndrome: A 3-Month Randomized Controlled Trial and Subsequent Analyses. Antioxidants (Basel) 2024; 13:145. [PMID: 38397743 PMCID: PMC10886336 DOI: 10.3390/antiox13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
We studied the effect of three months' use of electrolyzed hydrogen water (EHW, Electrolyzed Hydrogen Water conditioner produced by Nihon Trim Co., Ltd.) on metabolic and pre-metabolic syndrome groups. This research was carried out jointly by Susaki City; Nihon Trim Co., Ltd.; and Kochi University as part of a local revitalization project with health as a keyword. A randomized, placebo-controlled, double-blind, parallel-group trial was conducted to evaluate the clinical impact of EHW on participants who suffered from metabolic syndrome or pre-metabolic syndrome. EHW was produced via electrolysis using a commercially available apparatus (Nihon Trim Co., Ltd., Osaka, Japan). During exercise, oxidative stress increases, and active oxygen species increase. In this study, we examined 181 subjects with metabolic syndrome or pre-metabolic syndrome. Among the group that drank EHW for 3 months, those who also engaged in a high level of physical activity showed a significant difference in waist circumference reduction. Although no significant difference was observed, several positive results were found in the participants who engaged in a high level of physical activity. Urinary 8-OHdG, urinary nitrotyrosine, HbA1c, and blood glucose levels increased in the filtered water (FW) group but decreased in the EHW group. High-sensitivity CRP increased less in the EHW group. 8-Isoprostane decreased more in the EHW group. In subgroup analysis, the EHW group showed a significantly greater reduction in waist circumference than the FW group only when controlled for high physical activity. Based on the result, we suggest that, among participants in the study who suffered from metabolic syndrome and pre-metabolic syndrome in which the level of active oxygen species is said to be higher than in healthy subjects, the group that consumed EHW and also engaged in a high level of physical activity experienced a suppressed or reduced increase in active oxygen species.
Collapse
Affiliation(s)
- Reiko Moribe
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
| | - Marina Minami
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
- Integrated Center for Advanced Medical Technologies (ICAM-Tech), Kochi Medical School, Kochi University, Nankoku 783-8505, Japan;
| | - Ryoji Hirota
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
- Graduate School of Health Science, Matsumoto University, Matsumoto 390-1295, Japan
| | - Naw Awn J-P
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
| | - Shigeru Kabayama
- Nihon Trim Co., Ltd., 22F Herbis ENT Office Tower, 2-2-22, Umeda, Kita-ku, Osaka 530-0001, Japan;
- Graduate School of Science, Technology & Innovation, Kobe University, 1-1 Rokkoudai-cho Nada-ku, Kobe 657-8501, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
| | - Keiko Yamasaki
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
| | - Hajime Kuroiwa
- Integrated Center for Advanced Medical Technologies (ICAM-Tech), Kochi Medical School, Kochi University, Nankoku 783-8505, Japan;
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; (R.M.); (R.H.); (N.A.J.-P.); (M.E.); (K.Y.); (N.S.)
| |
Collapse
|
4
|
Nakayama M, Kabayama S, Miyazaki M. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment-Perspective View. Antioxidants (Basel) 2024; 13:90. [PMID: 38247514 PMCID: PMC10812465 DOI: 10.3390/antiox13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic kidney disease (CKD), which is globally on the rise, has become an urgent challenge from the perspective of public health, given its risk factors such as end-stage renal failure, cardiovascular diseases, and infections. The pathophysiology of CKD, including dialysis patients, is deeply associated with enhanced oxidative stress in both the kidneys and the entire body. Therefore, the introduction of a safe and widely applicable antioxidant therapy is expected as a measure against CKD. Electrolyzed hydrogen water (EHW) generated through the electrolysis of water has been confirmed to possess chemical antioxidant capabilities. In Japan, devices producing this water have become popular for household drinking water. In CKD model experiments conducted to date, drinking EHW has been shown to suppress the progression of kidney damage related to hypertension. Furthermore, clinical studies have reported that systemic oxidative stress in patients undergoing dialysis treatment using EHW is suppressed, leading to a reduction in the incidence of cardiovascular complications. In the future, considering EHW as one of the comprehensive measures against CKD holds significant importance. The medical utility of EHW is believed to be substantial, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Kidney Center, St. Luke’s International Hospital, Tokyo 104-8560, Japan
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
| | - Shigeru Kabayama
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
- Nihon Trim Co., Ltd., Osaka 530-0001, Japan
| | - Mariko Miyazaki
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
5
|
Johnsen HM, Hiorth M, Klaveness J. Molecular Hydrogen Therapy-A Review on Clinical Studies and Outcomes. Molecules 2023; 28:7785. [PMID: 38067515 PMCID: PMC10707987 DOI: 10.3390/molecules28237785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
With its antioxidant properties, hydrogen gas (H2) has been evaluated in vitro, in animal studies and in human studies for a broad range of therapeutic indications. A simple search of "hydrogen gas" in various medical databases resulted in more than 2000 publications related to hydrogen gas as a potential new drug substance. A parallel search in clinical trial registers also generated many hits, reflecting the diversity in ongoing clinical trials involving hydrogen therapy. This review aims to assess and discuss the current findings about hydrogen therapy in the 81 identified clinical trials and 64 scientific publications on human studies. Positive indications have been found in major disease areas including cardiovascular diseases, cancer, respiratory diseases, central nervous system disorders, infections and many more. The available administration methods, which can pose challenges due to hydrogens' explosive hazards and low solubility, as well as possible future innovative technologies to mitigate these challenges, have been reviewed. Finally, an elaboration to discuss the findings is included with the aim of addressing the following questions: will hydrogen gas be a new drug substance in future clinical practice? If so, what might be the administration form and the clinical indications?
Collapse
Affiliation(s)
- Hennie Marie Johnsen
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
- Nacamed AS, Oslo Science Park, Guastadalléen 21, 0349 Oslo, Norway
| | - Marianne Hiorth
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
| |
Collapse
|
6
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
7
|
Rahman MH, Jeong ES, You HS, Kim CS, Lee KJ. Redox-Mechanisms of Molecular Hydrogen Promote Healthful Longevity. Antioxidants (Basel) 2023; 12:988. [PMID: 37237854 PMCID: PMC10215238 DOI: 10.3390/antiox12050988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related diseases represent the largest threat to public health. Aging is a degenerative, systemic, multifactorial and progressive process, coupled with progressive loss of function and eventually leading to high mortality rates. Excessive levels of both pro- and anti-oxidant species qualify as oxidative stress (OS) and result in damage to molecules and cells. OS plays a crucial role in the development of age-related diseases. In fact, damage due to oxidation depends strongly on the inherited or acquired defects of the redox-mediated enzymes. Molecular hydrogen (H2) has recently been reported to function as an anti-oxidant and anti-inflammatory agent for the treatment of several oxidative stress and aging-related diseases, including Alzheimer's, Parkinson's, cancer and osteoporosis. Additionally, H2 promotes healthy aging, increases the number of good germs in the intestine that produce more intestinal hydrogen and reduces oxidative stress through its anti-oxidant and anti-inflammatory activities. This review focuses on the therapeutic role of H2 in the treatment of neurological diseases. This review manuscript would be useful in knowing the role of H2 in the redox mechanisms for promoting healthful longevity.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Hae Sun You
- Department of Anesthesiology & Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| |
Collapse
|
8
|
Uemura S, Kegasa Y, Tada K, Tsukahara T, Kabayama S, Yamamoto T, Miyazaki M, Takada J, Nakayama M. Impact of hemodialysis solutions containing different levels of molecular hydrogen (H2) on the patient-reported outcome of fatigue. RENAL REPLACEMENT THERAPY 2022. [DOI: 10.1186/s41100-022-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reportedly, dialysis solutions containing molecular hydrogen (H2) might ameliorate patient-reported fatigue in hemodialysis (HD) patients. However, it is unknown whether its impact might differ with different H2 levels.
Method
This single-arm, prospective observational study examined 105 patients on chronic HD (62 males; mean age, 66 years; mean HD duration, 117 months). All patients were originally treated with an HD solution with 47 ppb (mean) H2 for more than 12 months, followed by an HD solution with 154 ppb (mean) H2 for 8 weeks. Baseline and changes in subjective fatigue status rated on a numerical rating scale (NRS) were assessed before the start of the study (baseline) and 8th week of the study.
Results
Patients were classified into three groups according to the presence of subjective fatigue at baseline: Group A (15.2%), presence of fatigue on both HD and HD-free days; Group B (28.6%), fatigue only on HD days; and Group C (56.2%), freedom from fatigue. In Group A, NRS scores during the 8-week period were significantly decreased as compared with 0 week, at the 4th and 8th week on HD days, and at the 8th week on HD-free day, respectively. While no consistent changes were found in other groups. At the 8th week, 64 patients (61%) presented absence of or decrease in the NRS score of fatigue, while the rest of patients did not present the decrease in NRS (the non-improved: 39%). Regarding the factors related to the non-improved, prescription of antihypertensive agents was a significant independent risk factor by multivariate analysis, indicating the possible involvement of excess fall in blood pressure (BP) in those patients.
Conclusion
Amelioration of the patient-reported outcome of fatigue might be influenced by H2 levels in the HD solution, and the optimal H2 level in the dialysate needs to be elucidated in consideration of clinical type of fatigue and BP control status.
Collapse
|
9
|
Chan YM, Shariff ZM, Chin YS, Ghazali SS, Lee PY, Chan KS. Associations of alkaline water with metabolic risks, sleep quality, muscle strength: A cross-sectional study among postmenopausal women. PLoS One 2022; 17:e0275640. [PMID: 36315555 PMCID: PMC9621423 DOI: 10.1371/journal.pone.0275640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Much has been claimed on the health benefits of alkaline water including metabolic syndrome (MetS) and its features with scarcity of scientific evidence. Methods: This cross-sectional comparative study was conducted to determine whether regular consumption of alkaline water confers health advantage on blood metabolites, anthropometric measures, sleep quality and muscle strength among postmenopausal women. A total of 304 community-dwelling postmenopausal women were recruited with comparable proportion of regular drinkers of alkaline water and non-drinkers. Participants were ascertained on dietary intake, lifestyle factors, anthropometric and biochemical measurements. Diagnosis of MetS was made according to Joint Interim Statement definition. A total of 47.7% of the participants met MS criteria, with a significant lower proportion of MetS among the alkaline water drinkers. The observed lower fasting plasma glucose (F(1,294) = 24.20, p = 0.025, partial η2 = 0.435), triglyceride/high-density lipoprotein concentration ratio (F(1,294) = 21.06, p = 0.023, partial η2 = 0.360), diastolic blood pressure (F(1,294) = 7.85, p = 0.046, partial η2 = 0.258) and waist circumference (F(1,294) = 9.261, p = 0.038, partial η2 = 0.263) in the alkaline water drinkers could be considered as favourable outcomes of regular consumption of alkaline water. In addition, water alkalization improved duration of sleep (F(1,294) = 32.05, p = 0.007, partial η2 = 0.451) and handgrip strength F(1,294) = 27.51, p = 0.011, partial η2 = 0.448). Low density lipoprotein cholesterol concentration (F(1,294) = 1.772, p = 0.287, partial η2 = 0.014), body weight (F(1,294) = 1.985, p = 0.145, partial η2 = 0.013) and systolic blood pressure (F(1,294) = 1.656, p = 0.301, partial η2 = 0.010) were comparable between the two different water drinking behaviours. In conclusion, drinking adequate of water is paramount for public health with access to good quality drinking water remains a critical issue. While consumption of alkaline water may be considered as a source of easy-to implement lifestyle to modulate metabolic features, sleep duration and muscle strength, further studies are warranted for unravelling the precise mechanism of alkaline water consumption on the improvement and prevention of MetS and its individual features, muscle strength and sleep duration as well as identification of full spectrum of individuals that could benefit from its consumption.
Collapse
Affiliation(s)
- Yoke Mun Chan
- Faculty of Medicine and Health Sciences, Department of Dietetics, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Faculty of Medicine and Health Sciences, Research Center of Excellence Nutrition and Non-Communicable Diseases, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
- * E-mail:
| | - Zalilah Mohd Shariff
- Faculty of Medicine and Health Sciences, Department of Nutrition, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Yit Siew Chin
- Faculty of Medicine and Health Sciences, Research Center of Excellence Nutrition and Non-Communicable Diseases, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Faculty of Medicine and Health Sciences, Department of Nutrition, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Sazlina Shariff Ghazali
- Faculty of Medicine and Health Sciences, Department of Family Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Ping Yein Lee
- Faculty of Medicine, UMeHealth Unit, Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | - Kai Sze Chan
- Faculty of Medicine and Health Sciences, Department of Dietetics, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
10
|
Liu B, Jiang X, Xie Y, Jia X, Zhang J, Xue Y, Qin S. The effect of a low dose hydrogen-oxygen mixture inhalation in midlife/older adults with hypertension: A randomized, placebo-controlled trial. Front Pharmacol 2022; 13:1025487. [PMID: 36278221 PMCID: PMC9585236 DOI: 10.3389/fphar.2022.1025487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 04/04/2024] Open
Abstract
Objective: To explore the effect of a low-dose hydrogen-oxygen (H2-O2) mixture inhalation in midlife/older adults with hypertension. Methods: This randomized, placebo-controlled trial included 60 participants with hypertension aged 50-70 years who were randomly divided into Air group (inhaled placebo air) or H2-O2 group [inhaled H2-O2 mixture (66% H2/33% O2)]. Participants in both groups were treated 4 h per day for 2 weeks. Four-limb blood pressure and 24-h ambulatory blood pressure were monitored before and after the intervention, and levels of plasma hormones related to hypertension were determined. Results: A total of 56 patients completed the study (27 in the Air group and 29 in the H2-O2 group). The right and left arm systolic blood pressure (SBP) were significantly decreased in H2-O2 group compared with the baseline levels (151.9 ± 12.7 mmHg to 147.1 ± 12.0 mmHg, and 150.7 ± 13.3 mmHg to 145.7 ± 13.0 mmHg, respectively; all p < 0.05). Meanwhile, the H2-O2 intervention significantly decreased diastolic nighttime ambulatory blood pressure by 2.7 ± 6.5 mmHg (p < 0.05). All blood pressures were unaffected in placebo group (all p > 0.05). When stratified by age (aged 50-59 years versus aged 60-70 years), participants in the older H2-O2 group showed a larger reduction in right arm SBP compared with that in the younger group (p < 0.05). In addition, the angiotensin II, aldosterone, and cortisol levels as well as the aldosterone-to-renin ratio in plasma were significantly lower in H2-O2 group compared with baseline (p < 0.05). No significant differences were observed in the Air group before and after the intervention. Conclusion: Inhalation of a low-dose H2-O2 mixture exerts a favorable effect on blood pressure, and reduces the plasma levels of hormones associated with hypertension on renin-angiotensin-aldosterone system and stress in midlife/older adults with hypertension.
Collapse
Affiliation(s)
- Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xue Jiang
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunbo Xie
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Jiashuo Zhang
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yazhuo Xue
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| |
Collapse
|
11
|
Wu HT, Chao TH, Ou HY, Tsai LM. Coral Hydrate, a Novel Antioxidant, Improves Alcohol Intoxication in Mice. Antioxidants (Basel) 2022; 11:antiox11071290. [PMID: 35883781 PMCID: PMC9311879 DOI: 10.3390/antiox11071290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-drinking culture may cause individuals to periodically experience unpleasant hangovers. In addition, ethanol catabolism stimulates the production of free radicals that may cause liver injury and further lead to the development of chronic alcoholic fatty liver disease. Although a number of studies have suggested that hydrogenated water may be consumed to act as free radical scavenger, its instability limits its application. In this study, we used coral hydrate (i.e., hydrogenated coral materials) as a more stable hydrogen source and evaluated its effects in a murine model of alcohol intoxication. In solution, coral hydrate exhibited much more stable redox potential than did hydrogenated water. Furthermore, administration of coral hydrate by oral gavage significantly prolonged the time to fall asleep and decreased the total sleep time in mice that received intraperitoneal injection of ethanol. The mice receiving coral hydrate also had lower plasma ethanol and acetaldehyde levels than controls. In line with this observation, hepatic expression of alcohol dehydrogenase, acetaldehyde dehydrogenase, catalase and glutathione peroxidase were all significantly increased by the treatment. Meanwhile, alcohol-induced upregulation of pro-inflammatory factors was attenuated by the administration of coral hydrate. Taken together, our data suggest that coral hydrate might be an effective novel treatment for alcohol intoxication.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
| | - Ting-Hsing Chao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, Tainan Municipal Hospital (Managed by Show-Chwan Medical Care Corporation), Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2609926; Fax: +886-6-2606351
| |
Collapse
|
12
|
Pan B, Liu B, Wang S, Lv Y, Du H, Zhang Y. Understanding the Hydroxyl Adsorption Behavior at Pt Electrode Surface in High-Temperature Alkaline Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Mouzakis FL, Khadka LB, Pereira da Silva M, Mottaghy K. Quantification of dissolved H 2 and continuous monitoring of hydrogen-rich water for haemodialysis applications: An experimental study. Int J Artif Organs 2022; 45:254-261. [PMID: 35075943 PMCID: PMC8866747 DOI: 10.1177/03913988211070588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The prevalence of oxidative and inflammatory stress in end-stage renal disease (ESRD) patients has often been associated with chronic haemodialysis therapies. Over the past decades, several reports have shown the potential of hydrogen molecule as an antioxidant in the treatment of various medical conditions in animal models, as well as in pilot studies with human patients. Recently, a hydrogen-enriched dialysate solution has been introduced, holding promise in reducing the oxidative and/or inflammatory complications arising during haemodialysis. To this end, a standardised measuring method to determine the levels of hydrogen in dialysate and subsequently in blood is required. This study explores the possibility of quantifying hydrogen concentration using a novel contactless sensor that detects dissolved hydrogen in liquids. An experimental circuit is assembled to validate the sensitivity and accuracy of the hydrogen monitoring system (Pureron Japan Co., Ltd) through in vitro investigations with physiological solutions. Measurements of dissolved molecular hydrogen concentration are corroborated by an established oxygen sensor providing continuous partial pressure readings. The relationship between the applied H2 content in the gaseous mixture and the H2 concentration value at equilibrium is linear. At the same time, the hydrogen monitoring system has a rather long response time, and its readings seem to slightly diverge from sensor to sensor as well as at different temperatures. For this reason, a sensor recalibration might be necessary, which could become part of the product's ongoing development. Nevertheless, the aforementioned minor deficiencies can be mostly considered negligible in applications such as haemodialysis.
Collapse
Affiliation(s)
| | - Lal Babu Khadka
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Miguel Pereira da Silva
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany.,Laboratory of Membrane Processes CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Khosrow Mottaghy
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
14
|
Rosch M, Lucas K, Al-Gousous J, Pöschl U, Langguth P. Formulation and Characterization of an Effervescent Hydrogen-Generating Tablet. Pharmaceuticals (Basel) 2021; 14:1327. [PMID: 34959728 PMCID: PMC8707073 DOI: 10.3390/ph14121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Hydrogen, as a medical gas, is a promising emerging treatment for many diseases related to inflammation and oxidative stress. Molecular hydrogen can be generated through hydrogen ion reduction by a metal, and magnesium-containing effervescent tablets constitute an attractive formulation strategy for oral delivery. In this regard, saccharide-based excipients represent an important class of potential fillers with high water solubility and sweet taste. In this study, we investigated the effect of different saccharides on the morphological and mechanical properties and the disintegration of hydrogen-generating effervescent tablets prepared by dry granulation. Mannitol was found to be superior to other investigated saccharides and promoted far more rapid hydrogen generation combined with acceptable mechanical properties. In further product optimization involving investigation of lubricant effects, adipic acid was selected for the optimized tablet, due to regulatory considerations.
Collapse
Affiliation(s)
- Moritz Rosch
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
| | - Jozef Al-Gousous
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| |
Collapse
|
15
|
Kaibori M, Kosaka H. Effect of hydrogen gas inhalation on patient QOL after hepatectomy: protocol for a randomized controlled trial. Trials 2021; 22:727. [PMID: 34674744 PMCID: PMC8529823 DOI: 10.1186/s13063-021-05697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Molecular hydrogen had been considered inactive in vivo but is an antioxidant that selectively reduces highly toxic reactive oxygen species (ROS). Animal studies have reported that hydrogen gas inhalation helped alleviate cerebral and cardiac ischemia-reperfusion injuries. In humans, hydrogen inhalation therapy is presently approved as a treatment under Advanced Medical Care B in Japan (jRCTs031180352: limited to adult patients who suffered out-of-hospital cardiac arrest and are in a continuous coma) and its effectiveness is being examined in a clinical trial. The Japanese government has introduced the “Advanced Medical Care System” to promote the development of drugs and devices under governmental regulations. Advanced Medical Care B is a system designed for unapproved or off-label drugs or medical technologies used in a clinical trial setting. Hepatectomy is generally performed with repeated hepatic blood-flow occlusion and then reperfusion (ischemia and reperfusion). No report, however, has been made on ROS inhibition by hydrogen inhalation therapy or its effectiveness in post-hepatectomy patients. Hydrogen gas inhalation in the early stages after hepatectomy is anticipated to inhibit liver dysfunction by inhibiting ROS. Methods and analysis This study is a randomized, controlled, double-blind superiority trial, which will be conducted as a “specified clinical trial” in accordance with the Clinical Trials Act in Japan. Trial registration was prospectively completed before the first participant was enrolled. The subjects will be patients who will undergo hepatectomy and will be allocated randomly into group A with hydrogen gas inhalation or group B with air inhalation after hepatectomy. The study will examine if hydrogen gas inhalation improves QOL of post-hepatectomy patients. The primary endpoint is patient QOL (score of a 40-item quality of recovery questionnaire, QoR40) on postoperative day 3 and the secondary endpoints are QoR40s besides that on postoperative day 3, grade of postoperative complications (Clavien-Dindo score), level of pain (Numerical Rating Scale (NRS)), amount of dietary intake, liver function, inflammation level, 8-hydroxydeoxyguanosine (urinary 8-OHdG) level, and number of pedometer-assessed steps. Ethics and dissemination The study protocol has been approved by the Niigata University Central Review Board of Clinical Research. The findings of this study will be widely disseminated through peer-reviewed publications and conference presentations. Trial registration jRCTs 03220332. Registered on 21 January 2021
Collapse
Affiliation(s)
- Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Japan.
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
16
|
Tsujimoto Y, Kuratsune D, Kabayama S, Miyazaki M, Watanabe Y, Nishizawa Y, Nakayama M. Amelioration of fatigue in chronic dialysis patients with dialysis solution employing electrolyzed water containing molecular hydrogen (H2) and its association with autonomic function balance. RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Enhanced oxidative stress is involved with fatigue in hemodialysis (HD) patients. Molecular hydrogen (H2) could improve the redox status. Thus, the study examines whether HD solution rendered by electrolyzed water containing H2 (E-HD) could impact the fatigue and autonomic balance of patients.
Methods
This single-arm, prospective observational study examined 95 patients on chronic HD (54 males; mean age and HD duration; 71.4 years and 10.6 years). Fatigue status on HD and HD-free days was compared between control HD (CHD) and 8 weeks after commencement of E-HD, using a visual analog scale (VAS) and an original scale. Autonomic balance was analyzed with the degree of activities of the sympathetic and parasympathetic nervous system via frequency analysis of a continuous beat interval.
Results
Patients were classified into three groups according to the presence of subjective fatigue during the period of CHD: Group A (40.0%), fatigue only on HD days; Group B (11.6%), presence of fatigue on both HD and HD-free days; and Group C (48.4%), freedom from fatigue. During the 8-week observation period of E-HD, VAS scores were significantly decreased on HD days in Group A, while Group B showed no significant changes in VAS on HD days, but significant decreases on HD-free days. No consistent changes were found in Group C. Significant increases in percentages of patients who reported absence of fatigue were seen in Group A on HD days and in Group B on HD-free days in week 8. Regarding changes in autonomic balance parameters after E-HD commencement, a positive correlation was identified between changes in VAS and autonomic balance in Group A.
Conclusion
E-HD may ameliorate fatigue in patients with subjective symptoms on HD and HD-free days. The influence of autonomic balance by E-HD and its impact on fatigue needs to be elucidated.
Collapse
|
17
|
Satta H, Iwamoto T, Kawai Y, Koguchi N, Shibata K, Kobayashi N, Yoshida M, Nakayama M. Amelioration of hemodialysis-induced oxidative stress and fatigue with a hemodialysis system employing electrolyzed water containing molecular hydrogen. RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00353-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
A novel hemodialysis (HD) system employing electrolyzed water containing molecular hydrogen (E-HD) has been developed to improve the bio-compatibility of HD. This study examined the impact of E-HD on changes in redox state during HD and HD-related fatigue.
Method
This single-arm, prospective observational study examined 63 patients on chronic HD (41 males; mean age, 72 ± 9 years; median duration of HD, 7 years). Redox parameters (serum myeloperoxidase [MPO], malondialdehyde-protein adduct [MDA-a], thioredoxin 1 [TRX]) during HD were compared between control HD (C-HD) and E-HD after 8 weeks. Fatigue was evaluated using a numerical rating scale (NRS) during the 8-week course.
Results
In C-HD, an increase in serum MPO accompanied increases in both oxidative products (MDA-a) and anti-oxidant molecules (TRX). In E-HD, although increases in MPO were accentuated during HD, changes in MDA-a and TRX were ameliorated as compared with C-HD. In patients who showed HD-related fatigue (47%) during C-HD, change in MDA-a by HD was a risk factor for the presence of fatigue. During the 8 weeks of observation on E-HD, those patients displayed significant decreases in fatigue scores.
Conclusion
E-HD ameliorates oxidative stress and supports anti-oxidation during HD, suggesting improved bio-compatibility of the HD system. E-HD may benefit patients with HD-related fatigue, but the mechanisms underlying changes to oxidative stress have yet to be clarified.
Collapse
|
18
|
Abstract
Hydrogen therapy is a very promising treatment against several diseases due to its mild attributes, high affinity and inherent biosafety. However, there is little elaboration about current hydrogen treatment in liver diseases. This article introduces the administration of hydrogen and mechanisms of hydrogen therapy in vivo, including modulating reactive oxygen species, apoptosis and autophagy, and inflammation, affecting mitochondria, as well as protein transporters. The major focus is clinical hydrogen use and related mechanisms in liver dysfunction or diseases, including non-alcoholic fatty liver disease, hepatitis B, liver dysfunction caused by liver tumour and colorectal tumour chemotherapy. Further, the article reveals ex vivo hydrogen application in liver protection. Finally, the article discusses the current and future challenges of hydrogen therapy in liver diseases, aiming to improve knowledge of hydrogen therapy and provide some insights into this burgeoning field.
Collapse
Affiliation(s)
- Jian Shi
- The Third Xiangya Hospital, Changsha, China
| | | | | |
Collapse
|
19
|
Redox Effects of Molecular Hydrogen and Its Therapeutic Efficacy in the Treatment of Neurodegenerative Diseases. Processes (Basel) 2021. [DOI: 10.3390/pr9020308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress (OS) and neuroinflammatory stress affect many neurological disorders. Despite the clinical significance of oxidative damage in neurological disorders, still, no effective and safe treatment methods for neuro diseases are available. With this, molecular hydrogen (H2) has been recently reported as an antioxidant and anti-inflammatory agent to treat several oxidative stress-related diseases. In animal and human clinical trials, the routes for H2 administration are mainly categorized into three types: H2 gas inhalation, H2 water dissolving, and H2-dissolved saline injection. This review explores some significant progress in research on H2 use in neurodegenerative diseases (NDs), including Alzheimer’s disease, Parkinson’s disease, neonatal disorders of the brain, and other NDs (retinal ischemia and traumatic brain injury). Even though most neurological problems are not currently curable, these studies have shown the therapeutic potential for prevention, treatment, and mitigation of H2 administration. Several possible H2-effectors, including cell signaling molecules and hormones, which prevent OS and inflammation, will also be addressed. However, more clinical and other related studies are required to evaluate the direct H2 target molecule.
Collapse
|
20
|
Enhanced neutrophil apoptosis accompanying myeloperoxidase release during hemodialysis. Sci Rep 2020; 10:21747. [PMID: 33303892 PMCID: PMC7728788 DOI: 10.1038/s41598-020-78742-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Biocompatibility of hemodialysis (HD) systems have been considerably improved. However, mortality and morbidity rates of patients have remained high, raising questions regarding the biocompatibility of current systems. In the present study, 70 patients on regular HD (51 males; mean age, 63 years; median duration of HD, 18 months) with high-performance membrane (polysulfone, 77%; polymethylmethacrylate, 23%) at Tohoku University Hospital were examined. Blood samples before and after HD, were subjected to measure apoptosis cells of white blood cells, plasma levels of the following molecules: myeloperoxidase (MPO), pentraxin 3 (PTX3), angiogenin, complements, and 17 cytokines. The main findings were as follows: significant decreases in leukocyte counts by dialysis, significant increases in apoptosis-positive leukocytes by dialysis (neutrophils and monocytes), and significant decrease in plasma angiogenin accompanying increase in plasma MPO and PTX3 levels, with no or only marginal changes in plasma pro-inflammatory cytokine levels and complement products by dialysis. The findings underlined the unsolved issue of bio-incompatibility of HD systems, and suggest the possible pathology of neutrophil apoptosis accompanying MPO release for the development of microinflammation in patients on HD.
Collapse
|
21
|
Daily inhalation of hydrogen gas has a blood pressure-lowering effect in a rat model of hypertension. Sci Rep 2020; 10:20173. [PMID: 33244027 PMCID: PMC7692487 DOI: 10.1038/s41598-020-77349-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
A recent clinical study demonstrated that haemodialysis with a dialysate containing hydrogen (H2) improves blood pressure control in end-stage kidney disease. Herein, we examined whether H2 has a salutary effect on hypertension in animal models. We subjected 5/6 nephrectomised rats to inhalation of either H2 (1.3% H2 + 21% O2 + 77.7% N2) or control (21% O2 + 79% N2) gas mixture for 1 h per day. H2 significantly suppressed increases in blood pressure after 5/6 nephrectomy. The anti-hypertensive effect of H2 was also confirmed in rats in a stable hypertensive state 3 weeks after nephrectomy. To examine the detailed effects of H2 on hypertension, we used an implanted telemetry system to continuously monitor blood pressure. H2 exerted an anti-hypertensive effect not only during daytime rest, but also during night-time activities. Spectral analysis of blood pressure variability revealed that H2 improved autonomic imbalance, namely by suppressing the overly active sympathetic nervous system and augmenting parasympathetic nervous system activity; these effects co-occurred with the blood pressure-lowering effect. In conclusion, 1-h daily exposure to H2 exerts an anti-hypertensive effect in an animal model of hypertension.
Collapse
|
22
|
Prospects of molecular hydrogen in perioperative neuroprotection from basic research to clinical application. Curr Opin Anaesthesiol 2020; 33:655-660. [PMID: 32826628 DOI: 10.1097/aco.0000000000000915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current systematic review summarizes recent, basic clinical achievements regarding the neuroprotective effects of molecular hydrogen in distinct central nervous system conditions. RECENT FINDINGS Perioperative neuroprotection remains a major topic of clinical anesthesia. Various gaseous molecules have previously been explored as a feasible therapeutic option in neurological disorders. Among them, molecular hydrogen, which has emerged as a novel and potential therapy for perioperative neuroprotection, has received much attention. SUMMARY Fundamental and clinical evidence supports the antioxidant, antiinflammation, antiapoptosis and mitochondrial protective effects of hydrogen in the pathophysiology of nervous system diseases. The clinically preventive and therapeutic effects of hydrogen on different neural diseases, however, remain uncertain, and the lack of support by large randomized controlled trials has delayed its clinical application.
Collapse
|
23
|
Zhou G, Goshi E, He Q. Micro/Nanomaterials-Augmented Hydrogen Therapy. Adv Healthc Mater 2019; 8:e1900463. [PMID: 31267691 DOI: 10.1002/adhm.201900463] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen therapy is an emerging and promising therapy strategy of using molecular hydrogen as a new type of safe and effective therapeutic agent, exhibiting remarkable therapeutic effects on many oxidative stress-/inflammation-related diseases owing to its bio-reductivity and homeostatic regulation ability. Different from other gaseous transmitters such as NO, CO, and H2 S, hydrogen gas has no blood poisoning risk at high concentration because it does not affect the oxygen-carrying behavior of blood red cells. Hydrogen molecules also have low aqueous solubility and high but aimless diffusibility, causing limited therapy efficacy in many diseases. To realize the site-specific hydrogen delivery, controlled hydrogen release and combined therapy is significant but still challenging. Here, a concept of hydrogen nanomedicine to address the issues of hydrogen medicine by using functional micro/nanomaterials for augmented hydrogen therapy is proposed. In this review, various strategies of micro/nanomaterials-augmented hydrogen therapy, including micro/nanomaterials-mediated targeted hydrogen delivery, controlled hydrogen release, and nanocatalytic and multimodel enhancement of hydrogen therapy efficacy, are summarized, which can open a new window for treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Gaoxin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| | - Ekta Goshi
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| |
Collapse
|
24
|
LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1. Can J Physiol Pharmacol 2019; 97:797-807. [PMID: 30970215 DOI: 10.1139/cjpp-2019-0067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
25
|
Kou Z, Zhao P, Wang Z, Jin Z, Chen L, Su BL, He Q. Acid-responsive H 2-releasing Fe nanoparticles for safe and effective cancer therapy. J Mater Chem B 2019; 7:2759-2765. [PMID: 32255077 DOI: 10.1039/c9tb00338j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen therapy is an emerging and promising strategy for treatment of inflammation-related diseases owing to the excellent bio-safety of hydrogen molecules (H2), but is facing a challenge that the H2 concentration at the local disease site is hardly accumulated because of its high diffusibility and low solubility, limiting the efficacy of hydrogen therapy. Herein, we propose a nanomedicine strategy of imaging-guided tumour-targeted delivery and tumour microenvironment-triggered release of H2 to address this issue, and develop a kind of biocompatible carboxymethyl cellulose (CMC)-coated/stabilized Fe (Fe@CMC) nanoparticle with photoacoustic imaging (PAI), tumour targeting and acid responsive hydrogen release properties for cancer therapy. The Fe@CMC nanoparticles have demonstrated high intratumoural accumulation capability, high acid responsiveness, excellent PAI performance, selective cancer-killing effect and high bio-safety in vitro and in vivo. Effective inhibition of tumour growth is achieved by intravenous injection of the Fe@CMC nanoparticles, and the selective anti-cancer mechanism of Fe@CMC is discovered to be originated from the energy metabolism homeostasis regulatory function of the released H2. The proposed nanomedicine-mediated hydrogen therapy strategy will open a new window for precise, high-efficacy and safe cancer treatment.
Collapse
Affiliation(s)
- Zhu Kou
- Laboratory of Living Materials, The State Key Laboratory of Advanced Technology for Marterials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Cejka C, Kubinova S, Cejkova J. The preventive and therapeutic effects of molecular hydrogen in ocular diseases and injuries where oxidative stress is involved. Free Radic Res 2019; 53:237-247. [DOI: 10.1080/10715762.2019.1582770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cestmir Cejka
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Cejkova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, Lu X, Gu Z, He Q. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018; 9:4241. [PMID: 30315173 PMCID: PMC6185976 DOI: 10.1038/s41467-018-06630-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment.
Collapse
Affiliation(s)
- Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Qian Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA
| | - Tian Yang
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jin Meng
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA.
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
28
|
Electrochemically Reduced Water Delays Mammary Tumors Growth in Mice and Inhibits Breast Cancer Cells Survival In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4753507. [PMID: 30402124 PMCID: PMC6196883 DOI: 10.1155/2018/4753507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/25/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
Abstract
Electrochemical reduced water (ERW) has been proposed to have beneficial effects on human health due to its rich content of H2 and the presence of platinum nanoparticles with antioxidant effects. Many studies have demonstrated that ERW scavenging properties are able to reduce the damage caused by oxidative stress in different experimental models. Although few in vivo studies have been reported, it has been demonstrated that ERW may display anticancer effects by induction of tumor cells apoptosis and reduction of both angiogenesis and inflammation. In this study, we show that ERW treatment of MCF-7, MDA-MB-453, and mouse (TUBO) breast cancer cells inhibited cell survival in a time-dependent fashion. ERW decreased ErbB2/neu expression and impaired pERK1/ERK2 and AKT phosphorylation in breast cancer cells. In addition, ERW treatment induced apoptosis of breast cancer cell lines independently of the status of p53 and ER and PR receptors. Our in vivo results showed that ERW treatment of transgenic BALB-neuT mice delayed the development of mammary tumors compared to the control. In addition, ERW induced a significant prolongation of tumor-free survival and a reduction in tumor multiplicity. Overall, these results suggest a potential beneficial role of ERW in inhibiting cancer cells growth.
Collapse
|
29
|
Lu W, Li D, Hu J, Mei H, Shu J, Long Z, Yuan L, Li D, Guan R, Li Y, Xu J, Wang T, Yao H, Zhong N, Zheng Z. Hydrogen gas inhalation protects against cigarette smoke-induced COPD development in mice. J Thorac Dis 2018; 10:3232-3243. [PMID: 30069319 DOI: 10.21037/jtd.2018.05.93] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with limited treatment options. Hydrogen (H2) has been shown to be anti-oxidative and anti-inflammatory. This study aimed to evaluate the beneficial effects of H2 inhalation on COPD development in mice. Methods A COPD mouse model was established in male C57BL mice by cigarette smoke (CS) exposure. The H2 intervention was administered by atomisation inhalation. Lung functions were assessed by using Buxco lung function measurement system. The inflammatory cells were counted and the levels of IL-6 and KC in BALF were assayed with ELISA. The lung tissue was subjected to H&E or PAS or Masson's trichrome stain. Furthermore, 16HBE cells were used to evaluate the effects of H2 on signaling change caused by hydrogen peroxide (H2O2). H2O2 was used to treat 16HBE cells with or without H2 pretreatment. The IL-6 and IL-8 levels in cell culture medium were measured. The levels of phosphorylated ERK1/2 and nucleic NF-κB in lungs and 16HBE cells were determined. Results H2 ameliorated CS-induced lung function decline, emphysema, inflammatory cell infiltration, small-airway remodelling, goblet-cell hyperplasia in tracheal epithelium and activated ERK1/2 and NF-κB in mouse lung. In 16HBE airway cells, H2O2 increased IL-6 and IL-8 secretion in conjunction with ERK1/2 and NF-κB activation. These changes were reduced by H2 treatment. Conclusions These findings demonstrated that H2 inhalation could inhibit CS-induced COPD development in mice, which is associated with reduced ERK1/2 and NF-κB-dependent inflammatory responses.
Collapse
Affiliation(s)
- Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China.,Sino-French Hoffmann Immunology Institute, Guangzhou Medical University, Guangzhou 510000, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Jieying Hu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Huijun Mei
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Difei Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Zeguang Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| |
Collapse
|
30
|
Novel haemodialysis (HD) treatment employing molecular hydrogen (H 2)-enriched dialysis solution improves prognosis of chronic dialysis patients: A prospective observational study. Sci Rep 2018; 8:254. [PMID: 29321509 PMCID: PMC5762770 DOI: 10.1038/s41598-017-18537-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 11/08/2022] Open
Abstract
Recent studies have revealed unique biological characteristics of molecular hydrogen (H2) as an anti-inflammatory agent. We developed a novel haemodialysis (E-HD) system delivering an H2 (30-80 ppb)-enriched dialysis solution by water electrolysis, and conducted a non-randomized, non-blinded, prospective observational study exploring its clinical impact. Prevalent chronic HD patients were allocated to either the E-HD (n = 161) group or the conventional HD (C-HD: n = 148) group, and received the respective HD treatments during the study. The primary endpoint was a composite of all-cause mortality and development of non-lethal cardio-cerebrovascular events (cardiac disease, apoplexy, and leg amputation due to peripheral artery disease). During the 3.28-year mean observation period, there were no differences in dialysis parameters between the two groups; however, post-dialysis hypertension was ameliorated with significant reductions in antihypertensive agents in the E-HD patients. There were 91 events (50 in the C-HD group and 41 in the E-HD group). Multivariate analysis of the Cox proportional hazards model revealed E-HD as an independent significant factor for the primary endpoint (hazard ratio 0.59; [95% confidence interval: 0.38-0.92]) after adjusting for confounding factors (age, cardiovascular disease history, serum albumin, and C-reactive protein). HD applying an H2-dissolved HD solution could improve the prognosis of chronic HD patients.
Collapse
|
31
|
Nakayama M, Zhu WJ, Watanabe K, Gibo A, Sherif AM, Kabayama S, Ito S. Dissolved molecular hydrogen (H 2) in Peritoneal Dialysis (PD) solutions preserves mesothelial cells and peritoneal membrane integrity. BMC Nephrol 2017; 18:327. [PMID: 29089029 PMCID: PMC5664574 DOI: 10.1186/s12882-017-0741-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background Peritoneal dialysis (PD) is used as renal replacement therapy in patients with end-stage kidney disease. However, peritoneal membrane failure remains problematic and constitutes a critical cause of PD discontinuation. Recent studies have revealed the unique biological action of molecular hydrogen (H2) as an anti-oxidant, which ameliorates tissue injury. In the present study, we aimed to examine the effects of H2 on the peritoneal membrane of experimental PD rats. Method Eight-week-old male Sprague-Dawley rats were divided into the following groups (n = 8–11 each) receiving different test solutions: control group (no treatment), PD group (commercially available lactate-based neutral 2.5% glucose PD solution), and H2PD group (PD solution with dissolved H2 at 400 ppb). Furthermore, the influence of iron (FeCl3: 5 μM: inducer of oxidative cellular injury) in the respective PD solutions was also examined (Fe-PD and Fe-H2PD groups). The H2PD solution was manufactured by bathing a PD bag in H2-oversaturated water created by electrolysis of the water. Twenty mL of the test solutions were intraperitoneally injected once a day for 10 days. Parietal peritoneum samples and cells collected from the peritoneal surface following treatment with trypsin were subjected to analysis. Results In the PD group as compared to controls, a mild but significant sub-mesothelial thickening was observed, with increase in the number of cells in the peritoneal surface tissue that were positive for apoptosis, proliferation and vimentin, as seen by immunostaining. There were significantly fewer of such changes in the H2PD group, in which there was a dominant presence of M2 (CD163+) macrophages in the peritoneum. The Fe-PD group showed a significant loss of mesothelial cells with sub-mesothelial thickening, these changes being ameliorated in the Fe-H2PD group. Conclusion H2-dissolved PD solutions could preserve mesothelial cells and peritoneal membrane integrity in PD rats. Clinical application of H2 in PD could be a novel strategy for protection of peritoneal tissue during PD treatment.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan. .,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.
| | - Wan-Jun Zhu
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.,Trim Medical Institute Co., Ltd., Osaka, Japan
| | - Kimio Watanabe
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan
| | - Ayano Gibo
- Fukushima Medical University, Fukushima, Japan
| | - Ali M Sherif
- The Tokyo Jikei University School of Medicine, Department of Nephrology and Hypertension, Tokyo, Japan
| | - Shigeru Kabayama
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.,Trim Medical Institute Co., Ltd., Osaka, Japan
| | - Sadayoshi Ito
- Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan
| |
Collapse
|
32
|
Nakayama M, Itami N, Suzuki H, Hamada H, Osaka N, Yamamoto R, Tsunoda K, Nakano H, Watanabe K, Zhu WJ, Maruyama Y, Terawaki H, Kabayama S, Nakazawa R, Miyazaki M, Ito S. Possible clinical effects of molecular hydrogen (H2) delivery during hemodialysis in chronic dialysis patients: Interim analysis in a 12 month observation. PLoS One 2017; 12:e0184535. [PMID: 28902900 PMCID: PMC5597210 DOI: 10.1371/journal.pone.0184535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/12/2017] [Indexed: 01/10/2023] Open
Abstract
Background and aim It is supposed that enhanced oxidative stress and inflammation are involved with the poor clinical outcomes in patients on chronic dialysis treatment. Recent studies have shown that molecular hydrogen (H2) is biologically active as an anti-inflammatory agent. Thus, we developed a novel hemodialysis (E-HD) system which delivers H2 (30 to 80 ppb)-enriched dialysis solution, to conduct a prospective observational study (UMIN000004857) in order to compare the long-term outcomes between E-HD and conventional-HD (C-HD) in Japan. The present interim analysis aimed to look at potential clinical effects of E-HD during the first 12 months observation. Subjects and method 262 patients (140, E-HD; 122, C-HD) were subjected for analysis for comprehensive clinical profiles. They were all participating in the above mentioned study, and they had been under the respective HD treatment for 12 consecutive months without hospitalization. Collected data, such as, physical and laboratory examinations, medications, and self-assessment questionnaires on subjective symptoms (i.e., fatigue and pruritus) were compared between the two groups. Results In a 12-month period, no clinical relevant differences were found in dialysis-related parameters between the two groups. However, there were differences in the defined daily dose of anti-hypertensive agents, and subjective symptoms, such as severe fatigue, and pruritus, which were all less in the E-HD group. Multivariate analysis revealed E-HD was an independent significant factor for the reduced use of anti-hypertensive agents as well as the absence of severe fatigue and pruritus at 12 months after adjusting for confounding factors. Conclusion The data indicates E-HD could have substantial clinical benefits beyond conventional HD therapy, and support the rationale to conduct clinical trials of H2 application to HD treatment.
Collapse
Affiliation(s)
- Masaaki Nakayama
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
- Research Division of Chronic Kidney Disease and Dialysis Treatment, Tohoku University Hospital, Sendai, Japan
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Noritomo Itami
- Kidney Center, Nikko-Memorial Hospital and Higashi Muroran Satellite Clinic, Muroran, Japan
| | | | - Hiromi Hamada
- Kidney Center, Nikko-Memorial Hospital and Higashi Muroran Satellite Clinic, Muroran, Japan
| | | | | | | | | | - Kimio Watanabe
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
| | - Wan-Jun Zhu
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
- Research Division of Chronic Kidney Disease and Dialysis Treatment, Tohoku University Hospital, Sendai, Japan
- Trim Medical Institute Co., Ltd., Osaka, Japan
| | - Yukio Maruyama
- Department of Nephrology and Hypertension, The Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Terawaki
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
| | - Shigeru Kabayama
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
- Trim Medical Institute Co., Ltd., Osaka, Japan
| | | | - Mariko Miyazaki
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
- Research Division of Chronic Kidney Disease and Dialysis Treatment, Tohoku University Hospital, Sendai, Japan
- Division of Blood purification, Tohoku University Hospital, Sendai, Japan
| | - Sadayoshi Ito
- United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Tohoku University, Sendai, Japan
- Division of Blood purification, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
33
|
Hamasaki T, Harada G, Nakamichi N, Kabayama S, Teruya K, Fugetsu B, Gong W, Sakata I, Shirahata S. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. PLoS One 2017; 12:e0171192. [PMID: 28182635 PMCID: PMC5300231 DOI: 10.1371/journal.pone.0171192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.
Collapse
Affiliation(s)
- Takeki Hamasaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Gakuro Harada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Noboru Nakamichi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | - Kiichiro Teruya
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Bunshi Fugetsu
- Innovation Policy Research Center, IPRC, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Wei Gong
- Innovation Policy Research Center, IPRC, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Sakata
- Policy Alternative Research Institute, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Sanetaka Shirahata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
34
|
Abstract
Molecular hydrogen (H 2) has recently been recognized as a potential novel therapeutic agent in biomedicine. Initially proposed to be a possible treatment for certain types of neuromuscular disorders, cardio-metabolic diseases and cancer, H 2 improved clinical end-points and surrogate markers in several clinical trials, mainly acting as an anti-inflammatory agent and powerful antioxidant. In this paper, the medicinal properties of H 2 in musculoskeletal medicine are discussed with the aim to provide an updated and practical overview for health professionals working in this field.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia; University of Belgrade School of Medicine, Belgrade, Serbia
| |
Collapse
|
35
|
Xiao L, Miwa N. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell 2016; 30:72-87. [DOI: 10.1007/s13577-016-0150-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
36
|
Maeda K, Yoshizaki S, Iida T, Terada T, Era S, Sakashita K, Arikawa H. Improvement of the fraction of human mercaptalbumin on hemodialysis treatment using hydrogen-dissolved hemodialysis fluid: a prospective observational study. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0054-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Franceschelli S, Gatta DMP, Pesce M, Ferrone A, Patruno A, de Lutiis MA, Grilli A, Felaco M, Croce F, Speranza L. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-κB/iNOS Pathway in U937 Cell Line under Altered Redox State. Int J Mol Sci 2016; 17:ijms17091461. [PMID: 27598129 PMCID: PMC5037740 DOI: 10.3390/ijms17091461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Daniela Maria Pia Gatta
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Mirko Pesce
- Medicine and Health Science School, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Maria Anna de Lutiis
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Alfredo Grilli
- Medicine and Health Science School, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Mario Felaco
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Fausto Croce
- Department of Farmacy, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| |
Collapse
|
38
|
Nakayama M, Kabayama S, Ito S. The hydrogen molecule as antioxidant therapy: clinical application in hemodialysis and perspectives. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0036-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Terawaki H, Nakano H, Zhu WJ, Nakayama M. Successful treatment of encapsulating peritoneal sclerosis by hemodialysis and peritoneal lavage using dialysate containing dissolved hydrogen. Perit Dial Int 2015; 35:107-12. [PMID: 25700467 DOI: 10.3747/pdi.2013.00255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hiroyuki Terawaki
- Dialysis center Fukushima Medical University, Fukushima, Japan Department of Internal Medicine Kashima Hospital, Iwaki, Japan Department of Nephrology Fukushima Medical Hospital, Fukushima, Japan
| | - Hirofumi Nakano
- Dialysis center Fukushima Medical University, Fukushima, Japan Department of Internal Medicine Kashima Hospital, Iwaki, Japan Department of Nephrology Fukushima Medical Hospital, Fukushima, Japan
| | - Wan-Jun Zhu
- Dialysis center Fukushima Medical University, Fukushima, Japan Department of Internal Medicine Kashima Hospital, Iwaki, Japan Department of Nephrology Fukushima Medical Hospital, Fukushima, Japan
| | - Masaaki Nakayama
- Dialysis center Fukushima Medical University, Fukushima, Japan Department of Internal Medicine Kashima Hospital, Iwaki, Japan Department of Nephrology Fukushima Medical Hospital, Fukushima, Japan
| |
Collapse
|
40
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
41
|
Abstract
1. Hydrogen is a colourless, odourless, tasteless and flammable gas. Hydrogen is considered a physiologically inert gas and is often used in deep sea diving medicine. In mammals, endogenous hydrogen is produced as a result of the fermentation of non-digestible carbohydrates by intestinal bacteria and it is absorbed into the systemic circulation. 2. Recent evidence indicates that hydrogen is a potent anti-oxidative, anti-apoptotic and anti-inflammatory agent and so may have potential medical application. The present review evaluates the concept of 'hydrogen resuscitation', based on knowledge that hydrogen treatment effectively protects cells, tissues and organs against oxidative injury and helps them recover from dysfunction. 3. Hydrogen therapy can be delivered by inhalation, the administration of hydrogen-enriched fluid or by approaches that affect endogenous hydrogen production. 4. Studies have shown that hydrogen resuscitation has cytoprotective effects in different cell types and disease models, including ischaemia-reperfusion injury, inflammation, toxicity, trauma and metabolic disease. The underlying mechanism may be the selective elimination of hydroxyl radicals, although other mechanisms may also be involved (e.g. hydrogen functioning as a gaseous signalling molecule). 5. Hydrogen resuscitation may have several potential advantages over current pharmacological therapies for oxidative injuries. However, more work is needed to identify the precise mechanism underlying the actions of hydrogen and to validate its therapeutic potential in the clinical setting.
Collapse
Affiliation(s)
- Xing-Feng Zheng
- Department of Burn Surgery, Changhai HospitalDepartment of Diving Medicine, Second Military Medical University, Shanghai, China
| | | | | |
Collapse
|
42
|
Abstract
Molecular hydrogen (H2) appeared as an experimental agent in biomedicine approximately 40 years ago, yet the past 5 years seem to confirm its medicinal value in the clinical environment. H2 improves clinical end-points and surrogate markers in several clinical trials, from metabolic diseases to chronic systemic inflammatory disorders to cancer. However, less information is available concerning its medicinal properties, such as dosage and administration, or adverse reactions and use in specific populations. The present paper overviews the clinical relevance of molecular hydrogen, and summarizes data from clinical trials on this innovative medical agent. Clinical profiles of H2 provide evidence-based direction for practical application and future research on molecular hydrogen for the wider health care community.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Department of Biomedical Sciences in Sport, University of Novi Sad , Serbia , and University of Belgrade School of Medicine , Serbia
| |
Collapse
|
43
|
Tange Y, Takesawa S, Yoshitake S. Dialysate with high dissolved hydrogen facilitates dissociation of indoxyl sulfate from albumin. Nephrourol Mon 2015; 7:e26847. [PMID: 25883914 PMCID: PMC4393549 DOI: 10.5812/numonthly.26847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/04/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein-bound toxins such as indoxyl sulfate (IS) are not efficiently removed by conventional hemodialysis (HD). OBJECTIVES To improve the removal of IS, we performed an in vitro study to evaluate the effects of high dissolved hydrogen on the dissociation of IS from albumin using simulated HD. MATERIALS AND METHODS Wasted dialysate from peritoneal dialysis was concentrated a hundred times using extracorporeal ultrafiltration method. Dialysate with high dissolved hydrogen was made by mixing concentrated dialysis solution and electrolyzed-reduced water. The amounts of free fractions of IS were determined by high performance liquid chromatography. RESULTS IS was significantly dissociated from albumin using dialysate with high dissolved hydrogen compared with conventional dialysate (P < 0.05). CONCLUSIONS Effective removal of IS is expected using a dialysate with high dissolved hydrogen.
Collapse
Affiliation(s)
- Yoshihiro Tange
- Department of Medical Engineering, School of Health Science, Kyushu University of Health and Welfare Yoshinomachi, Nobeoka, Japan
- Corresponding author: Yoshihiro Tange, Department of Medical Engineering, School of Health Science, Kyushu University of Health and Welfare Yoshinomachi, Nobeoka, Miyazaki, Japan. Tel/Fax: +81-982235592, E-mail:
| | - Shingo Takesawa
- Department of Medical Engineering, School of Health Science, Kyushu University of Health and Welfare Yoshinomachi, Nobeoka, Japan
| | - Shigenori Yoshitake
- Department of Medical Engineering, School of Health Science, Kyushu University of Health and Welfare Yoshinomachi, Nobeoka, Japan
| |
Collapse
|
44
|
Ostojic SM. Targeting molecular hydrogen to mitochondria: barriers and gateways. Pharmacol Res 2015; 94:51-3. [PMID: 25720951 DOI: 10.1016/j.phrs.2015.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/14/2022]
Abstract
Although the administration of molecular hydrogen (H2, dihydrogen) has been recognized as an effective innovative therapeutic procedure in biomedicine, H2 cellular kinetics and utilization seems to be less understood. In particular, mitochondrial barriers might impact on H2 use in mitochondria-related diseases and conditions. Double-membrane organization of mitochondria and large membrane potential are important elements of mitochondrial stability that control the transport of the molecule into and out of the organelle. In this perspective paper, we advanced possible obstacles and advantages for H2 delivery to mitochondria.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Biomedical Sciences Department, Faculty of Sport and PE, University of Novi Sad, Serbia; Bioenergetics Unit, Center for Health, Exercise and Sport Sciences, Stari DIF, Belgrade, Serbia.
| |
Collapse
|
45
|
Ostojic SM, Vukomanovic B, Calleja-Gonzalez J, Hoffman JR. Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad Med 2014; 126:187-95. [PMID: 25295663 DOI: 10.3810/pgm.2014.09.2813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Because hydrogen therapy has been found beneficial for the treatment of inflammation, ischemia-reperfusion injury, and oxidative stress in humans, it seems useful to evaluate the effects of exogenously administered hydrogen as an element in the immediate management of sports-related soft tissue injuries. The main aim of this pilot study was to examine the effects of 2-week administration of hydrogen on the biochemical markers of inflammation and functional recovery in male professional athletes after acute soft tissue injury. METHOD During the 2013 season (from March to May), 36 professional athletes were recruited as participants and examined by a certified sports medicine specialist in the first 24 hours after an injury was sustained. Subjects were allocated to 3 randomly assigned trials in a single-blind design. Those in the control group received a traditional treatment protocol for soft tissue injury. Subjects in the first experimental group followed the same procedures as the control group but with additional administration throughout the study of oral hydrogen-rich tablets (2 g per day). Subjects in the second experimental group also followed the procedures of the control group, with additional administration throughout the study of both oral hydrogen-rich tablets (2 g per day) and topical hydrogen-rich packs (6 times per day for 20 minutes). Participants were evaluated at the time of the injury report and at 7 and 14 days after baseline testing. RESULTS Oral and topical hydrogen intervention was found to augment plasma viscosity decrease as compared with the control group (P = 0.04). Differences were found for range-of-motion recovery between the 3 groups; oral and topical hydrogen intervention resulted in a faster return to normal joint range of motion for both flexion and extension of the injured limb as compared with the control intervention (P < 0.05). CONCLUSION These preliminary results support the hypothesis that the addition of hydrogen to traditional treatment protocols is potentially effective in the treatment of soft tissue injuries in male professional athletes. Trial identification: Clinicaltrials.gov number NCT01759498.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Center for Health, Exercise, and Sport Sciences, Stari DIF, Belgrade, Serbia.
| | | | | | | |
Collapse
|
46
|
Zhang L, Shu R, Wang C, Wang H, Li N, Wang G. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3β in the DRG in rats. Brain Res Bull 2014; 106:47-55. [PMID: 24951883 DOI: 10.1016/j.brainresbull.2014.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although NMDAR trafficking mediated by GSK-3β involvement in transmission of pronociceptive messages in the spinal cord has been confirmed by our previous studies, whether NMDAR trafficking is implicated in peripheral sensitization remains equivocal. It is demonstrated that inflammation is associated with spinal NMDAR-containing nociceptive neurons activation and the maintenance of opioid induced pain hypersensitivity. However, whether and how hydrogen-rich saline, as an effective anti-inflammatory drug, could prevent hyperalgesia through affecting peripheral sensitization caused by NMDAR activation remains to be explored. METHODS To test these effects, hydrogen-rich saline (2.5, 5 or 10 ml/kg) was administrated intraperitoneally after remifentanil infusion, NMDAR antagonist MK-801 or GSK-3β inhibitor TDZD-8 was administrated intravenously before remifentanil infusion in rats. We examined time course of hydrogen concentration in blood after hydrogen-rich saline administration. Mechanical and thermal hyperalgesia were evaluated by measuring PWT and PWL for 48 post-infusion hours, respectively. Western blotting and real-time qPCR assay were applied to analyze the NR1 membrane trafficking, GSK-3β expression and activity in DRG. Inflammatory mediators (TNF-α, IL-1β, and IL-6) expressions in DRG were also analyzed. RESULTS We found that NR1 membrane trafficking in DRG increased, possibly due to GSK-3β activation after remifentanil infusion. We also discovered that hydrogen-rich saline not 2.5 ml/kg but 5 and 10 ml/kg could dose-dependently attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce expressions of inflammatory mediators (TNF-α, IL-1β, and IL-6) and decrease NR1 trafficking mediated by GSK-3β, and minimal effective concentration was observed to be higher than 10 μmol/L, namely peak concentration in arterial blood after administration of HRS 2.5 ml/kg without any influence on hyperalgesia. CONCLUSION Our results indicated that antihyperalgesic effect of hydrogen-rich saline might depend predominantly on its ability to reverse NR1 trafficking via inhibition of GSK-3β activity in DRG in a dose-dependent manner.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| |
Collapse
|
47
|
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 2014; 144:1-11. [PMID: 24769081 DOI: 10.1016/j.pharmthera.2014.04.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023]
Abstract
Molecular hydrogen (H2) has been accepted to be an inert and nonfunctional molecule in our body. We have turned this concept by demonstrating that H2 reacts with strong oxidants such as hydroxyl radical in cells, and proposed its potential for preventive and therapeutic applications. H2 has a number of advantages exhibiting extensive effects: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect signaling reactive oxygen species; therefore, there should be no or little adverse effects of H2. There are several methods to ingest or consume H2; inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline into the eyes. The numerous publications on its biological and medical benefits revealed that H2 reduces oxidative stress not only by direct reactions with strong oxidants, but also indirectly by regulating various gene expressions. Moreover, by regulating the gene expressions, H2 functions as an anti-inflammatory and anti-apoptotic, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under investigation. Since most drugs specifically act to their targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has promising potential for clinical use against many diseases.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa-ken, 211-8533 Japan.
| |
Collapse
|
48
|
Xue J, Shang G, Tanaka Y, Saihara Y, Hou L, Velasquez N, Liu W, Lu Y. Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water. Altern Ther Health Med 2014; 14:81. [PMID: 24589018 PMCID: PMC3944674 DOI: 10.1186/1472-6882-14-81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
Background Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose–response relationship in the application of hydrogen is puzzling. We attempted to identify the dose–response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. Methods In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Results Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Conclusions Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose–response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress.
Collapse
|
49
|
Zhao L, Wang YB, Qin SR, Ma XM, Sun XJ, Wang ML, Zhong RG. Protective effect of hydrogen-rich saline on ischemia/reperfusion injury in rat skin flap. J Zhejiang Univ Sci B 2014; 14:382-91. [PMID: 23645175 DOI: 10.1631/jzus.b1200317] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Skin damage induced by ischemia/reperfusion (I/R) is a multifactorial process that often occurs in plastic surgery. The mechanisms of I/R injury include hypoxia, inflammation, and oxidative damage. Hydrogen gas has been reported to alleviate cerebral I/R injury by acting as a free radical scavenger. Here, we assessed the protective effect of hydrogen-rich saline (HRS) on skin flap I/R injury. METHODS Abdominal skin flaps of rats were elevated and ischemia was induced for 3 h; subsequently, HRS or physiological saline was administered intraperitoneally 10 min before reperfusion. On postoperative Day 5, flap survival, blood perfusion, the accumulation of reactive oxygen species (ROS), and levels of cytokines were evaluated. Histological examinations were performed to assess inflammatory cell infiltration. RESULTS Skin flap survival and blood flow perfusion were improved by HRS relative to the controls. The production of malondialdehyde (MDA), an indicator of lipid peroxidation, was markedly reduced. A multiplex cytokine assay revealed that HRS reduced the elevation in the levels of inflammatory cytokines, chemokines and growth factors, with the exception of RANTES (regulated on activation, normal T-cell expressed and secreted) growth factor. HRS treatment also reduced inflammatory cell infiltration induced by I/R injury. CONCLUSIONS Our findings suggest that HRS mitigates I/R injury by decreasing inflammation and, therefore, has the potential for application as a therapy for improving skin flap survival.
Collapse
Affiliation(s)
- Ling Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW). WATER 2013. [DOI: 10.3390/w5042094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|