1
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Li Q, Liu X, Mao J, Liu S, Hou B, Li K, Fang D. RRAGB-mediated suppression of PI3K/AKT exerts anti-cancer role in glioblastoma. Biochem Biophys Res Commun 2023; 676:149-157. [PMID: 37517217 DOI: 10.1016/j.bbrc.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Glioblastoma (GBM) has a high degree of invasiveness, which is largely attributed to the invalidation of current therapy and the unclear tumor growth mechanism. Ras related GTP binding B (RRAGB) is a family member of the Ras-homologous GTPases. The effect of RRAGB on tumor growth has been recognized, but its influences on GBM progression are ill-defined. Here, in our research, a significantly decreased expression of RRAGB in GBM tissues by using TCGA databases and glioma samples is observed. According to Kaplan-Meier (KM) analysis, RRAGB low expression leads to a significant decrease of overall survival rate of patients, and is associated with the classification of WHO grade, histological type and age increase. Functional enrichment analysis reveals that the pathway of enrichment includes cell cycle arrest, extracellular matrix (ECM) processes and PI3K/AKT signal. Thereafter, our cell experiments confirm an obvious decrease of RRAGB in several GBM cell lines. It should be noted that RRAGB promotion strongly reduces the proliferation, migration and invasion of GBM cells and induces cell cycle arrest in G0/G1 phase. RRAGB up-regulation significantly decreases the expression of PI3K, phosphorylated AKT, mTOR and S6K in GBM cell lines. Surprisingly, we further find that RRAGB-restrained proliferative, migratory and invasive properties of GBM cells are markedly offset after promoting AKT activation, accompanied with restored phosphorylation of mTOR and S6K, elucidating that AKT signaling blockage is partially indispensable for RRAGB to play its anti-cancer role in GBM. Animal studies confirmed that RRAGB over-expression obviously inhibits the tumor growth both in the xenograft and orthotopic mouse glioma models, along with improved overall survival rates. In short, we provide evidence that RRAGB is a potential therapeutic target and prognostic marker for GBM treatment.
Collapse
Affiliation(s)
- Qinggang Li
- Department of Neurosurgery, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Department of Neurosurgery, Beijing Beiya Orthopedic Hospital, No. 20, Haotian North Street, Fangshan District, Beijing, 102445, China
| | - Xiaonan Liu
- Sanmenxia Key Laboratory of Neurotumor Diagnosis and Treatment, Department of Neurosurgery, Sanmenxia Central Hospital, 472000, Sanmenxia, Henan, China
| | - Jian Mao
- Sanmenxia Key Laboratory of Neurotumor Diagnosis and Treatment, Department of Neurosurgery, Sanmenxia Central Hospital, 472000, Sanmenxia, Henan, China
| | - Shimin Liu
- Sanmenxia Key Laboratory of Neurotumor Diagnosis and Treatment, Department of Neurosurgery, Sanmenxia Central Hospital, 472000, Sanmenxia, Henan, China
| | - Baosen Hou
- Sanmenxia Key Laboratory of Neurotumor Diagnosis and Treatment, Department of Neurosurgery, Sanmenxia Central Hospital, 472000, Sanmenxia, Henan, China
| | - Kaiyan Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Dandong Fang
- Sanmenxia Key Laboratory of Neurotumor Diagnosis and Treatment, Department of Neurosurgery, Sanmenxia Central Hospital, 472000, Sanmenxia, Henan, China.
| |
Collapse
|
4
|
Quiroga J, Alarcón P, Ramírez MF, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-induced ETosis in cattle polymorphonuclear leucocytes is dependent on the release of mitochondrial reactive oxygen species and the PI3K/Akt/HIF-1 and GSK-3β pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104728. [PMID: 37164278 DOI: 10.1016/j.dci.2023.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs). In the present study, the role of HIF-1 in ET formation induced by d-lactate was assessed. HIF-1α stabilization in PMNs was controlled by mitochondrial reactive oxygen species (mtROS) release. Furthermore, inhibition of mitochondrial complex I and scavenging of mtROS decreased d-lactate-triggered ETosis. d-lactate-enhanced HIF-1α accumulation was dependent on the PI3K/Akt pathway but independent of GSK-3β activity. Pharmacological blockade of the PI3K/Akt/HIF-1 and GSK-3β axes inhibited d-lactate-triggered ETosis and downregulated PDK1 and LDHA expression. However, only GSK-3β inhibition decreased the expression of glycogen metabolism enzymes and prevented the decline in glycogen stores induced by d-lactate exposure. The results of this study suggest that mtROS, PI3K/Akt/HIF-1 and GSK-3β axes regulate carbohydrate metabolism adaptations that support d-lactate-induced ET formation in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Fernanda Ramírez
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
5
|
Minami N, Hong D, Taglang C, Batsios G, Gillespie AM, Viswanath P, Stevers N, Barger CJ, Costello JF, Ronen SM. Hyperpolarized δ-[1- 13C]gluconolactone imaging visualizes response to TERT or GABPB1 targeting therapy for glioblastoma. Sci Rep 2023; 13:5190. [PMID: 36997627 PMCID: PMC10063634 DOI: 10.1038/s41598-023-32463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
TERT promoter mutations are a hallmark of glioblastoma (GBM). Accordingly, TERT and GABPB1, a subunit of the upstream mutant TERT promoter transcription factor GABP, are being considered as promising therapeutic targets in GBM. We recently reported that the expression of TERT or GABP1 modulates flux via the pentose phosphate pathway (PPP). Here, we investigated whether 13C magnetic resonance spectroscopy (MRS) of hyperpolarized (HP) δ- [1-13C]gluconolactone can serve to image the reduction in PPP flux following TERT or GABPB1 silencing. We investigated two different human GBM cell lines stably expressing shRNAs targeting TERT or GABPB1, as well as doxycycline-inducible shTERT or shGABPB1cells. MRS studies were performed on live cells and in vivo tumors, and dynamic sets of 13C MR spectra were acquired following injection of HP δ-[1-13C]gluconolactone. HP 6-phosphogluconolactone (6PG), the product of δ-[1-13C]gluconolactone via the PPP, was significantly reduced in TERT or GABPB1-silenced cells or tumors compared to controls in all our models. Furthermore, a positive correlation between TERT expression and 6PG levels was observed. Our data indicate that HP δ-[1-13C]gluconolactone, an imaging tool with translational potential, could serve to monitor TERT expression and its silencing with therapies that target either TERT or GABPB1 in mutant TERT promoter GBM patients.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Celine Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
Aungaroon G, Mehta A, Horn PS, Franz DN. Stiripentol for Drug-Resistant Epilepsy Treatment in Tuberous Sclerosis Complex. Pediatr Neurol 2023; 139:86-92. [PMID: 36586162 DOI: 10.1016/j.pediatrneurol.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is common in tuberous sclerosis complex (TSC). The role of stiripentol (STP) in seizure treatment in this population is not well understood. This study evaluates the efficacy and tolerability of STP in patients with TSC with DRE. METHODS We performed a retrospective review of patients with TSC with DRE. Seizure frequencies at 1 month before (baseline) and 1, 3, 6, and 12 months after STP initiation were collected. RESULTS Of the 1492 patients, 13 received STP and the number of patients with ≥50% seizure reduction at 1, 3, 6, and 12 months was 6/13 (46.2%), 4/13 (30.8%), 8/13 (61.5%), and 6/13 (46.2%), respectively. Six patients (46.2%) had favorable outcomes with persistent seizure reduction through 12 months. Their mean (±S.D.) percentage of seizure reduction at 1, 3, 6, and 12 months was 68.1 (±22.0), 71.3 (±23.2), 75.7 (±23.5), and 75.7 (±23.5), respectively. One patient had worsening seizures throughout the STP course. Three patients did not have seizure reduction until after 6 months, and 2 had initial seizure reduction before worsening. Younger age (P value <0.001), early STP treatment (P value <0.001), higher doses (P value = 0.004), and higher baseline seizure frequency (P value = 0.01) were associated with favorable outcomes. Side effects were seen in 85% of our cohort. CONCLUSIONS About 46% of the patients had favorable outcomes. Younger age, early STP treatment, higher doses, and higher baseline seizure frequency were significantly associated with favorable outcomes.
Collapse
Affiliation(s)
- Gewalin Aungaroon
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Amar Mehta
- Midwestern University, Downers Grove, Illinois
| | - Paul S Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David N Franz
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Wang S, Hao HF, Jiao YN, Fu JL, Guo ZW, Guo Y, Yuan Y, Li PP, Han SY. Dandelion extract inhibits triple-negative breast cancer cell proliferation by interfering with glycerophospholipids and unsaturated fatty acids metabolism. Front Pharmacol 2022; 13:942996. [PMID: 36147318 PMCID: PMC9486077 DOI: 10.3389/fphar.2022.942996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options and a poor prognosis. TNBC exists widely reprogrammed lipid metabolism, and its metabolic-associated proteins and oncometabolites are promising as potential therapeutic targets. Dandelion (Taraxacum mongolicum) is a classical herbal medicine used to treat breast diseases based on traditional Chinese medicine theory and was reported to have antitumor effects and lipid regulatory capacities. Our previous study showed that dandelion extract was effective against TNBC. However, whether dandelion extract could regulate the lipid metabolisms of TNBC and exert its antitumor effects via interfering with lipids metabolism remained unclear. In this study, an integrated approach combined with network pharmacology and multi-omics techniques (including proteomics, metabolomics, and lipidomics) was performed to investigate the potential regulatory mechanisms of dandelion extract against TNBC. We first determined the antitumor effects of dandelion extract in vitro and in vivo. Then, network pharmacology analysis speculated the antitumor effects involving various metabolic processes, and the multi-omics results of the cells, tumor tissues, and plasma revealed the changes in the metabolites and metabolic-associated proteins after dandelion extract treatment. The alteration of glycerophospholipids and unsaturated fatty acids were the most remarkable types of metabolites. Therefore, the metabolism of glycerophospholipids and unsaturated fatty acids, and their corresponding proteins CHKA and FADS2, were considered the primary regulatory pathways and biomarkers of dandelion extract against TNBC. Subsequently, experimental validation showed that dandelion extract decreased CHKA expression, leading to the inhibition of the PI3K/AKT pathway and its downstream targets, SREBP and FADS2. Finally, the molecular docking simulation suggested that picrasinoside F and luteolin in dandelion extract had the most highly binding scores with CHKA, indicating they may be the potential CHKA inhibitors to regulate glycerophospholipids metabolisms of TNBC. In conclusion, we confirmed the antitumor effects of dandelion extract against TNBC cells in vitro and demonstrated that dandelion extract could interfere with glycerophospholipids and unsaturated fatty acids metabolism via downregulating the CHKA expression and inhibiting PI3K/AKT/SREBP/FADS2 axis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui-feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan-na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jia-lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zheng-wang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ping-ping Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Shu-yan Han, ; Ping-ping Li,
| | - Shu-yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Shu-yan Han, ; Ping-ping Li,
| |
Collapse
|
8
|
Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol 2022; 19:471-485. [PMID: 35484287 PMCID: PMC11215755 DOI: 10.1038/s41571-022-00633-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
Abstract
Purpose
Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research.
Methods
PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization.
Results
We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description.
Conclusions
Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts’ consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.
Collapse
|
10
|
Chen J, Patel TR, Pinho MC, Choi C, Harrison CE, Baxter JD, Derner K, Pena S, Liticker J, Raza J, Hall RG, Reed GD, Cai C, Hatanpaa KJ, Bankson JA, Bachoo RM, Malloy CR, Mickey BE, Park JM. Preoperative imaging of glioblastoma patients using hyperpolarized 13C pyruvate: Potential role in clinical decision making. Neurooncol Adv 2021; 3:vdab092. [PMID: 34355174 PMCID: PMC8331053 DOI: 10.1093/noajnl/vdab092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Glioblastoma remains incurable despite treatment with surgery, radiation therapy, and cytotoxic chemotherapy, prompting the search for a metabolic pathway unique to glioblastoma cells.13C MR spectroscopic imaging with hyperpolarized pyruvate can demonstrate alterations in pyruvate metabolism in these tumors. Methods Three patients with diagnostic MRI suggestive of a glioblastoma were scanned at 3 T 1–2 days prior to tumor resection using a 13C/1H dual-frequency RF coil and a 13C/1H-integrated MR protocol, which consists of a series of 1H MR sequences (T2 FLAIR, arterial spin labeling and contrast-enhanced [CE] T1) and 13C spectroscopic imaging with hyperpolarized [1-13C]pyruvate. Dynamic spiral chemical shift imaging was used for 13C data acquisition. Surgical navigation was used to correlate the locations of tissue samples submitted for histology with the changes seen on the diagnostic MR scans and the 13C spectroscopic images. Results Each tumor was histologically confirmed to be a WHO grade IV glioblastoma with isocitrate dehydrogenase wild type. Total hyperpolarized 13C signals detected near the tumor mass reflected altered tissue perfusion near the tumor. For each tumor, a hyperintense [1-13C]lactate signal was detected both within CE and T2-FLAIR regions on the 1H diagnostic images (P = .008). [13C]bicarbonate signal was maintained or decreased in the lesion but the observation was not significant (P = .3). Conclusions Prior to surgical resection, 13C MR spectroscopic imaging with hyperpolarized pyruvate reveals increased lactate production in regions of histologically confirmed glioblastoma.
Collapse
Affiliation(s)
- Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Toral R Patel
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marco C Pinho
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Changho Choi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Crystal E Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeannie D Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelley Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jaffar Raza
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Ronald G Hall
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | | | - Chunyu Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert M Bachoo
- Department of Neurosurgery and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce E Mickey
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Nguyen NT, Bae EH, Do LN, Nguyen TA, Park I, Shin SS. In Vivo Assessment of Metabolic Abnormality in Alport Syndrome Using Hyperpolarized [1- 13C] Pyruvate MR Spectroscopic Imaging. Metabolites 2021; 11:metabo11040222. [PMID: 33917329 PMCID: PMC8067337 DOI: 10.3390/metabo11040222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023] Open
Abstract
Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.
Collapse
Affiliation(s)
- Nguyen-Trong Nguyen
- Department of Biomedical Science, Chonnam National University, Gwangju 61469, Korea;
| | - Eun-Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea;
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Tien-Anh Nguyen
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| |
Collapse
|
12
|
Mishkovsky M, Gusyatiner O, Lanz B, Cudalbu C, Vassallo I, Hamou MF, Bloch J, Comment A, Gruetter R, Hegi ME. Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma. Sci Rep 2021; 11:5771. [PMID: 33707647 PMCID: PMC7952603 DOI: 10.1038/s41598-021-85339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.
Collapse
Affiliation(s)
- Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Olga Gusyatiner
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irene Vassallo
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-France Hamou
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Monika E Hegi
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Fei Y, Shi R, Song Z, Wu J. Metabolic Control of Epilepsy: A Promising Therapeutic Target for Epilepsy. Front Neurol 2020; 11:592514. [PMID: 33363507 PMCID: PMC7753014 DOI: 10.3389/fneur.2020.592514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a common neurological disease that is not always controlled, and the ketogenic diet shows good antiepileptic effects drug-resistant epilepsy or seizures caused by specific metabolic defects via regulating the metabolism. The brain is a vital organ with high metabolic demands, and epileptic foci tend to exhibit high metabolic characteristics. Accordingly, there has been growing interest in the relationship between brain metabolism and epilepsy in recent years. To date, several new antiepileptic therapies targeting metabolic pathways have been proposed (i.e., inhibiting glycolysis, targeting lactate dehydrogenase, and dietary therapy). Promising strategies to treat epilepsy via modulating the brain's metabolism could be expected, while a lack of thorough understanding of the role of brain metabolism in the control of epilepsy remains. Herein, this review aims to provide insight into the state of the art concerning the brain's metabolic patterns and their association with epilepsy. Regulation of neuronal excitation via metabolic pathways and antiepileptic therapies targeting metabolic pathways are emphasized, which could provide a better understanding of the role of metabolism in epilepsy and could reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Fei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruting Shi
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Ros S, Wright AJ, D'Santos P, Hu DE, Hesketh RL, Lubling Y, Georgopoulou D, Lerda G, Couturier DL, Razavi P, Pelossof R, Batra AS, Mannion E, Lewis DY, Martin A, Baird RD, Oliveira M, de Boo LW, Linn SC, Scaltriti M, Rueda OM, Bruna A, Caldas C, Brindle KM. Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER + Breast Cancer. Cancer Cell 2020; 38:516-533.e9. [PMID: 32976773 PMCID: PMC7562820 DOI: 10.1016/j.ccell.2020.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.
Collapse
Affiliation(s)
- Susana Ros
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Paula D'Santos
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard L Hesketh
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Yaniv Lubling
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dimitra Georgopoulou
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rapahel Pelossof
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankita S Batra
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Elizabeth Mannion
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - David Y Lewis
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alistair Martin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard D Baird
- Breast Cancer Research Programme, Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Mafalda Oliveira
- Medical Oncology, Vall d'Hebron Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Leonora W de Boo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge UK.
| |
Collapse
|
15
|
Abstract
Magnetic resonance imaging (MRI) has been the cornerstone of imaging of brain tumors in the past 4 decades. Conventional MRI remains the workhorse for neuro-oncologic imaging, not only for basic information such as location, extent, and navigation but also able to provide information regarding proliferation and infiltration, angiogenesis, hemorrhage, and more. More sophisticated MRI sequences have extended the ability to assess and quantify these features; for example, permeability and perfusion acquisitions can assess blood-brain barrier disruption and angiogenesis, diffusion techniques can assess cellularity and infiltration, and spectroscopy can address metabolism. Techniques such as fMRI and diffusion fiber tracking can be helpful in diagnostic planning for resection and radiation therapy, and more sophisticated iterations of these techniques can extend our understanding of neurocognitive effects of these tumors and associated treatment responses and effects. More recently, MRI has been used to go beyond such morphological, physiological, and functional characteristics to assess the tumor microenvironment. The current review highlights multiple recent and emerging approaches in MRI to characterize the tumor microenvironment.
Collapse
|
16
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
17
|
Quintero Escobar M, Maschietto M, Krepischi ACV, Avramovic N, Tasic L. Insights into the Chemical Biology of Childhood Embryonal Solid Tumors by NMR-Based Metabolomics. Biomolecules 2019; 9:biom9120843. [PMID: 31817982 PMCID: PMC6995504 DOI: 10.3390/biom9120843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Most childhood cancers occur as isolated cases and show very different biological behavior when compared with cancers in adults. There are some solid tumors that occur almost exclusively in children among which stand out the embryonal solid tumors. These cancers main types are neuroblastoma, nephroblastoma (Wilms tumors), retinoblastoma and hepatoblastomas and tumors of the central nervous system (CNS). Embryonal solid tumors represent a heterogeneous group of cancers supposedly derived from undifferentiated cells, with histological features that resemble tissues of origin during embryogenesis. This key observation suggests that tumorigenesis might begin during early fetal or child life due to the errors in growth or pathways differentiation. There are not many literature data on genomic, transcriptomic, epigenetic, proteomic, or metabolomic differences in these types of cancers when compared to the omics- used in adult cancer research. Still, metabolomics by nuclear magnetic resonance (NMR) in childhood embryonal solid tumors research can contribute greatly to understand better metabolic pathways alterations and biology of the embryonal solid tumors and potential to be used in clinical applications. Different types of samples, such as tissues, cells, biofluids, mostly blood plasma and serum, can be analyzed by NMR to detect and identify cancer metabolic signatures and validated biomarkers using enlarged group of samples. The literature search for biomarkers points to around 20-30 compounds that could be associated with pediatric cancer as well as metastasis.
Collapse
Affiliation(s)
- Melissa Quintero Escobar
- Biological Chemistry Group, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil;
- Laboratory of Blood Coagulation, Department of Medical Physiopathology, Hemocentro, University of Campinas (UNICAMP), Campinas 13083-878, Brazil
| | - Mariana Maschietto
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, Brazil;
| | - Ana C. V. Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo 05508-0970, Brazil;
| | - Natasa Avramovic
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia;
| | - Ljubica Tasic
- Biological Chemistry Group, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil;
- Correspondence: ; Tel.: +55-19-3521-1106
| |
Collapse
|
18
|
Bennett CD, Gill SK, Kohe SE, Wilson MP, Davies NP, Arvanitis TN, Tennant DA, Peet AC. Ex vivo metabolite profiling of paediatric central nervous system tumours reveals prognostic markers. Sci Rep 2019; 9:10473. [PMID: 31324817 PMCID: PMC6642141 DOI: 10.1038/s41598-019-45900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding biomarker discovery and providing validation of in vivo findings. In this study, metabolites were quantified across a range of paediatric brain tumours using 1H-High-Resolution Magic Angle Spinning nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate and multivariate Cox regression was used to examine the ability of metabolites to predict survival. The models were cross validated using C-indices and further validated by splitting the cohort into two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as prognostic markers due to development of optimised detection methods and increasing use of 3 T clinical scanners.
Collapse
Affiliation(s)
- Christopher D Bennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Simrandip K Gill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Sarah E Kohe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Martin P Wilson
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Nigel P Davies
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Theodoros N Arvanitis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
19
|
Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD, Molloy AR, Pieper RO, Ronen SM. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 2019; 9:10521. [PMID: 31324855 PMCID: PMC6642106 DOI: 10.1038/s41598-019-47021-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/09/2019] [Indexed: 02/08/2023] Open
Abstract
70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, 1450 3rd Street, University of California, 94143, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States. .,Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158, San Francisco, CA, United States.
| |
Collapse
|
20
|
Hesketh RL, Wang J, Wright AJ, Lewis DY, Denton AE, Grenfell R, Miller JL, Bielik R, Gehrung M, Fala M, Ros S, Xie B, Hu DE, Brindle KM. Magnetic Resonance Imaging Is More Sensitive Than PET for Detecting Treatment-Induced Cell Death-Dependent Changes in Glycolysis. Cancer Res 2019; 79:3557-3569. [PMID: 31088837 PMCID: PMC6640042 DOI: 10.1158/0008-5472.can-19-0182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022]
Abstract
Metabolic imaging has been widely used to measure the early responses of tumors to treatment. Here, we assess the abilities of PET measurement of [18F]FDG uptake and MRI measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes in glycolysis following treatment-induced cell death in human colorectal (Colo205) and breast adenocarcinoma (MDA-MB-231) xenografts in mice. A TRAIL agonist that binds to human but not mouse cells induced tumor-selective cell death. Tumor glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced rapid reduction in lactate labeling. This decrease, which correlated with an increase in histologic markers of cell death and preceded decrease in tumor volume, reflected reduced flux from glucose to lactate and decreased lactate concentration. However, [18F]FDG uptake and phosphorylation were maintained following treatment, which has been attributed previously to increased [18F]FDG uptake by infiltrating immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the most [18F]FDG-avid cell type present, yet they represented <5% of the cells present in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is therefore a more sensitive marker of the early decreases in glycolytic flux that occur following cell death than PET measurements of [18F]FDG uptake. SIGNIFICANCE: These findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting early changes in glycolysis following treatment-induced tumor cell death.
Collapse
Affiliation(s)
- Richard L Hesketh
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Jiazheng Wang
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Alan J Wright
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - David Y Lewis
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Alice E Denton
- Lymphocyte Signalling and Development, Babraham Hall House, Babraham, Cambridge, United Kingdom
| | - Richard Grenfell
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Jodi L Miller
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Robert Bielik
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Marcel Gehrung
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Maria Fala
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Susana Ros
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Bangwen Xie
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - De-En Hu
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Kevin M Brindle
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
22
|
Nan Y, Guo H, Guo L, Wang L, Ren B, Yu K, Huang Q, Zhong Y. MiRNA-451 Inhibits Glioma Cell Proliferation and Invasion Through the mTOR/HIF-1α/VEGF Signaling Pathway by Targeting CAB39. HUM GENE THER CL DEV 2019; 29:156-166. [PMID: 30180756 DOI: 10.1089/humc.2018.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are widely expressed and regulate most biological functions. According to several research groups, miR-451 expression is decreased in glioma cells. A previous study also confirmed that miRNA-451 inhibits the PI3K/AKT signaling pathway by directly targeting CAB39, which inhibits glioma cell growth and proliferation and induces apoptosis. However, the specific regulatory mechanism is unclear. Mammalian target of rapamycin (mTOR) is a central regulator of the differentiation, proliferation, and migration of a variety of cells. Hypoxia-inducible factor (HIF)-1α is involved in tumor cell migration and invasion. Close relationships among VEGF overexpression, tumor progression, and poor clinical outcomes have been reported. However, whether miRNA-451 influences glioma cell proliferation and invasion by regulating mTOR, HIF-1α, and VEGF expression remains unknown. This study aimed to assess the effects of miRNA-451 on glioma cell proliferation and invasion in vivo and in vitro by investigating its mechanism. Related gene-protein interactions were also predicted and verified. By targeting CAB39, miRNA-451 likely represses the mTOR/HIF-1α/VEGF pathway to inhibit glioma cell proliferation and invasion. Reverse transcription polymerase chain reaction confirmed that transfection of glioma cells with a lentivirus containing miRNA-451 elevated the expression level of miR-451. Upregulation of miR-451 expression suppressed the growth and invasion of glioma cells in vitro and in vivo by targeting CAB39 and modulating the mTOR/HIF-1α/VEGF signaling pathway. Based on these results, miR-451 suppresses glioma cell proliferation and invasion in vitro and in vivo via suppression of the mTOR/HIF-1α/VEGF signaling pathway by targeting CAB39. Therefore, miR-451 may be a new target for glioma treatment.
Collapse
Affiliation(s)
- Yang Nan
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| | - Hongbao Guo
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| | - Liyun Guo
- 5 Department of Hemodialysis Center, Tianjin Medical University General Hospital Airport Hospital , Tianjin, China
| | - Le Wang
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| | - Bingcheng Ren
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| | - Kai Yu
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Qiang Huang
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| | - Yue Zhong
- 1 Department of Neurosurgery, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Tianjin, China .,3 Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System , Ministry of Education, Tianjin, China .,4 Tianjin Key Laboratory of Injuries , Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
23
|
Radoul M, Najac C, Viswanath P, Mukherjee J, Kelly M, Gillespie AM, Chaumeil MM, Eriksson P, Santos RD, Pieper RO, Ronen SM. HDAC inhibition in glioblastoma monitored by hyperpolarized 13 C MRSI. NMR IN BIOMEDICINE 2019; 32:e4044. [PMID: 30561869 PMCID: PMC6545173 DOI: 10.1002/nbm.4044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 05/20/2023]
Abstract
Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13 C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells. We found a significant 40% decrease in the 13 C MRS-detectable ratio of hyperpolarized [1-13 C]lactate to hyperpolarized [1-13 C]pyruvate, [1-13 C]Lac/Pyr, and a 37% decrease in the pseudo-rate constant, kPL , for hyperpolarized [1-13 C]lactate production, in vorinostat-treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat-treated cells. In vivo 13 C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1-13 C]Lac/Pyr when comparing vorinostat-treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC-inhibited tumors. Thus, the 13 C MRSI-detectable decrease in hyperpolarized [1-13 C]lactate production could serve as a biomarker of response to HDAC inhibitors.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Mark Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
- Department of Physical Therapy and Rehabilitation Science and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
24
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
25
|
Al-Saffar NMS, Troy H, Wong Te Fong AC, Paravati R, Jackson LE, Gowan S, Boult JKR, Robinson SP, Eccles SA, Yap TA, Leach MO, Chung YL. Metabolic biomarkers of response to the AKT inhibitor MK-2206 in pre-clinical models of human colorectal and prostate carcinoma. Br J Cancer 2018; 119:1118-1128. [PMID: 30377337 PMCID: PMC6219501 DOI: 10.1038/s41416-018-0242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Helen Troy
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Abbott Ireland Diagnostics Division, Pregnancy and Fertility Team, Lisnamuck, Longford, Ireland
| | - Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Roberta Paravati
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - L Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| |
Collapse
|
26
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Phyu SM, Smith TAD. Combination treatment of cancer cells with pan-Akt and pan-mTOR inhibitors: effects on cell cycle distribution, p-Akt expression level and radiolabelled-choline incorporation. Invest New Drugs 2018; 37:424-430. [PMID: 30056610 PMCID: PMC6538571 DOI: 10.1007/s10637-018-0642-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Signal transduction pathways, which regulate cell growth and survival, are up-regulated in many cancers and there is considerable interest in their pharmaceutical modulation for cancer treatment. However inhibitors of single pathway components induce feedback mechanisms that overcome the growth moderating effect of the inhibitor. Combination treatments have been proposed to provide a more complete pathway inhibition. Here the effect of dual treatment of cancer cells with a pan-Akt and a pan-mTOR inhibitor was explored. Breast (SKBr3 and MDA-MB-468) and colorectal (HCT8) cancer cells were treated with the pan-Akt inhibitor MK2206 and pan-mTOR inhibitor AZD8055. Cytotoxic effect of the two drugs were determined using the MTT assay and the Combination Index and isobolomic analysis used to determine the nature of the interaction of the two drugs. Flow cytometry and western blot were employed to demonstrate drug effects on cell cycle distribution and phosph-Aktser473 expression. Radiolabelled ([methyl-3H]) Choline uptake was measured in control and drug-treated cells to determine the modulatory effects of the drugs on choline incorporation. The two drugs acted synergistically to inhibit the growth rate of each cancer cell line. Flow cytometry demonstrated G0/G1 blockade with MK2206 and AZD8055 which was greater when cells were treated with both drugs. The incorporation of [methyl-3H] choline was found be decreased to a greater extent in cells treated with both drugs compared with cells treated with either drug alone. Conclusions Pan-mTOR and pan-Akt inhibition may be highly effective in cancer treatment and measuring changes in choline uptake could be useful in detecting efficacious drug combinations.
Collapse
Affiliation(s)
- Su Myat Phyu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Tim A D Smith
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK. .,Biomedical Physics Building, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
28
|
Lin G, Lin KJ, Wang F, Chen TC, Yen TC, Yeh TS. Synergistic antiproliferative effects of an mTOR inhibitor (rad001) plus gemcitabine on cholangiocarcinoma by decreasing choline kinase activity. Dis Model Mech 2018; 11:dmm.033050. [PMID: 29666220 PMCID: PMC6124555 DOI: 10.1242/dmm.033050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Although gemcitabine plus cisplatin is the gold standard chemotherapy regimen for advanced cholangiocarcinoma, the response rate has been disappointing. This study aims to investigate a novel therapeutic regimen [gemcitabine plus everolimus (rad001), an mTOR inhibitor] for cholangiocarcinoma. Gemcitabine, oxaliplatin, cetuximab and rad001 in various combinations were first evaluated in vitro using six cholangiocarcinoma cell lines. In vivo therapeutic efficacies of gemcitabine and rad001 alone and their combination were further evaluated using a xenograft mouse model and a chemically induced orthotopic cholangiocarcinoma rat model. In the in vitro study, gemcitabine plus rad001 exerted a synergistic therapeutic effect on the cholangiocarcinoma cells, irrespective of the KRAS mutation status. In the xenograft study, gemcitabine plus rad001 showed the best therapeutic effect on tumor volume change, and was associated with increased caspase-3 expression, decreased eIF4E expression, as well as overexpression of both death receptor- and mitochondrial apoptotic pathway-related genes. In a chemically induced cholangiocarcinoma-afflicted rat model, the gemcitabine plus rad001 treatment suppressed tumor glycolysis as measured by 18F-fludeoxyglucose micro-positron emission tomography. Also, increased intratumoral free choline, decreased glycerophosphocholine and nearly undetectable phosphocholine levels were demonstrated by proton nuclear magnetic resonance, supported by results of decreased choline kinase expression in western blotting. We concluded that gemcitabine plus rad001 has a synergistic antiproliferative effect on cholangiocarcinoma, irrespective of the KRAS mutation status. The antitumor effect is associated with activation of both death receptor and mitochondrial pathways, as well as the downregulation of choline kinase activity, resulting in a characteristic change in choline metabolism. Summary: Rad001 plus gemcitabine exerts a synergistic antitumor effect on cholangiocarcinoma irrespective of KRAS mutation status, with underlying mechanisms involving activation of the death receptor, mitochondrial pathways and downregulated choline kinase activity.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Frank Wang
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
29
|
Acciardo S, Mignion L, Joudiou N, Bouzin C, Baurain JF, Gallez B, Jordan BF. Imaging markers of response to combined BRAF and MEK inhibition in BRAF mutated vemurafenib-sensitive and resistant melanomas. Oncotarget 2018; 9:16832-16846. [PMID: 29682188 PMCID: PMC5908289 DOI: 10.18632/oncotarget.24709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
A majority of patients with a V600x melanoma respond quickly to BRAF/MEK inhibition (BRAFi/MEKi) and have an obvious clinical benefit. Nearly all the patients after this initial phase will develop resistance. Therefore, non-invasive early markers of response/non-response are needed in order to identify those patients who, due to intrinsic or acquired resistance, do not respond to treatment and would be eligible for alternative treatments. The aim of this study was to investigate the value of magnetic resonance spectroscopy (1H-MRS) of choline and diffusion-weighted magnetic resonance imaging (DW-MRI) as early markers of response to BRAF inhibition (BRAFi) with vemurafenib alone or in combination with MEK inhibition (MEKi) with trametinib, in BRAFi-sensitive and BRAFi-resistant melanoma xenografts. Tumor response was significantly improved by the combination of BRAFi and MEKi, compared to BRAFi alone, only in sensitive xenografts; thus indicating that vemurafenib-resistant A375R xenografts were cross-resistant to the inhibition of MEK, as confirmed by immunohistochemistry analysis for phosphorylated ERK. In vivo1H-MRS showed that in sensitive melanoma xenografts, a significant blockage of ERK phosphorylation, but not a decrease in cell proliferation, was required to affect total choline (tCho) levels, thus suggesting that tCho could serve as a pharmacodynamic (PD) marker for agents targeting the MAPK cascade. In addition, early effects of the combination therapy on tumor cellularity could be detected via DW-MRI. In particular, skewness and kurtosis of the apparent diffusion coefficient (ADC) distribution may be useful to detect changes in the diffusional heterogeneity that might not affect the global ADC value.
Collapse
Affiliation(s)
- Stefania Acciardo
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Lionel Mignion
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université Catholique de Louvain, Louvain Drug Research Institute, NEST Nuclear and Electron Spin Technologies Platform, Brussels, Belgium
| | - Caroline Bouzin
- Université Catholique de Louvain, Institute de Recherche Expérimentale et Clinique, IREC Imaging Platform, Brussels, Belgium
| | - Jean-François Baurain
- Université Catholique de Louvain, Institute de Recherche Expérimentale et Clinique, Molecular Imaging and Radiation Oncology Group, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| |
Collapse
|
30
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
31
|
Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC. Magnetic Resonance Spectroscopy, Positron Emission Tomography and Radiogenomics-Relevance to Glioma. Front Neurol 2018; 9:33. [PMID: 29459844 PMCID: PMC5807339 DOI: 10.3389/fneur.2018.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Advances in metabolic imaging techniques have allowed for more precise characterization of gliomas, particularly as it relates to tumor recurrence or pseudoprogression. Furthermore, the emerging field of radiogenomics where radiographic features are systemically correlated with molecular markers has the potential to achieve the holy grail of neuro-oncologic neuro-radiology, namely molecular diagnosis without requiring tissue specimens. In this section, we will review the utility of metabolic imaging and discuss the current state of the art related to the radiogenomics of glioblastoma.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Ilhami Kovanlikaya
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Changho Choi
- Radiology, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
32
|
Wong Te Fong AC, Thavasu P, Gagrica S, Swales KE, Leach MO, Cosulich SC, Chung YL, Banerji U. Evaluation of the combination of the dual m-TORC1/2 inhibitor vistusertib (AZD2014) and paclitaxel in ovarian cancer models. Oncotarget 2017; 8:113874-113884. [PMID: 29371953 PMCID: PMC5768370 DOI: 10.18632/oncotarget.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 01/02/2023] Open
Abstract
Activation of the PI3K/mTOR pathway has been shown to be correlated with resistance to chemotherapy in ovarian cancer. We aimed to investigate the effects of combining inhibition of mTORC1 and 2 using the mTOR kinase inhibitor vistusertib (AZD2014) with paclitaxel in in vitro and in vivo ovarian cancer models. The combination of vistusertib and paclitaxel on cell growth was additive in a majority of cell lines in the panel (n = 12) studied. A cisplatin- resistant model (A2780Cis) was studied in vitro and in vivo. We demonstrated inhibition of mTORC1 and mTORC2 by vistusertib and the combination by showing reduction in p-S6 and p-AKT levels, respectively. In the A2780CisR xenograft model compared to control, there was a significant reduction in tumor volumes (p = 0.03) caused by the combination and not paclitaxel or vistusertib alone. In vivo, we observed a significant increase in apoptosis (cleaved PARP measured by immunohistochemistry; p = 0.0003). Decreases in phospholipid and bioenergetic metabolites were studied using magnetic resonance spectroscopy and significant changes in phosphocholine (p = 0.01), and ATP (p = 0.04) were seen in tumors treated with the combination when compared to vehicle-control. Based on this data, a clinical trial evaluating the combination of paclitaxel and vistusertib has been initiated (NCT02193633). Interestingly, treatment of ovarian cancer patients with paclitaxel caused an increase in p-AKT levels in platelet-rich plasma and it was possible to abrogate this increase with the co-treatment with vistusertib in 4/5 patients: we believe this combination will benefit patients with ovarian cancer.
Collapse
Affiliation(s)
- Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Parames Thavasu
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Karen E. Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Sabina C. Cosulich
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - Udai Banerji
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden, London, UK
| |
Collapse
|
33
|
Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, Chung YL, Eykyn TR, Smith PD, Leach MO. MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy. Cancer Res 2017; 77:5913-5924. [PMID: 28923861 PMCID: PMC5669455 DOI: 10.1158/0008-5472.can-16-2686] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/01/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022]
Abstract
Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by coadministration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. Cancer Res; 77(21); 5913-24. ©2017 AACR.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Slawomir Wantuch
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Teresa Casals Galobart
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Markella Koniordou
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Harold G Parkes
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Vaitha Arunan
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Thomas R Eykyn
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul D Smith
- AstraZeneca, Cancer Biosciences, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
34
|
Wenger KJ, Hattingen E, Franz K, Steinbach J, Bähr O, Pilatus U. In vivo Metabolic Profiles as Determined by 31P and short TE 1H MR-Spectroscopy : No Difference Between Patients with IDH Wildtype and IDH Mutant Gliomas. Clin Neuroradiol 2017; 29:27-36. [PMID: 28983683 DOI: 10.1007/s00062-017-0630-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Previous ex vivo spectroscopic data from tissue samples revealed differences in phospholipid metabolites between isocitrate dehydrogenase mutated (IDHmut) and IDH wildtype (IDHwt) gliomas. We investigated whether these changes can be found in vivo using 1H-decoupled 31P magnetic resonance spectroscopic imaging (MRSI) with 3D chemical shift imaging (CSI) at 3 T in patients with low and high-grade gliomas. METHODS The study included 33 prospectively enrolled, mostly untreated patients who met spectral quality criteria according to the World Health Organization (WHO II n = 7, WHO III n = 17, WHO IV n = 9; 25 patients IDHmut, 8 patients IDHwt). The MRSI protocol included 1H decoupled 31P MRSI with 3D CSI (3D 31P CSI), 2D 1H CSI and a 1H single voxel spectroscopy sequence (TE 30 ms) from the tumor area. For 1H MRS, absolute metabolite concentration values were calculated (phantom replacement method). For 31P MRS, metabolite intensity ratios were calculated for the choline (C) and ethanolamine (E)-containing metabolites. RESULTS In our patient cohort we did not find significant differences for the ratio of phosphocholine (PC) and phosphoethanolamine (PE), PC/PE, (p = 0.24) for IDHmut compared to IDHwt gliomas. Furthermore, we found no elevated ratios of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), GPC/GPE, (p = 0.68) or GPC/PE (p = 0.12) for IDHmut gliomas. Even the ratio (PC+GPC)/(PE+GPE) showed no significant differences with respect to mutation status (p = 0.16). Nonetheless, changes related to tumor grade regarding intracellular pH (pHi) and phospholipid metabolism as well as absolute metabolite concentrations of co-registered 2D 1H CSI data for tumor and control tissue showed the anticipated results. CONCLUSION Using 3D-CSI data acquisition, in vivo 31P MR spectroscopic measurement of phospholipid metabolites could not distinguish between IDHmut and IDHwt.
Collapse
Affiliation(s)
- Katharina J Wenger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany. .,Institute of Neuroradiology, University Hospital Bonn, Sigmund-Freud Straße 25, 53127, Bonn, Germany.
| | - Kea Franz
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Joachim Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
35
|
Interrogating IDH Mutation in Brain Tumor: Magnetic Resonance and Hyperpolarization. Top Magn Reson Imaging 2017; 26:27-32. [PMID: 28079713 DOI: 10.1097/rmr.0000000000000113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers the possibility to noninvasively quantify 2HG concentration in the brain in the clinic, thereby serving as a valuable tool for patient-stratification as well as targeted treatment monitoring. Recently, hyperpolarized magnetic resonance techniques have opened up new opportunities for metabolic imaging not possible with conventional MRS in the brain. With over 10,000-fold increase in signal-to-noise ratio (SNR), dynamic metabolic processes can be interrogated in vivo with very high specificity by hyperpolarized MRI. In the following article, we will review relevant clinical studies and practical considerations of MRS and hyperpolarized MRS, as well as discuss some promising preclinical hyperpolarization studies to interrogate real-time metabolism in IDH mutations in vivo.
Collapse
|
36
|
Agliano A, Balarajah G, Ciobota DM, Sidhu J, Clarke PA, Jones C, Workman P, Leach MO, Al-Saffar NMS. Pediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy. Oncotarget 2017; 8:47969-47983. [PMID: 28624789 PMCID: PMC5564619 DOI: 10.18632/oncotarget.18206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/29/2017] [Indexed: 11/25/2022] Open
Abstract
Poor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting in early metabolic changes detected by nuclear magnetic resonance (NMR) spectroscopy. NVP-BEZ235 radiosensitises cells to X ray exposure, inducing cell death through the inhibition of CDC25A and the activation of p21cip1(CDKN1A). Lactate and phosphocholine levels, increased with radiation, are decreased after NVP-BEZ235 and combination treatment, suggesting that inhibiting the PI3K/mTOR pathway reverses radiation induced metabolic changes. Importantly, NVP-BEZ235 potentiates the effects of irradiation in a xenograft model of adult glioblastoma, where we observed a decrease in lactate and phosphocholine levels after seven days of combination treatment. Although tumor size was not affected due to the short length of the treatment, a significant increase in CASP3 mRNA was observed in the combination group. Taken together, our data suggest that NMR metabolites could be used as biomarkers to detect an early response to combination therapy with PI3K/mTOR inhibitors and radiotherapy in adult and pediatric glioblastoma patients.
Collapse
Affiliation(s)
- Alice Agliano
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Geetha Balarajah
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Centre for Molecular Pathology, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Daniela M Ciobota
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jasmin Sidhu
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Divisions of Cancer Therapeutics and Molecular Pathology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Nada M S Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
37
|
Al-Saffar NMS, Agliano A, Marshall LV, Jackson LE, Balarajah G, Sidhu J, Clarke PA, Jones C, Workman P, Pearson ADJ, Leach MO. In vitro nuclear magnetic resonance spectroscopy metabolic biomarkers for the combination of temozolomide with PI3K inhibition in paediatric glioblastoma cells. PLoS One 2017; 12:e0180263. [PMID: 28704425 PMCID: PMC5509135 DOI: 10.1371/journal.pone.0180263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
Recent experimental data showed that the PI3K pathway contributes to resistance to temozolomide (TMZ) in paediatric glioblastoma and that this effect is reversed by combination treatment of TMZ with a PI3K inhibitor. Our aim is to assess whether this combination results in metabolic changes that are detectable by nuclear magnetic resonance (NMR) spectroscopy, potentially providing metabolic biomarkers for PI3K inhibition and TMZ combination treatment. Using two genetically distinct paediatric glioblastoma cell lines, SF188 and KNS42, in vitro 1H-NMR analysis following treatment with the dual pan-Class I PI3K/mTOR inhibitor PI-103 resulted in a decrease in lactate and phosphocholine (PC) levels (P<0.02) relative to control. In contrast, treatment with TMZ caused an increase in glycerolphosphocholine (GPC) levels (P≤0.05). Combination of PI-103 with TMZ showed metabolic effects of both agents including a decrease in the levels of lactate and PC (P<0.02) while an increase in GPC (P<0.05). We also report a decrease in the protein expression levels of HK2, LDHA and CHKA providing likely mechanisms for the depletion of lactate and PC, respectively. Our results show that our in vitro NMR-detected changes in lactate and choline metabolites may have potential as non-invasive biomarkers for monitoring response to combination of PI3K/mTOR inhibitors with TMZ during clinical trials in children with glioblastoma, subject to further in vivo validation.
Collapse
Affiliation(s)
- Nada M. S. Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alice Agliano
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Lynley V. Marshall
- Divisions of Cancer Therapeutics and Molecular Pathology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - L. Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Geetha Balarajah
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jasmin Sidhu
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Divisions of Cancer Therapeutics and Molecular Pathology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Andrew D. J. Pearson
- Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
38
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Linda Nguyen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas Whiting
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Joseph Weygand
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Niki Zacharias Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Amy B Heimberger
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
39
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
40
|
Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3. Sci Rep 2016; 6:36544. [PMID: 27811956 PMCID: PMC5109916 DOI: 10.1038/srep36544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways.
Collapse
|
41
|
Chaumeil MM, Radoul M, Najac C, Eriksson P, Viswanath P, Blough MD, Chesnelong C, Luchman HA, Cairncross JG, Ronen SM. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. Neuroimage Clin 2016; 12:180-9. [PMID: 27437179 PMCID: PMC4939422 DOI: 10.1016/j.nicl.2016.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 10/26/2022]
Abstract
Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- AIF, arterial input function
- AUC, area under the curve
- DNP, dynamic nuclear polarization
- DNP-MR, dynamic nuclear polarization magnetic resonance
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- FA, flip angle
- FGF, fibroblast growth factor
- FLAIR, fluid attenuated inversion recovery
- FOV, field of view
- GBM, glioblastoma
- Glioma
- Hyperpolarized 13C Magnetic Resonance Spectroscopy (MRS)
- IDH1, isocitrate dehydrogenase 1
- Isocitrate dehydrogenase 1 (IDH1) mutation
- LDHA, lactate dehydrogenase A
- MCT1, monocarboxylate transporter 1
- MCT4, monocarboxylate transporter 4
- MR, magnetic resonance
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopic imaging
- MRS, magnetic resonance spectroscopy
- Metabolic reprogramming
- NA, number of averages
- NT, number of transients
- PBS, phosphate-buffer saline
- PDGF, platelet-derived growth factor
- PET, positron emission tomography
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- RB1, retinoblastoma protein 1
- SLC16A1, solute carrier family 16 member 1
- SLC16A3, solute carrier family 16 member 3
- SNR, signal-to-noise ratio
- SW, spectral width
- TCGA, The Cancer Genome Atlas
- TE, echo time
- TMZ, temozolomide
- TP53, tumor protein p53
- TR, repetition time
- Tacq, acquisition time
- VOI, voxel of interest
- mTOR, mammalian target of rapamycin
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Michael D. Blough
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Charles Chesnelong
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - H. Artee Luchman
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - J. Gregory Cairncross
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
- Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158 San Francisco, CA, United States
| |
Collapse
|
42
|
Sinharay S, Pagel MD. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:95-115. [PMID: 27049630 PMCID: PMC4911245 DOI: 10.1146/annurev-anchem-071015-041514] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
- Department of Medical Imaging, University of Arizona, Tucson, Arizona 85724;
| |
Collapse
|
43
|
Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P, Costello JF, Pieper RO, Ronen SM. Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget 2016; 7:34942-55. [PMID: 27144334 PMCID: PMC5085201 DOI: 10.18632/oncotarget.9006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/10/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) are characteristic of low-grade gliomas. We recently showed that mutant IDH1 cells reprogram cellular metabolism by down-regulating pyruvate dehydrogenase (PDH) activity. Reduced pyruvate metabolism via PDH could lead to increased pyruvate conversion to lactate. The goal of this study was therefore to investigate the impact of the IDH1 mutation on the pyruvate-to-lactate flux. We used 13C magnetic resonance spectroscopy and compared the conversion of hyperpolarized [1-13C]-pyruvate to [1-13C]-lactate in immortalized normal human astrocytes expressing mutant or wild-type IDH1 (NHAIDHmut and NHAIDHwt). Our results indicate that hyperpolarized lactate production is reduced in NHAIDHmut cells compared to NHAIDHwt. This reduction was associated with lower expression of the monocarboxylate transporters MCT1 and MCT4 in NHAIDHmut cells. Furthermore, hyperpolarized lactate production was comparable in lysates of NHAIDHmut and NHAIDHwt cells, wherein MCTs do not impact hyperpolarized pyruvate delivery and lactate production. Collectively, our findings indicated that lower MCT expression was a key contributor to lower hyperpolarized lactate production in NHAIDHmut cells. The SLC16A3 (MCT4) promoter but not SLC16A1 (MCT1) promoter was hypermethylated in NHAIDHmut cells, pointing to possibly different mechanisms mediating reduced MCT expression. Finally analysis of low-grade glioma patient biopsy data from The Cancer Genome Atlas revealed that MCT1 and MCT4 expression was significantly reduced in mutant IDH1 tumors compared to wild-type. Taken together, our study shows that reduced MCT expression is part of the metabolic reprogramming of mutant IDH1 gliomas. This finding could impact treatment and has important implications for metabolic imaging of mutant IDH1 gliomas.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jose L Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aleksandr Pankov
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chibo Hong
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
44
|
Ang JE, Pandher R, Ang JC, Asad YJ, Henley AT, Valenti M, Box G, de Haven Brandon A, Baird RD, Friedman L, Derynck M, Vanhaesebroeck B, Eccles SA, Kaye SB, Workman P, de Bono JS, Raynaud FI. Plasma Metabolomic Changes following PI3K Inhibition as Pharmacodynamic Biomarkers: Preclinical Discovery to Phase I Trial Evaluation. Mol Cancer Ther 2016; 15:1412-24. [PMID: 27048952 PMCID: PMC5321508 DOI: 10.1158/1535-7163.mct-15-0815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
PI3K plays a key role in cellular metabolism and cancer. Using a mass spectrometry-based metabolomics platform, we discovered that plasma concentrations of 26 metabolites, including amino acids, acylcarnitines, and phosphatidylcholines, were decreased in mice bearing PTEN-deficient tumors compared with non-tumor-bearing controls and in addition were increased following dosing with class I PI3K inhibitor pictilisib (GDC-0941). These candidate metabolomics biomarkers were evaluated in a phase I dose-escalation clinical trial of pictilisib. Time- and dose-dependent effects were observed in patients for 22 plasma metabolites. The changes exceeded baseline variability, resolved after drug washout, and were recapitulated on continuous dosing. Our study provides a link between modulation of the PI3K pathway and changes in the plasma metabolome and demonstrates that plasma metabolomics is a feasible and promising strategy for biomarker evaluation. Also, our findings provide additional support for an association between insulin resistance, branched-chain amino acids, and related metabolites following PI3K inhibition. Mol Cancer Ther; 15(6); 1412-24. ©2016 AACR.
Collapse
Affiliation(s)
- Joo Ern Ang
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Rupinder Pandher
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Joo Chew Ang
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia
| | - Yasmin J Asad
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alan T Henley
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alexis de Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Richard D Baird
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | | | | | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Stan B Kaye
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Johann S de Bono
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
45
|
Akhenblit PJ, Hanke NT, Gill A, Persky DO, Howison CM, Pagel MD, Baker AF. Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI. Mol Imaging 2016; 15:15/0/1536012116645439. [PMID: 27140422 PMCID: PMC4878391 DOI: 10.1177/1536012116645439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/23/2016] [Indexed: 01/16/2023] Open
Abstract
AcidoCEST magnetic resonance imaging (MRI) has previously been shown to measure tumor extracellular pH (pHe) with excellent accuracy and precision. This study investigated the ability of acidoCEST MRI to monitor changes in tumor pHe in response to therapy. To perform this study, we used the Granta 519 human mantle cell lymphoma cell line, which is an aggressive B-cell malignancy that demonstrates activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. We performed in vitro and in vivo studies using the Granta 519 cell line to investigate the efficacy and associated changes induced by the mTOR inhibitor, everolimus (RAD001). AcidoCEST MRI studies showed a statistically significant increase in tumor pHe of 0.10 pH unit within 1 day of initiating treatment, which foreshadowed a decrease in tumor growth of the Granta 519 xenograft model. AcidoCEST MRI then measured a decrease in tumor pHe 7 days after initiating treatment, which foreshadowed a return to normal tumor growth rate. Therefore, this study is a strong example that acidoCEST MRI can be used to measure tumor pHe that may serve as a marker for therapeutic efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Paul J Akhenblit
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Neale T Hanke
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Alexander Gill
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Daniel O Persky
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Mark D Pagel
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Amanda F Baker
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
46
|
Radoul M, Chaumeil MM, Eriksson P, Wang AS, Phillips JJ, Ronen SM. MR Studies of Glioblastoma Models Treated with Dual PI3K/mTOR Inhibitor and Temozolomide:Metabolic Changes Are Associated with Enhanced Survival. Mol Cancer Ther 2016; 15:1113-22. [PMID: 26883274 PMCID: PMC4873419 DOI: 10.1158/1535-7163.mct-15-0769] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
The current standard of care for glioblastoma (GBM) is surgical resection, radiotherapy, and treatment with temozolomide (TMZ). However, resistance to current therapies and recurrence are common. To improve survival, agents that target the PI3K signaling pathway, which is activated in approximately 88% of GBM, are currently in clinical trials. A challenge with such therapies is that tumor shrinkage is not always observed. New imaging methods are therefore needed to monitor response to therapy and predict survival. The goal of this study was to determine whether hyperpolarized (13)C magnetic resonance spectroscopic imaging (MRSI) and (1)H magnetic resonance spectroscopy (MRS) can be used to monitor response to the second-generation dual PI3K/mTOR inhibitor voxtalisib (XL765, SAR245409), alone or in combination with TMZ. We investigated GS-2 and U87-MG GBM orthotopic tumors in mice, and used MRI, hyperpolarized (13)C MRSI, and (1)H MRS to monitor the effects of treatment. In our study, (1)H MRS could not predict tumor response to therapy. However, in both our models, we observed a significantly lower hyperpolarized lactate-to-pyruvate ratio in animals treated with voxtalisib, TMZ, or combination therapy, when compared with controls. This metabolic alteration was observed prior to MRI-detectable changes in tumor size, was consistent with drug action, and was associated with enhanced animal survival. Our findings confirm the potential translational value of the hyperpolarized lactate-to-pyruvate ratio as a biomarker for noninvasively assessing the effects of emerging therapies for patients with GBM. Mol Cancer Ther; 15(5); 1113-22. ©2016 AACR.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Alan S Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joanna J Phillips
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California. Neuropathology Division, Department of Pathology, UCSF School of Medicine, UCSF Medical Center, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California. Brain Tumor Research Center, University of California San Francisco, San Francisco, California.
| |
Collapse
|
47
|
Mörén L, Wibom C, Bergström P, Johansson M, Antti H, Bergenheim AT. Characterization of the serum metabolome following radiation treatment in patients with high-grade gliomas. Radiat Oncol 2016; 11:51. [PMID: 27039175 PMCID: PMC4818859 DOI: 10.1186/s13014-016-0626-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/22/2016] [Indexed: 11/26/2022] Open
Abstract
Background Glioblastomas progress rapidly making response evaluation using MRI insufficient since treatment effects are not detectable until months after initiation of treatment. Thus, there is a strong need for supplementary biomarkers that could provide reliable and early assessment of treatment efficacy. Analysis of alterations in the metabolome may be a source for identification of new biomarker patterns harboring predictive information. Ideally, the biomarkers should be found within an easily accessible compartment such as the blood. Method Using gas-chromatographic- time-of-flight-mass spectroscopy we have analyzed serum samples from 11 patients with glioblastoma during the initial phase of radiotherapy. Fasting serum samples were collected at admittance, on the same day as, but before first treatment and in the morning after the second and fifth dose of radiation. The acquired data was analyzed and evaluated by chemometrics based bioinformatics methods. Our findings were compared and discussed in relation to previous data from microdialysis in tumor tissue, i.e. the extracellular compartment, from the same patients. Results We found a significant change in metabolite pattern in serum comparing samples taken before radiotherapy to samples taken during early radiotherapy. In all, 68 metabolites were lowered in concentration following treatment while 16 metabolites were elevated in concentration. All detected and identified amino acids and fatty acids together with myo-inositol, creatinine, and urea were among the metabolites that decreased in concentration during treatment, while citric acid was among the metabolites that increased in concentration. Furthermore, when comparing results from the serum analysis with findings in tumor extracellular fluid we found a common change in metabolite patterns in both compartments on an individual patient level. On an individual metabolite level similar changes in ornithine, tyrosine and urea were detected. However, in serum, glutamine and glutamate were lowered after treatment while being elevated in the tumor extracellular fluid. Conclusion Cross-validated multivariate statistical models verified that the serum metabolome was significantly changed in relation to radiation in a similar pattern to earlier findings in tumor tissue. However, all individual changes in tissue did not translate into changes in serum. Our study indicates that serum metabolomics could be of value to investigate as a potential marker for assessing early response to radiotherapy in malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0626-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Mörén
- Department of Chemistry, Computational Life Science Cluster, Umeå University, SE 901 87, Umeå, Sweden. .,Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, SE 901 85, Umeå, Sweden
| | - Per Bergström
- Department of Radiation Sciences, Oncology, Umeå University, SE 901 85, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, SE 901 85, Umeå, Sweden
| | - Henrik Antti
- Department of Chemistry, Computational Life Science Cluster, Umeå University, SE 901 87, Umeå, Sweden
| | - A Tommy Bergenheim
- Department of Clinical Neuroscience, Neurosurgery, Umeå University, SE 901 85, Umeå, Sweden
| |
Collapse
|
48
|
Xu HN, Kadlececk S, Shaghaghi H, Zhao H, Profka H, Pourfathi M, Rizi R, Li LZ. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate. Quant Imaging Med Surg 2016; 6:57-66. [PMID: 26981456 PMCID: PMC4775246 DOI: 10.3978/j.issn.2223-4292.2016.02.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. METHODS Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. RESULTS The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly larger than those of the control cohort (P<0.001, P=0.001, and P=0.019, respectively). The rate constants of individual lungs correlated significantly with the histology scores of neutrophils and organizing pneumonia foci but not macrophages. Both kp and kp /kl positively correlated with lactate labeling signals. No correlation was found between kl and lactate labeling signals. CONCLUSIONS The results indicate bleomycin-induced lung inflammation significantly increased both the forward and reverse reaction rate constants of LDH and their ratio at day-7 after bleomycin treatment.
Collapse
|
49
|
Akhenblit PJ, Pagel MD. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy. ACTA ACUST UNITED AC 2016; 8:20-29. [PMID: 26962408 PMCID: PMC4780427 DOI: 10.4172/1948-5956.1000382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well.
Collapse
Affiliation(s)
- Paul J Akhenblit
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
50
|
Zhang J, Zhuang DX, Yao CJ, Lin CP, Wang TL, Qin ZY, Wu JS. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection. J Neurosurg 2015; 124:1585-93. [PMID: 26636387 DOI: 10.3171/2015.6.jns142651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The extent of resection is one of the most essential factors that influence the outcomes of glioma resection. However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. Three-dimensional proton MR spectroscopy ((1)H-MRS) can provide metabolic information and has been used in preoperative tumor differentiation, grading, and radiotherapy planning. Resection based on glioma metabolism information may provide for a more extensive resection and yield better outcomes for glioma patients. In this study, the authors attempt to integrate 3D (1)H-MRS into neuronavigation and assess the feasibility and validity of metabolically based glioma resection. METHODS Choline (Cho)-N-acetylaspartate (NAA) index (CNI) maps were calculated and integrated into neuronavigation. The CNI thresholds were quantitatively analyzed and compared with structural MRI studies. Glioma resections were performed under 3D (1)H-MRS guidance. Volumetric analyses were performed for metabolic and structural images from a low-grade glioma (LGG) group and high-grade glioma (HGG) group. Magnetic resonance imaging and neurological assessments were performed immediately after surgery and 1 year after tumor resection. RESULTS Fifteen eligible patients with primary cerebral gliomas were included in this study. Three-dimensional (1)H-MRS maps were successfully coregistered with structural images and integrated into navigational system. Volumetric analyses showed that the differences between the metabolic volumes with different CNI thresholds were statistically significant (p < 0.05). For the LGG group, the differences between the structural and the metabolic volumes with CNI thresholds of 0.5 and 1.5 were statistically significant (p = 0.0005 and 0.0129, respectively). For the HGG group, the differences between the structural and metabolic volumes with CNI thresholds of 0.5 and 1.0 were statistically significant (p = 0.0027 and 0.0497, respectively). All patients showed no tumor progression at the 1-year follow-up. CONCLUSIONS This study integrated 3D MRS maps and intraoperative navigation for glioma margin delineation. Optimum CNI thresholds were applied for both LGGs and HGGs to achieve resection. The results indicated that 3D (1)H-MRS can be integrated with structural imaging to provide better outcomes for glioma resection.
Collapse
Affiliation(s)
- Jie Zhang
- Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Dong-Xiao Zhuang
- Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Cheng-Jun Yao
- Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Ching-Po Lin
- Centre for Computational Systems Biology, Fudan University, Shanghai; and
| | - Tian-Liang Wang
- BrainLAB (Beijing) Medical Equipment Trading Co., Ltd., Beijing, People's Republic of China
| | - Zhi-Yong Qin
- Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Jin-Song Wu
- Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|