1
|
Velasquez C, Gutierrez O, Carcelen M, Fernandez-Luna JL. The Invasion Factor ODZ1 Is Upregulated through an Epidermal Growth Factor Receptor-Induced Pathway in Primary Glioblastoma Cells. Cells 2024; 13:766. [PMID: 38727302 PMCID: PMC11083495 DOI: 10.3390/cells13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
We have previously shown that the transmembrane protein ODZ1 promotes cytoskeletal remodeling of glioblastoma (GBM) cells and invasion of the surrounding parenchyma through the activation of a RhoA-ROCK pathway. We also described that GBM cells can control the expression of ODZ1 through transcriptional mechanisms triggered by the binding of IL-6 to its receptor and a hypoxic environment. Epidermal growth factor (EGF) plays a key role in the invasive capacity of GBM. However, the molecular mechanisms that enable tumor cells to acquire the morphological changes to migrate out from the tumor core have not been fully characterized. Here, we show that EGF is able to induce the expression of ODZ1 in primary GBM cells. We analyzed the levels of the EGF receptor (EGFR) in 20 GBM primary cell lines and found expression in 19 of them by flow cytometry. We selected two cell lines that do or do not express the EGFR and found that EGFR-expressing cells responded to the EGF ligand by increasing ODZ1 at the mRNA and protein levels. Moreover, blockade of EGF-EGFR binding by Cetuximab, inhibition of the p38 MAPK pathway, or Additionally, the siRNA-mediated knockdown of MAPK11 (p38β MAPK) reduced the induction of ODZ1 in response to EGF. Overall, we show that EGF may activate an EGFR-mediated signaling pathway through p38β MAPK, to upregulate the invasion factor ODZ1, which may initiate morphological changes for tumor cells to invade the surrounding parenchyma. These data identify a new candidate of the EGF-EGFR pathway for novel therapeutic approaches.
Collapse
Affiliation(s)
- Carlos Velasquez
- Department of Neurosurgery, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (O.G.); (M.C.)
- Department of Anatomy and Cellular Biology, Universidad de Cantabria, 39011 Santander, Spain
| | - Olga Gutierrez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (O.G.); (M.C.)
| | - Maria Carcelen
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (O.G.); (M.C.)
| | - Jose L. Fernandez-Luna
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (O.G.); (M.C.)
- Department of Genetics, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
2
|
Bongartz H, Mehwald N, Seiß EA, Schumertl T, Naß N, Dittrich A. Dysregulated Gab1 signalling in triple negative breast cancer. Cell Commun Signal 2024; 22:161. [PMID: 38448989 PMCID: PMC10916281 DOI: 10.1186/s12964-024-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is especially aggressive and associated with high metastasis. The aetiology of TNBC is heterogeneous and characterised by multiple different mutations that amongst others cause constitutive and dysregulated MAPK and PI3K signalling. Additionally, in more than 50% of TNBC patients, the epidermal growth factor receptor (EGFR) is overexpressed and constitutively active. The multi-site docking protein Grb2-associated binder 1 (Gab1) is a central signalling hub that connects MAPK and PI3K signalling. METHODS Expression and activation of members of the Gab1/PI3K/MAPK signalling network were assessed in cells from different breast cancer subtypes. Influence of short- and long-term inhibition of EGFR, MAPK and PI3K on the activation of the Gab1/PI3K/MAPK signalling network as well as on cell viability, proliferation and migration was determined. Additionally, cellular localisation of Gab1 and Gab1 variants in naive cells and cells treated with the above-mentioned inhibitors was investigated. RESULTS We show that, activation of the Gab1/PI3K/MAPK signalling network is heterogeneous between different breast cancer subtypes. Gab1 phosphorylation and plasma membrane recruitment of Gab1 are dysregulated in the EGFRhigh TNBC cell line MDA-MB-468. While the Gab1/MAPK/PI3K signalling network follows canonical Gab1 signalling in naive MDA-MB-468 cells, Gab1 signalling is changed in cells that acquired resistance towards MAPK and PI3K inhibition. In resistant cells, Gab1 is not located at the plasma membrane despite strong activation of PI3K and MAPK. Furthermore, Gab1 tyrosine phosphorylation is uncoupled from plasma membrane recruitment. CONCLUSION Our study indicates that Gab1 signalling changes fundamentally during the acquisition of resistance to pharmacological inhibitors. Given the molecular heterogeneity between breast cancer subtypes, the detailed understanding of dysregulated and aberrant signalling is an absolute necessity in order to develop personalised therapies for patients with TNBC.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Elena A Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Tim Schumertl
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Norbert Naß
- Department of Pathology, Brandenburg Medical School Theodor Fontane, University Hospital Brandenburg / Havel, Hochstraße 29, Brandenburg, 14770, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
3
|
Noguchi T, Sekiguchi Y, Shimada T, Suzuki W, Yokosawa T, Itoh T, Yamada M, Suzuki M, Kurokawa R, Hirata Y, Matsuzawa A. LLPS of SQSTM1/p62 and NBR1 as outcomes of lysosomal stress response limits cancer cell metastasis. Proc Natl Acad Sci U S A 2023; 120:e2311282120. [PMID: 37847732 PMCID: PMC10614216 DOI: 10.1073/pnas.2311282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tamaki Itoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Reon Kurokawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| |
Collapse
|
4
|
Shao H, Wells A. Deciphering the molecular mechanism of enhanced tumor activity of the EGFR variant T790M/L858R using melanoma cell lines. Front Oncol 2023; 13:1163504. [PMID: 37333807 PMCID: PMC10272518 DOI: 10.3389/fonc.2023.1163504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The abnormal expression and mutagenesis of EGFR drives both the development and progression of a multitude of human cancers. Further mutations within the tyrosine kinase region of the EGFR subsequently contribute to resistance to targeted drugs. What is not known is how these mutations affect progression-related behaviors of cancer cells. Methods The mutagenesis of EGFR T790M, L858R, and T790M/L858R was performed via oligo primer-guided polymerase chain reaction (PCR). GFP-tagged mammalian expression vectors were constructed and confirmed. Stable melanoma cell lines WM983A and WM983B expressing WT or mutant EGFRs were generated for determining the functions of WT and mutant EGFRs in migration, invasion, and resistance to doxorubicin. Immunoblotting and immunofluorescence were performed to detect the transphosphorylation and autophosphorylation of WT and mutant EGFRs and other molecules. Results The EGFR mutant T790M/L858R showed significantly higher basal autophosphorylation in melanoma cell lines WM983A and WM983B. Overexpression of WT EGFR significantly enhanced the protein level of E-cadherin (E-cad) via upregulating its mRNA. In contrast, L858R significantly downregulated E-cad. Biological activity assays show that T790M/L858R presented significant enhancement in vitro in invasion and migration, while WT and T790M moderately inhibited invasion and migration. In WM983A cells, enhanced invasion and migration by T790M/L858R required the downstream signaling pathways through Akt and p38. T790M/L858R dramatically triggers phosphorylation of actin cross-linking protein alpha-actinin-4 in the absence of EGF. This double mutant also conferred resistance to a general chemotherapy doxorubicin through Akt but not the p38 signaling pathway. Conclusion These findings suggest that T790M/L858R not only confers enhanced therapeutic resistance in cancer cell lines but also may promote tumor metastasis via its boosted downstream signaling pathways and/or direct phosphorylation of other key proteins.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh VA Health System, Pittsburgh, PA, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh VA Health System, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Al-Amin RA, Johansson L, Abdurakhmanov E, Landegren N, Löf L, Arngården L, Blokzijl A, Svensson R, Hammond M, Lönn P, Haybaeck J, Kamali-Moghaddam M, Jensen A, Danielson U, Artursson P, Lundbäck T, Landegren U. Monitoring drug-target interactions through target engagement-mediated amplification on arrays and in situ. Nucleic Acids Res 2022; 50:e129. [PMID: 36189884 PMCID: PMC9825164 DOI: 10.1093/nar/gkac842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/29/2023] Open
Abstract
Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.
Collapse
Affiliation(s)
- Rasel A Al-Amin
- To whom correspondence should be addressed. Tel: +46 70 0535324;
| | - Lars Johansson
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Eldar Abdurakhmanov
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Linda Arngården
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andries Blokzijl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Svensson
- Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling (UDOPP), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Hammond
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Lönn
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Annika Jenmalm Jensen
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - U Helena Danielson
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling (UDOPP), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Lundbäck
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Ulf Landegren
- Correspondence may also be addressed to Ulf Landegren. Tel: +46 18 4714910; Fax: +46 18 4714808;
| |
Collapse
|
6
|
Huang W, Zou L, Hao Z, Wang B, Mao F, Duan Q, Guo D. S645C Point Mutation Suppresses Degradation of EGFR to Promote Progression of Glioblastoma. Front Oncol 2022; 12:904383. [PMID: 35814475 PMCID: PMC9259983 DOI: 10.3389/fonc.2022.904383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background The tightly controlled activity of EGFR is important for the homeostasis of self-renewal of human tissue. Mutations in the extracellular domain of EGFR are frequent and function as a novel mechanism for oncogenic EGFR activation in GBM, and impact the response of patients to small-molecule inhibitors. Methods We constructed glioblastoma cell lines stably expressing wild-type EGFR and the mutant of EGFR S645C. We detected cell growth in vitro and in vivo. We evaluated the anti-tumor activity and effectiveness of gefitinib and osimertinib in cells. Results In the present study, we identified an oncogenic substituted mutation of EGFR—S645C. The mutation can promote the proliferation and colony formation of glioblastoma in vitro and in vivo. Mechanistically, the EGFR S645C mutation potentially changes the formation of hydrogen bonds within dimerized EGFR and inhibits the degradation of EGFR to prolong downstream signaling. The mutation induces resistance to gefitinib but presents an opportunity for osimertinib treatment. Conclusion The study indicated a novel oncogenic mutation and advises on the precise treatment of individual patients with the EGFR S645C mutation.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| |
Collapse
|
7
|
Karami A, Hossienpour M, Mohammadi Noori E, Rahpyma M, Najafi K, Kiani A. Synergistic Effect of Gefitinib and Temozolomide on U87MG Glioblastoma Angiogenesis. Nutr Cancer 2021; 74:1299-1307. [PMID: 34296963 DOI: 10.1080/01635581.2021.1952441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the most common and deadly brain tumors is Glioblastoma multiforme (GBM). Due to recent advances in angiogenesis and its related key factors, this process as a hallmark in glioblastoma has attracted more consideration from the research community. Temozolomide (TMZ) as the first-line treatment used to treat GBM but, resistance to TMZ limits its effectiveness and the need for better treatments is still felt. Therefore, we aimed to examine the Synergistic effects of Gefitinib (GFI) in combination with Temozolomide on VEGF and MMPs in glioma cell line (U87MG). Our results displayed that GFI could induce cytotoxic effects in U87MG with IC50 values of 11 μM. U87MG cells produced large amounts of VEGF without any stimuli, and the results showed that GFI in combination with TMZ caused a significant decrease in VEGF production in these cells. In this study, we demonstrated that after treating with TMZ and GFI, there was more decrease in the levels of MMP 2 and 9 secretions in cells than treatment with GFI and TMZ doses alone. This study indicates synergistic effects of GFI plus TMZ against glioma are mediated by the potentiated anti-angiogenesis. Therefore, it can be considered as a promising plan for future studies.
Collapse
Affiliation(s)
- Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hossienpour
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Rahpyma
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Najafi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Zhou Q, van den Berg NS, Rosenthal EL, Iv M, Zhang M, Vega Leonel JCM, Walters S, Nishio N, Granucci M, Raymundo R, Yi G, Vogel H, Cayrol R, Lee YJ, Lu G, Hom M, Kang W, Hayden Gephart M, Recht L, Nagpal S, Thomas R, Patel C, Grant GA, Li G. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial. Theranostics 2021; 11:7130-7143. [PMID: 34158840 PMCID: PMC8210618 DOI: 10.7150/thno.60582] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: First-line therapy for high-grade gliomas (HGGs) includes maximal safe surgical resection. The extent of resection predicts overall survival, but current neuroimaging approaches lack tumor specificity. The epidermal growth factor receptor (EGFR) is a highly expressed HGG biomarker. We evaluated the safety and feasibility of an anti-EGFR antibody, panitumuab-IRDye800, at subtherapeutic doses as an imaging agent for HGG. Methods: Eleven patients with contrast-enhancing HGGs were systemically infused with panitumumab-IRDye800 at a low (50 mg) or high (100 mg) dose 1-5 days before surgery. Near-infrared fluorescence imaging was performed intraoperatively and ex vivo, to identify the optimal tumor-to-background ratio by comparing mean fluorescence intensities of tumor and histologically uninvolved tissue. Fluorescence was correlated with preoperative T1 contrast, tumor size, EGFR expression and other biomarkers. Results: No adverse events were attributed to panitumumab-IRDye800. Tumor fragments as small as 5 mg could be detected ex vivo and detection threshold was dose dependent. In tissue sections, panitumumab-IRDye800 was highly sensitive (95%) and specific (96%) for pathology confirmed tumor containing tissue. Cellular delivery of panitumumab-IRDye800 was correlated to EGFR overexpression and compromised blood-brain barrier in HGG, while normal brain tissue showed minimal fluorescence. Intraoperative fluorescence improved optical contrast in tumor tissue within and beyond the T1 contrast-enhancing margin, with contrast-to-noise ratios of 9.5 ± 2.1 and 3.6 ± 1.1, respectively. Conclusions: Panitumumab-IRDye800 provided excellent tumor contrast and was safe at both doses. Smaller fragments of tumor could be detected at the 100 mg dose and thus more suitable for intraoperative imaging.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nynke S. van den Berg
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eben L. Rosenthal
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Center, Stanford University, Stanford, CA, USA
| | - Michael Iv
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shannon Walters
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Naoki Nishio
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica Granucci
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Roan Raymundo
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Grace Yi
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Jin Lee
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guolan Lu
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marisa Hom
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenying Kang
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Larry Recht
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena Thomas
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag Patel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Zhao W, Dovas A, Spinazzi EF, Levitin HM, Banu MA, Upadhyayula P, Sudhakar T, Marie T, Otten ML, Sisti MB, Bruce JN, Canoll P, Sims PA. Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq. Genome Med 2021; 13:82. [PMID: 33975634 PMCID: PMC8114529 DOI: 10.1186/s13073-021-00894-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral heterogeneity. METHODS We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify conserved drug responses and to one additional GBM resection to identify patient-specific responses. RESULTS We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations, including unexpected effects on the immune microenvironment. CONCLUSIONS Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective therapies for solid tumors.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Athanassios Dovas
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matei Alexandru Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Pavan Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Tamara Marie
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Marc L Otten
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Molecular imaging of a fluorescent antibody against epidermal growth factor receptor detects high-grade glioma. Sci Rep 2021; 11:5710. [PMID: 33707521 PMCID: PMC7952570 DOI: 10.1038/s41598-021-84831-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The prognosis for high-grade glioma (HGG) remains dismal and the extent of resection correlates with overall survival and progression free disease. Epidermal growth factor receptor (EGFR) is a biomarker heterogeneously expressed in HGG. We assessed the feasibility of detecting HGG using near-infrared fluorescent antibody targeting EGFR. Mice bearing orthotopic HGG xenografts with modest EGFR expression were imaged in vivo after systemic panitumumab-IRDye800 injection to assess its tumor-specific uptake macroscopically over 14 days, and microscopically ex vivo. EGFR immunohistochemical staining of 59 tumor specimens from 35 HGG patients was scored by pathologists and expression levels were compared to that of mouse xenografts. Intratumoral distribution of panitumumab-IRDye800 correlated with near-infrared fluorescence and EGFR expression. Fluorescence distinguished tumor cells with 90% specificity and 82.5% sensitivity. Target-to-background ratios peaked at 14 h post panitumumab-IRDye800 infusion, reaching 19.5 in vivo and 7.6 ex vivo, respectively. Equivalent or higher EGFR protein expression compared to the mouse xenografts was present in 77.1% HGG patients. Age, combined with IDH-wildtype cerebral tumor, was predictive of greater EGFR protein expression in human tumors. Tumor specific uptake of panitumumab-IRDye800 provided remarkable contrast and a flexible imaging window for fluorescence-guided identification of HGGs despite modest EGFR expression.
Collapse
|
11
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
12
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
13
|
Pinheiro KV, Thomaz A, Souza BK, Metcalfe VA, Freire NH, Brunetto AT, de Farias CB, Jaeger M, Bambini V, Smith CGS, Shaw L, Roesler R. Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma. Mol Biol Rep 2020; 47:6817-6828. [PMID: 32862352 DOI: 10.1007/s11033-020-05739-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM.
Collapse
Affiliation(s)
- Kelly V Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA 4YG, UK
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victoria Anne Metcalfe
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victorio Bambini
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Christopher G S Smith
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Lisa Shaw
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
14
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
15
|
Morris B, Curtin L, Hawkins-Daarud A, Hubbard ME, Rahman R, Smith SJ, Auer D, Tran NL, Hu LS, Eschbacher JM, Smith KA, Stokes A, Swanson KR, Owen MR. Identifying the spatial and temporal dynamics of molecularly-distinct glioblastoma sub-populations. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:4905-4941. [PMID: 33120534 PMCID: PMC8382158 DOI: 10.3934/mbe.2020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glioblastomas (GBMs) are the most aggressive primary brain tumours and have no known cure. Each individual tumour comprises multiple sub-populations of genetically-distinct cells that may respond differently to targeted therapies and may contribute to disappointing clinical trial results. Image-localized biopsy techniques allow multiple biopsies to be taken during surgery and provide information that identifies regions where particular sub-populations occur within an individual GBM, thus providing insight into their regional genetic variability. These sub-populations may also interact with one another in a competitive or cooperative manner; it is important to ascertain the nature of these interactions, as they may have implications for responses to targeted therapies. We combine genetic information from biopsies with a mechanistic model of interacting GBM sub-populations to characterise the nature of interactions between two commonly occurring GBM sub-populations, those with EGFR and PDGFRA genes amplified. We study population levels found across image-localized biopsy data from a cohort of 25 patients and compare this to model outputs under competitive, cooperative and neutral interaction assumptions. We explore other factors affecting the observed simulated sub-populations, such as selection advantages and phylogenetic ordering of mutations, which may also contribute to the levels of EGFR and PDGFRA amplified populations observed in biopsy data.
Collapse
Affiliation(s)
- Bethan Morris
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lee Curtin
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, 85054, USA
| | | | - Matthew E. Hubbard
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ruman Rahman
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Stuart J. Smith
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Dorothee Auer
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nhan L. Tran
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, 85054, USA
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Leland S. Hu
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, 85054, USA
- Department of Radiology, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Jennifer M. Eschbacher
- Department of Pathology, Barrow Neurological Institute - St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Kris A. Smith
- Department of Neurosurgery, Barrow Neurological Institute - St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Ashley Stokes
- Department of Imaging Research, Barrow Neurological Institute - St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Kristin R. Swanson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, 85054, USA
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Markus R. Owen
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
17
|
Saleh A, Marhuenda E, Fabre C, Hassani Z, Weille JD, Boukhaddaoui H, Guelfi S, Maldonado IL, Hugnot JP, Duffau H, Bauchet L, Cornu D, Bakalara N. A novel 3D nanofibre scaffold conserves the plasticity of glioblastoma stem cell invasion by regulating galectin-3 and integrin-β1 expression. Sci Rep 2019; 9:14612. [PMID: 31601895 PMCID: PMC6787018 DOI: 10.1038/s41598-019-51108-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown. In order to recapitulate the composition and the topographic properties of the cerebral ECM in the migration of GICs, we have set up a new aligned polyacrylonitrile (PAN)-derived nanofiber (NF) scaffold. This system is suitable for drug screening as well as discrimination of the migration potential of different glioblastoma stem cells. Functionalisation with LN increases the spatial anisotropy of migration and modulates its mode from collective to single cell migration. Mechanistically, equally similar to what has been observed for mesenchymal migration of GBM in vivo, is the upregulation of galectin-3 and integrin-β1 in Gli4 cells migrating on our NF scaffold. Downregulation of Calpain-2 in GICs migrating in vivo along the CC and in vitro on LN-coated NF underlines a difference in the turnover of focal adhesion (FA) molecules between single-cell and collective types of migration.
Collapse
Affiliation(s)
- Ali Saleh
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Emilie Marhuenda
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Christine Fabre
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Zahra Hassani
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Jan de Weille
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Sophie Guelfi
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Igor Lima Maldonado
- UMR 1253, iBrain, Univ. Tours, Inserm, Tours, CHRU de Tours, Le Studium Loire Valley Institute for Advanced Studies, Montpellier, France
| | - Jean- Philippe Hugnot
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Hugues Duffau
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Luc Bauchet
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Norbert Bakalara
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France.
| |
Collapse
|
18
|
Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9:14020. [PMID: 31570734 PMCID: PMC6768851 DOI: 10.1038/s41598-019-50160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023] Open
Abstract
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Collapse
|
19
|
Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol 2019; 9:963. [PMID: 31616641 PMCID: PMC6775189 DOI: 10.3389/fonc.2019.00963] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumour in humans and has a very poor prognosis. The existing treatments have had limited success in increasing overall survival. Thus, identifying and understanding the key molecule(s) responsible for the malignant phenotype of GBM will yield new potential therapeutic targets. The treatment of brain tumours faces unique challenges, including the presence of the blood brain barrier (BBB), which limits the concentration of drugs that can reach the site of the tumour. Nevertheless, several promising treatments have been shown to cross the BBB and have shown promising pre-clinical results. This review will outline the status of several of these promising targeted therapies.
Collapse
Affiliation(s)
- Olivia G Taylor
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joshua S Brzozowski
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kathryn A Skelding
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
20
|
Xiong DD, Xu WQ, He RQ, Dang YW, Chen G, Luo DZ. In silico analysis identified miRNA‑based therapeutic agents against glioblastoma multiforme. Oncol Rep 2019; 41:2194-2208. [PMID: 30816530 PMCID: PMC6412522 DOI: 10.3892/or.2019.7022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) contribute to the development of various malignant neoplasms, including glioblastoma multiforme (GBM). The present study aimed to explore the pathogenesis of GBM and to identify latent therapeutic agents for patients with GBM, based on an in silico analysis. Gene chips that provide miRNA expression profiling in GBM were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) were also determined via the RobustRankAggreg algorithm. The target genes of DEMs were predicted and then intersected with GBM‑associated genes that were collected from the Gene Expression Profiling Interactive Analysis. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the overlapping genes were then performed. Simultaneously, a connectivity map (CMap) analysis was performed to screen for potential therapeutic agents for GBM. A total of 10 DEMs (hsa‑miR‑196a, hsa‑miR‑10b, hsa‑miR‑196b, hsa‑miR‑18b, hsa‑miR‑542‑3p, hsa‑miR‑129‑3p, hsa‑miR‑1224‑5p, hsa‑miR‑876‑3p and hsa‑miR‑770‑5p) were obtained from three GEO gene chips (GSE25631, GSE42657 and GSE61710). Then, 1,720 target genes of the 10 miRNAs and 4,185 differently expressed genes in GBM were collected. By intersecting the aforementioned gene clusters, the present study identified 390 overlapping genes. GO and KEGG analyses of the 390 genes demonstrated that these genes were involved in certain cancer‑associated biological functions and pathways. Eight genes [(GTPase NRas (NRAS), calcium/calmodulin‑dependent protein kinase type II subunit Gamma (CAMK2G), platelet‑derived growth factor receptor alpha (PDGFRA), calmodulin 3 (CALM3), cyclin‑dependent kinase 6 (CDK6), calcium/calmodulin‑dependent protein kinase type II subunit beta (CAMK2B), retinoblastoma‑associated protein (RB1) and protein kinase C beta type (PRKCB)] that were centralized in the glioma pathway were selected for CMap analysis. Three chemicals (W‑13, gefitinib and exemestane) were identified as putative therapeutic agents for GBM. In summary, the present study identified three miRNA‑based chemicals for use as a therapy for GBM. However, more experimental data are needed to verify the therapeutic properties of these latent drugs in GBM.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Qing Xu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
Parker JJ, Canoll P, Niswander L, Kleinschmidt-DeMasters BK, Foshay K, Waziri A. Intratumoral heterogeneity of endogenous tumor cell invasive behavior in human glioblastoma. Sci Rep 2018; 8:18002. [PMID: 30573757 PMCID: PMC6301947 DOI: 10.1038/s41598-018-36280-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Intratumoral genetic heterogeneity is a widely accepted characteristic of human cancer, including the most common primary malignant brain tumor, glioblastoma. However, the variability in biological behaviors amongst cells within individual tumors is not well described. Invasion into unaffected brain parenchyma is one such behavior, and a leading mechanism of tumor recurrence unaddressed by the current therapeutic armamentarium. Further, providing insight into variability of tumor cell migration within individual tumors may inform discovery of novel anti-invasive therapeutics. In this study, ex vivo organotypic slice cultures from EGFR-wild type and EGFR-amplified patient tumors were treated with the EGFR inhibitor gefitinib to evaluate potential sub-population restricted intratumoral drug-specific responses. High-resolution time-lapse microscopy and quantitative path tracking demonstrated migration of individual cells are punctuated by intermittent bursts of movement. Elevation of population aggregate mean speeds were driven by subpopulations of cells exhibiting frequent high-amplitude bursts, enriched within EGFR-amplified tumors. Treatment with gefitinib specifically targeted high-burst cell subpopulations only in EGFR-amplified tumors, decreasing bursting frequency and amplitude. We provide evidence of intratumoral subpopulations of cells with enhanced migratory behavior in human glioblastoma, selectively targeted via EGFR inhibition. These data justify use of direct human tumor slice cultures to investigate patient-specific therapies designed to limit tumor invasion.
Collapse
Affiliation(s)
- Jonathon J Parker
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| | - Peter Canoll
- Columbia University College of Physicians and Surgeons, Department of Pathology and Cell Biology, New York, NY, USA
| | - Lee Niswander
- University of Colorado, Department of Molecular, Cellular & Developmental Biology, Boulder, CO, USA
| | - B K Kleinschmidt-DeMasters
- University of Colorado School of Medicine, Department of Pathology, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado School of Medicine, Department of Neurosurgery, Anschutz Medical Campus, Aurora, CO, USA
| | - Kara Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA, USA.
| | - Allen Waziri
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA, USA
| |
Collapse
|
22
|
Phenotypic and Expressional Heterogeneity in the Invasive Glioma Cells. Transl Oncol 2018; 12:122-133. [PMID: 30292065 PMCID: PMC6172486 DOI: 10.1016/j.tranon.2018.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND: Tumor cell invasion is a hallmark of glioblastoma (GBM) and a major contributing factor for treatment failure, tumor recurrence, and the poor prognosis of GBM. Despite this, our understanding of the molecular machinery that drives invasion is limited. METHODS: Time-lapse imaging of patient-derived GBM cell invasion in a 3D collagen gel matrix, analysis of both the cellular invasive phenotype and single cell invasion pattern with microarray expression profiling. RESULTS: GBM invasion was maintained in a simplified 3D-milieue. Invasion was promoted by the presence of the tumorsphere graft. In the absence of this, the directed migration of cells subsided. The strength of the pro-invasive repulsive signaling was specific for a given patient-derived culture. In the highly invasive GBM cultures, the majority of cells had a neural progenitor-like phenotype, while the less invasive cultures had a higher diversity in cellular phenotypes. Microarray expression analysis of the non-invasive cells from the tumor core displayed a higher GFAP expression and a signature of genes containing VEGFA, hypoxia and chemo-repulsive signals. Cells of the invasive front expressed higher levels of CTGF, TNFRSF12A and genes involved in cell survival, migration and cell cycle pathways. A mesenchymal gene signature was associated with increased invasion. CONCLUSION: The GBM tumorsphere core promoted invasion, and the invasive front was dominated by a phenotypically defined cell population expressing genes regulating traits found in aggressive cancers. The detected cellular heterogeneity and transcriptional differences between the highly invasive and core cells identifies potential targets for manipulation of GBM invasion.
Collapse
|
23
|
Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, Yi K, Kang C. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett 2017; 406:12-21. [PMID: 28778566 DOI: 10.1016/j.canlet.2017.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 01/27/2023]
Abstract
The epidermal growth factor receptor (EGFR) frequently undergoes high-level genomic amplification and variant III (vIII) deletion in adult glioblastoma. MicroRNAs (miRNAs) are recognized to participate in gene expression regulation. We found that miR-524-3p and miR-524-5p were suppressed in the classical molecular subtype of glioblastoma (GBM) from Chinese Glioma Genome Atlas (CGGA) data, and the suppression was associated with EGFR overexpression and EGFRvIII mutation. These two miRNAs improved overall survival time of patients with glioma, and their overexpression could restrain glioma cell migration, proliferation, and cell cycle, and control tumor formation in vivo. Interestingly, both of the miRNAs had a synergistic inhibitory effect on glioma cells. Furthermore, we confirmed that EGFR amplification/EGFRvIII mutation can repress the expression of Pri-miR-524 by histone modification. MiR-524-3p and miR-524-5p inhibited TGF/β, Notch and the Hippo pathway by targeting Smad2, Hes1 and Tead1, respectively; these pathways repressed their common downstream transcription factor, C-myc. More interestingly, C-myc bound to the promoter region of EGFR/EGFRvIII and activated its expression. These findings indicate that miR-524 mediates the EGFR/EGFRvIII stimulating effect. It may serve as a potential therapeutic agent and classical-specific biomarker for the development of glioma.
Collapse
Affiliation(s)
- Kai Zhao
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qixue Wang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Huang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Yang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yansheng Li
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaikai Yi
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Lab of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
24
|
Parker JJ, Lizarraga M, Waziri A, Foshay KM. A Human Glioblastoma Organotypic Slice Culture Model for Study of Tumor Cell Migration and Patient-specific Effects of Anti-Invasive Drugs. J Vis Exp 2017. [PMID: 28784966 DOI: 10.3791/53557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma (GBM) continues to carry an extremely poor clinical prognosis despite surgical, chemotherapeutic, and radiation therapy. Progressive tumor invasion into surrounding brain parenchyma represents an enduring therapeutic challenge. To develop anti-migration therapies for GBM, model systems that provide a physiologically relevant background for controlled experimentation are essential. Here, we present a protocol for generating slice cultures from human GBM tissue obtained during surgical resection. These cultures allow for ex vivo experimentation without passaging through animal xenografts or single cell cultures. Further, we describe the use of time-lapse laser scanning confocal microscopy in conjunction with cell tracking to quantitatively study the migratory behavior of tumor cells and associated response to therapeutics. Slices are reproducibly generated within 90 min of surgical tissue acquisition. Retrovirally-mediated fluorescent cell labeling, confocal imaging, and tumor cell migration analyses are subsequently completed within two weeks of culture. We have successfully used these slice cultures to uncover genetic factors associated with increased migratory behavior in human GBM. Further, we have validated the model's ability to detect patient-specific variation in response to anti-migration therapies. Moving forward, human GBM slice cultures are an attractive platform for rapid ex vivo assessment of tumor sensitivity to therapeutic agents, in order to advance personalized neuro-oncologic therapy.
Collapse
Affiliation(s)
- Jonathon J Parker
- Department of Neurosurgery, Stanford University Hospital, Stanford University School of Medicine
| | | | | | | |
Collapse
|
25
|
Stamatakos GS, Giatili SG. A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects. Cancer Inform 2017; 16:1176935116684824. [PMID: 28469383 PMCID: PMC5392020 DOI: 10.1177/1176935116684824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
A novel explicit triscale reaction-diffusion numerical model of glioblastoma multiforme tumor growth is presented. The model incorporates the handling of Neumann boundary conditions imposed by the cranium and takes into account both the inhomogeneous nature of human brain and the complexity of the skull geometry. The finite-difference time-domain method is adopted. To demonstrate the workflow of a possible clinical validation procedure, a clinical case/scenario is addressed. A good agreement of the in silico calculated value of the doubling time (ie, the time for tumor volume to double) with the value of the same quantity based on tomographic imaging data has been observed. A theoretical exploration suggests that a rough but still quite informative value of the doubling time may be calculated based on a homogeneous brain model. The model could serve as the main component of a continuous mathematics-based glioblastoma oncosimulator aiming at supporting the clinician in the optimal patient-individualized design of treatment using the patient's multiscale data and experimenting in silico (ie, on the computer).
Collapse
Affiliation(s)
- Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Zografou, Greece
| | - Stavroula G Giatili
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Zografou, Greece
| |
Collapse
|
26
|
Monga V, Jones K, Chang S. CLINICAL RELEVANCE OF MOLECULAR MARKERS IN GLIOMAS. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Thibault B, Jean-Claude B. Dasatinib + Gefitinib, a non platinum-based combination with enhanced growth inhibitory, anti-migratory and anti-invasive potency against human ovarian cancer cells. J Ovarian Res 2017; 10:31. [PMID: 28446239 PMCID: PMC5405511 DOI: 10.1186/s13048-017-0319-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is the leading cause of death for gynecological cancers and the 6th cause of women cancer death in developed countries. The late stage detection, the peritoneal dissemination and the acquisition of resistance against carboplatin are the main reasons to explain this poor prognosis and strengthen the need of alternative treatments to improve the management of ovarian cancer and/or to sensitize tumors to platinum salts. Epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (Met) and cellular Src kinase (c-Src) are crucial kinases implied in ovarian tumor growth, survival, invasion and resistance to carboplatin. Their expression is increased in advanced ovarian cancers and is correlated with poor prognosis. Despite a clear potential in inhibiting these proteins in ovarian cancer, as a single agent or in combination with a carboplatin treatment, we need to target kinases in tandem because of their capacity to trigger compensatory pathways that synergize to promote drug resistance. METHODS Here we target EGFR, c-Src and Met individually or in combination with carboplatin, using Gefitinib, Dasatinib and Crizotinib respectively, in a panel of carboplatin-sensitive (OVCAR-3, IGROV-1 and A2780) and carboplatin-resistant cells (SKOV-3 and EFO-21). We studied the ability of the most potent combination to induce apoptosis, regulate migration, invasion and to modulate the activation of proliferation and survival proteins. RESULTS Crizotinib, Dasatinib and Gefitinib, alone or in combination with carboplatin, showed a cell-specific cytotoxic synergy in ovarian cancer cells. The Dasatinib plus Gefitinib combination was synergistic in OVCAR-3, SKOV-3 and, in IGROV-1 cells (high concentrations). This combination was unable to induce apoptosis but suppressed cell migration, invasion and the activation of EGFR, Erk, c-Src and Akt compared to single treatments. CONCLUSIONS Combining carboplatin with kinase inhibitors lead to synergistic interactions in a cell-specific manner. Unlike platinum-based combinations, mixing Dasatinib with Gefitinib led to cytotoxic activity, inhibition of cell migration and invasion. Thus, the Dasatinib + Gefitinib combination presents anti-tumour properties that are superior to those of platinum-based combinations, indicating that it may well represent a promising new treatment modality to be tested in the clinic.
Collapse
Affiliation(s)
- Benoît Thibault
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.,Present Address: INSERM - Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, Toulouse, France
| | - Bertrand Jean-Claude
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
28
|
The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 2015; 123:405-12. [PMID: 26123363 DOI: 10.1007/s11060-015-1849-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Cell-mediated suppression of anti-tumor immunity is multifactorial in patients with cancer, and recent studies have focused on several distinct cellular agents that are associated with this phenomenon. This review will focus on the potential role of regulatory T cells (Tregs) and microglia in the suppression of cellular immunity observed in patients with glioblastoma. We discuss the ontogeny, basic biology, evidence for activity, and potential clinical options for targeting Tregs and microglia as part of immunotherapy in affected patients.
Collapse
|
29
|
Glioblastoma antigen discovery--foundations for immunotherapy. J Neurooncol 2015; 123:347-58. [PMID: 26045361 DOI: 10.1007/s11060-015-1836-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/30/2015] [Indexed: 01/07/2023]
Abstract
Prognosis for patients with glioblastoma (GBM), the most common high-grade primary central nervous system (CNS) tumor, remains discouraging despite multiple discoveries and clinical advances. Immunotherapy has emerged as a promising approach to GBM therapy as the idea the human CNS is immunoprivileged is being challenged. Early clinical studies of vaccine-based approaches have been encouraging, but further investigation is required before these therapies become clinically meaningful. A key challenge in immunotherapy involves identification of target antigens that are specific and sensitive for GBM. Here we discuss tumor-associated antigens that have been targeted for GBM therapy, strategies for discovery of novel antigens, and the theory of epitope spreading as it applies to GBM immunotherapy.
Collapse
|
30
|
Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, Shi J, Zhang H, Zhang Z, Zhang Y. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2015; 23:832-46. [PMID: 25856302 DOI: 10.3109/1061186x.2015.1025077] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is very challenging to treat brain cancer because of the blood-brain barrier (BBB) restricting therapeutic drug or gene to access the brain. In this research project, angiopep-2 (ANG) was used as a brain-targeted peptide for preparing multifunctional ANG-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which encapsulated both doxorubicin (DOX) and epidermal growth factor receptor (EGFR) siRNA, designated as ANG/PLGA/DOX/siRNA. This system could efficiently deliver DOX and siRNA into U87MG cells leading to significant cell inhibition, apoptosis and EGFR silencing in vitro. It demonstrated that this drug system was capable of penetrating the BBB in vivo, resulting in more drugs accumulation in the brain. The animal study using the brain orthotopic U87MG glioma xenograft model indicated that the ANG-targeted co-delivery of DOX and EGFR siRNA resulted in not only the prolongation of the life span of the glioma-bearing mice but also an obvious cell apoptosis in glioma tissue.
Collapse
Affiliation(s)
- Lei Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yongwei Hao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Haixia Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yalin Zhao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dehui Meng
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dong Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Jinjin Shi
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Hongling Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Zhenzhong Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yun Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| |
Collapse
|
31
|
Wei Y, Vellanki RN, Coyaud É, Ignatchenko V, Li L, Krieger JR, Taylor P, Tong J, Pham NA, Liu G, Raught B, Wouters BG, Kislinger T, Tsao MS, Moran MF. CHCHD2 Is Coamplified with EGFR in NSCLC and Regulates Mitochondrial Function and Cell Migration. Mol Cancer Res 2015; 13:1119-29. [DOI: 10.1158/1541-7786.mcr-14-0165-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/07/2015] [Indexed: 11/16/2022]
|
32
|
Biomarkers for glioma immunotherapy: the next generation. J Neurooncol 2015; 123:359-72. [PMID: 25724916 DOI: 10.1007/s11060-015-1746-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
The term "biomarker" historically refers to a single parameter, such as the expression level of a gene or a radiographic pattern, used to indicate a broader biological state. Molecular indicators have been applied to several aspects of cancer therapy: to describe the genotypic and phenotypic state of neoplastic tissue for prognosis, to predict susceptibility to anti-proliferative agents, to validate the presence of specific drug targets, and to evaluate responsiveness to therapy. For glioblastoma (GBM), immunohistochemical and radiographic biomarkers accessible to the clinical lab have informed traditional regimens, but while immunotherapies have emerged as potentially disruptive weapons against this diffusely infiltrating, heterogeneous tumor, biomarkers with strong predictive power have not been fully established. The cancer immunotherapy field, through the recently accelerated expansion of trials, is currently leveraging this wealth of clinical and biological data to define and revise the use of biomarkers for improving prognostic accuracy, personalization of therapy, and evaluation of responses across the wide variety of tumors. Technological advancements in DNA sequencing, cytometry, and microscopy have facilitated the exploration of more integrated, high-dimensional profiling of the disease system-incorporating both immune and tumor parameters-rather than single metrics, as biomarkers for therapeutic sensitivity. Here we discuss the utility of traditional GBM biomarkers in immunotherapy and how the impending transformation of the biomarker paradigm-from single markers to integrated profiles-may offer the key to bringing predictive, personalized immunotherapy to GBM patients.
Collapse
|
33
|
Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, Taylor P, Ignatchenko V, Ignatchenko A, Zhang W, Wang D, Yanagawa N, Li M, Pintilie M, Liu G, Muthuswamy L, Shepherd FA, Tsao MS, Kislinger T, Moran MF. Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun 2014; 5:5469. [DOI: 10.1038/ncomms6469] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022] Open
|
34
|
Hu J, Muller KA, Furnari FB, Cavenee WK, VandenBerg SR, Gonias SL. Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPAR-initiated cell signaling. Oncogene 2014; 34:4078-88. [PMID: 25347738 PMCID: PMC4411189 DOI: 10.1038/onc.2014.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
In glioblastoma (GBM), the EGF receptor (EGFR) and Src family kinases (SFKs) contribute to an aggressive phenotype. EGFR may be targeted therapeutically; however, resistance to EGFR-targeting drugs such as Erlotinib and Gefitinib develops quickly. In many GBMs, a truncated form of the EGFR (EGFRvIII) is expressed. Although EGFRvIII is constitutively active and promotes cancer progression, its activity is attenuated compared with EGF-ligated wild-type EGFR, suggesting that EGFRvIII may function together with other signaling receptors in cancer cells to induce an aggressive phenotype. In this study, we demonstrate that in EGFRvIII-expressing GBM cells, the urokinase receptor (uPAR) functions as a major activator of SFKs, controlling phosphorylation of downstream targets, such as p130Cas and Tyr-845 in the EGFR in vitro and in vivo. When EGFRvIII expression in GBM cells was neutralized, either genetically or by treating the cells with Gefitinib, paradoxically, the cells demonstrated increased cell migration. The increase in cell migration was explained by a compensatory increase in expression of urokinase-type plasminogen activator, which activates uPAR-dependent cell signaling. GBM cells that were selected for their ability to grow in vivo in the absence of EGFRvIII also demonstrated increased cell migration, due to activation of the uPAR signaling system. The increase in GBM cell migration, induced by genetic or pharmacologic targeting of the EGFR, was blocked by Dasatinib, highlighting the central role of SFKs in uPAR-promoted cell migration. These results suggest that compensatory activation of uPAR-dependent cell signaling, in GBM cells treated with targeted therapeutics, may adversely affect the course of the disease by promoting cell migration, which may be associated with tumor progression.
Collapse
Affiliation(s)
- J Hu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - K A Muller
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - F B Furnari
- 1] Department of Pathology, University of California San Diego, La Jolla, CA, USA [2] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W K Cavenee
- 1] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA [2] Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - S R VandenBerg
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - S L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Wang X, Liu T, Bai Y, Liao H, Qiu S, Chang Z, Liu Y, Yan X, Guo H. Polymerase I and transcript release factor acts as an essential modulator of glioblastoma chemoresistance. PLoS One 2014; 9:e93439. [PMID: 24747515 PMCID: PMC3991573 DOI: 10.1371/journal.pone.0093439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study is to investigate if polymerase I and transcript release factor (PTRF) acts as a modulator in glioblastoma (GBM) chemoresistance. METHODS Multidrug resistant (MDR) GBM cell line U251AR was established by exposing the U251 cell line to imatinib. The 2D-DIGE and MALDI-TOF/TOF-MS were performed on U251 and U251AR cell lines to screen MDR-related proteins. The expression of PTRF was determined by Western blot and quantitative RT-PCR analyses. RESULTS When compared with the parental U251 cells, expression of 21 proteins was significantly altered in U251AR cells. Among the 21 differentially expressed proteins, the expression of PTRF was up-regulated by 2.14 folds in U251AR cells when compared with that in the parental U251 cells. Knockdown of PTRF in GBM cell lines significantly increased chemosensitivity of cells to various chemical drugs and decreased the expression levels of caveolin1, a major structural component of caveolae. Expression levels of PTRF and caveolin1 were significantly up-regulated in the relapsed GBM patients. The mRNA level of PTRF and caveolin1 showed a positive correlation in the same GBM specimens. CONCLUSIONS Our results indicate that PTRF acts as a modulator in GBM chemoresistance.
Collapse
Affiliation(s)
- Xin Wang
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, P. R. China
| | - Tianzhu Liu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yifeng Bai
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P. R. China
| | - Hongzhan Liao
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Shengcong Qiu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zhenhua Chang
- Department of Laboratory Medicine, Tongchuan People's Hospital, Tongchuan, P. R. China
| | - Yanting Liu
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiaohui Yan
- Clinical Research Centre, Nanfang Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Hongbo Guo
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
36
|
Pan Y, Cheng T, Wang Y, Bryant SH. Pathway analysis for drug repositioning based on public database mining. J Chem Inf Model 2014; 54:407-18. [PMID: 24460210 PMCID: PMC3956470 DOI: 10.1021/ci4005354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Sixteen FDA-approved
drugs were investigated to elucidate their
mechanisms of action (MOAs) and clinical functions by pathway analysis
based on retrieved drug targets interacting with or affected by the
investigated drugs. Protein and gene targets and associated pathways
were obtained by data-mining of public databases including the MMDB,
PubChem BioAssay, GEO DataSets, and the BioSystems databases. Entrez
E-Utilities were applied, and in-house Ruby scripts were developed
for data retrieval and pathway analysis to identify and evaluate relevant
pathways common to the retrieved drug targets. Pathways pertinent
to clinical uses or MOAs were obtained for most drugs. Interestingly,
some drugs identified pathways responsible for other diseases than
their current therapeutic uses, and these pathways were verified retrospectively
by in vitro tests, in vivo tests, or clinical trials. The pathway
enrichment analysis based on drug target information from public databases
could provide a novel approach for elucidating drug MOAs and repositioning,
therefore benefiting the discovery of new therapeutic treatments for
diseases.
Collapse
Affiliation(s)
- Yongmei Pan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | | | | | | |
Collapse
|