1
|
Arsene DE, Milanesi E, Dobre M. Viral oncogenesis in tumours of the central nervous system: reality or random association? A retrospective study on archived material. J Cell Mol Med 2022; 26:1413-1420. [PMID: 35112466 PMCID: PMC8899179 DOI: 10.1111/jcmm.17064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Central nervous system (CNS) tumours have devastating effects and are recurrent, with dismal prognosis (gliomas) or life‐threatening by the compression effect (meningiomas). This disease's aetiology remains debatable. Over the last decade, the hypothesis that human viruses may be implicated in these tumours has been proposed. In this study, our aim is to examine the presence of 11 viruses in the most frequent CNS primary tumours. Using polymerase chain reaction (PCR), we assessed the viral presence in archived, paraffin‐embedded tumour tissues from 114 patients with glioma and meningioma and in the brain tissue from 40 controls lacking tumour pathology. We focused on candidate neuro‐oncogenic types (herpesviridae and polyomaviruses) and on human papillomavirus (HPV). HPV presence, for which involvement in these tumours was hardly investigated, was found to be associated with both tumour categories compared with controls (glioma, p = 0.032; meningioma, p = 0.032), whereas the presence of the neuro‐oncogenic viruses was found in a negligible number of both categories, suggesting a lack of association with the tumour presence. Moreover, our study reveals a positive correlation between HPV presence and glioma malignancy, and a negative correlation with meningioma grading. Our results suggest that the presence of HPV seems to be significantly associated with primary tumours of the CNS and its meninges.
Collapse
Affiliation(s)
- Dorel Eugen Arsene
- Victor Babes National Institute of Pathology, Bucharest, Romania.,National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Maria Dobre
- Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
2
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Nicole Barp
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Altea Gallerani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Mazzoni E, Mazziotta C, Iaquinta MR, Lanzillotti C, Fortini F, D'Agostino A, Trevisiol L, Nocini R, Barbanti-Brodano G, Mescola A, Alessandrini A, Tognon M, Martini F. Enhanced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Front Cell Dev Biol 2021; 8:610570. [PMID: 33537303 PMCID: PMC7849836 DOI: 10.3389/fcell.2020.610570] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBMSCs) and their derivative enhanced green fluorescent protein (eGFP)-hBMSCs were employed to evaluate an innovative hybrid scaffold composed of granular hydroxylapatite and collagen hemostat (Coll/HA). The cellular morphology/cytoskeleton organization and cell viability were investigated by immunohistochemistry (IHC) and AlamarBlue metabolic assay, respectively. The expression of osteopontin and osteocalcin proteins was analyzed by IHC and ELISA, whereas osteogenic genes were investigated by quantitative PCR (Q-PCR). Cell morphology of eGFP-hBMSCs was indistinguishable from that of parental hBMSCs. The cytoskeleton architecture of hBMSCs grown on the scaffold appeared to be well organized, whereas its integrity remained uninfluenced by the scaffold during the time course. Metabolic activity measured in hBMSCs grown on a biomaterial was increased during the experiments, up to day 21 (p < 0.05). The biomaterial induced the matrix mineralization in hBMSCs. The scaffold favored the expression of osteogenic proteins, such as osteocalcin and osteopontin. In hBMSC cultures, the scaffold induced up-regulation in specific genes that are involved in ossification process (BMP2/3, SPP1, SMAD3, and SP7), whereas they showed an up-regulation of MMP9 and MMP10, which play a central role during the skeletal development. hBMSCs were induced to chondrogenic differentiation through up-regulation of COL2A1 gene. Our experiments suggest that the innovative scaffold tested herein provides a good microenvironment for hBMSC adhesion, viability, and osteoinduction. hBMSCs are an excellent in vitro cellular model to assay scaffolds, which can be employed for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | | | - Antonio D'Agostino
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Lorenzo Trevisiol
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Giovanni Barbanti-Brodano
- Department of Oncologic and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Tognon
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Tagliapietra A, Rotondo JC, Bononi I, Mazzoni E, Magagnoli F, Maritati M, Contini C, Vesce F, Tognon M, Martini F. Footprints of BK and JC polyomaviruses in specimens from females affected by spontaneous abortion. Hum Reprod 2020; 34:433-440. [PMID: 30590693 DOI: 10.1093/humrep/dey375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
STUDY QUESTION Are JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV) infections associated with spontaneous abortion (SA)? SUMMARY ANSWER There is no association of JCPyV or BKPyV with SA. WHAT IS KNOWN ALREADY A large number of risk factors have been associated with SA. The role of polyomaviruses, including JCPyV and BKPyV, in SA remains to be clarified. STUDY DESIGN, SIZE, DURATION This is a case-control study including women affected by spontaneous abortion (SA, n = 100, the cases) and women who underwent voluntary interruption of pregnancy (VI, n = 100, the controls). PARTICIPANTS/MATERIALS, SETTING, METHODS Viral DNAs were investigated by qualitative PCR and quantitative droplet-digital PCR (ddPCR) in matched chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from SA (n = 100) and VI (n = 100). Indirect ELISAs with mimotopes/synthetic peptides corresponding to JCPyV and BKPyV viral capsid protein 1 epitopes were then employed to investigate specific IgG antibodies against JCPyV and BKPyV in human sera from SA (n = 80) and VI (n = 80) cohorts. MAIN RESULTS AND THE ROLE OF CHANCE JCPyV DNA was detected in 51% and 61% of SA and VI samples, respectively, with a mean viral DNA load of 7.92 copy/104 cells in SA and 5.91 copy/104 cells in VI (P > 0.05); BKPyV DNA was detected in 11% and 12% of SA and VI specimens, respectively, with a mean viral DNA load of 2.7 copy/104 cells in SA and 3.08 copy/104 cells in VI (P > 0.05). JCPyV was more prevalent than BKPyV in both SA and VI specimens (P < 0.0001). In PBMCs from the SA and VI cohorts, JCPyV DNA was detected with a prevalence of 8% and 12%, respectively, with a mean viral DNA load of 2.29 copy/104 cells in SA and 1.88 copy/104 cells in VI (P > 0.05). The overall prevalence of serum IgG antibodies against JCPyV detected by indirect ELISAs was 52.5% and 48.7% in SA and VI groups, respectively, whereas BKPyV-positive sera were found in 80% SA and 78.7% VI samples. LIMITATIONS, REASONS FOR CAUTION This study did not investigate the presence of viral mRNA and/or proteins, which are indicative of an active viral infection, and these might be taken into consideration in future studies. WIDER IMPLICATIONS OF THE FINDINGS JCPyV and BKPyV DNA sequences were detected and quantitatively analyzed for the first time by PCR/ddPCR in chorionic villi tissues and PBMCs from SA and VI specimens. Moreover specific immunological approaches detected serum IgG against JCPyV/BKPyV. Statistical analyses, however, do not indicate an association between these polyomaviruses and SA. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the University of Ferrara, FAR research grants and the University Hospital of Ferrara/University of Ferrara joint grant. No potential conflicts of interest were disclosed.
Collapse
Affiliation(s)
- A Tagliapietra
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - J C Rotondo
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - I Bononi
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - E Mazzoni
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - F Magagnoli
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - M Maritati
- Department of Medical Sciences; Section of Infectious Diseases and Dermatology; University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - C Contini
- Department of Medical Sciences; Section of Infectious Diseases and Dermatology; University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - F Vesce
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - M Tognon
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - F Martini
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| |
Collapse
|
5
|
Limam S, Missaoui N, Bdioui A, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of simian virus 40 (SV40) and human JC, BK, MC, KI, and WU polyomaviruses in glioma. J Neurovirol 2020; 26:347-357. [PMID: 32124265 DOI: 10.1007/s13365-020-00833-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
The gliomagenesis remains not fully established and their etiological factors still remain obscure. Polyomaviruses were detected and involved in several human tumors. Their potential implication in gliomas has been not yet surveyed in Africa and Arab World. Herein, we investigated the prevalence of six polyomaviruses (SV40, JCPyV, BKPyV, MCPyV, KIPyV, and WUPyV) in 112 gliomas from Tunisian patients. The DNA sequences of polyomaviruses were examined by PCR assays. Viral infection was confirmed by DNA in situ hybridization (ISH) and/or immunohistochemistry (IHC). The relationships between polyomavirus infection and tumor features were evaluated. Specific SV40 Tag, viral regulatory, and VP1 regions were identified in 12 GBM (10.7%). DNA ISH targeting the whole SV40 genome and SV40 Tag IHC confirmed the PCR findings. Five gliomas yielded JCPyV positivity by PCR and DNA ISH (2.7%). However, no BKPyV, KIPyV, and WUPyV DNA sequences were identified in all samples. MCPyV DNA was identified in 30 gliomas (26.8%). For GBM samples, MCPyV was significantly related to patient age (p = 0.037), tumor recurrence (p = 0.024), and SV40 (p = 0.045) infection. No further significant association was identified with the remaining tumor features (p > 0.05) and patient survival (Log Rank, p > 0.05). Our study indicates the presence of SV40, JCPyV, and MCPyV DNA in Tunisian gliomas. Further investigations are required to more elucidate the potential involvement of polyomaviruses in these destructive malignancies.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Nabiha Missaoui
- Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.
| | - Ahlem Bdioui
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | | | - Hedi Krifa
- Neurosurgery Department, Sahloul University Hospital, 4000, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Boulbeba Selmi
- Laboratory of Bioresources, Integrative Biology and Exploiting, ISB, 5000, Monastir, Tunisia
| |
Collapse
|
6
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
Affiliation(s)
- John Charles Rotondo
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Wong C, Zhang S, Adam E, Paszat L, Butel JS. SV40 seroprevalence in two Latin American countries involved in field trials of candidate oral poliovaccines. J Infect 2019; 78:476-483. [PMID: 30965068 DOI: 10.1016/j.jinf.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/10/2018] [Accepted: 04/02/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES This study sought to determine SV40 seroprevalence in residents of two Latin American countries, Colombia and Nicaragua, which were sites of prelicensure oral poliovaccine (OPV) trials. METHODS Archival sera were tested for SV40 neutralizing antibody using a virus-specific plaque-reduction assay. Samples included 517 sera from Colombia and 149 sera from Nicaragua. RESULTS Overall SV40 seroprevalence was 22.8% for Colombian subjects and 12.8% for Nicaraguans. Subgroups of Colombian subjects ranged in frequency of SV40 seropositivity from 10.0% to 38.6%. Birth cohorts both older and younger than the age cohort that contained potential OPV vaccinees from both countries had SV40 antibodies. Gender and ethnicity had no significant effects on SV40 seropositivity. CONCLUSIONS Inhabitants of both Colombia and Nicaragua had detectable SV40 neutralizing antibody, including those of ages presumably not recipients of potentially SV40-contaminated OPV. This observation provides support for the concept that transmission of SV40 human infections can occur. Frequency of SV40 antibody positivity was elevated over that reported for the US where there was limited use of contaminated OPV. This investigation indicates also that study results of SV40 infections in humans will reflect whether subject populations had probable exposures to contaminated poliovaccines and to environmental conditions favoring cycles of viral transmission.
Collapse
Affiliation(s)
- Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030, USA
| | - Shaojie Zhang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030, USA
| | - Ervin Adam
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030, USA
| | - Lawrence Paszat
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Janet S Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Mazzoni E, Frontini F, Rotondo JC, Zanotta N, Fioravanti A, Minelli F, Torreggiani E, Campisciano G, Marcuzzi A, Guerra G, Tommasini A, Touzé A, Martini F, Tognon M, Comar M. Antibodies reacting to mimotopes of Simian virus 40 large T antigen, the viral oncoprotein, in sera from children. J Cell Physiol 2018; 234:3170-3179. [PMID: 30362540 DOI: 10.1002/jcp.27490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/06/2018] [Indexed: 11/06/2022]
Abstract
Recent data indicate that the Simian virus 40 (SV40) infection appears to be transmitted in humans independently from early SV40-contaminated antipolio vaccines. Serum antibodies against SV40 large T antigen (Tag) were analyzed in children/adolescents and young adults. To investigate antibodies reacting to SV40 Tag antigens, serum samples ( n = 812) from children and young adults were analyzed by indirect ELISAs using specific SV40 Tag mimotopes. Mimotopes were synthetic peptides corresponding to SV40 Tag epitopes. In sera ( n = 412) from healthy children up to 17 years old, IgG antibodies against SV40 Tag mimotopes reached an overall prevalence of 15%. IgM antibodies against SV40 Tag were detected in sera of children 6-8 months old confirming and extending the knowledge that SV40 seroconversion occurs early in life. In children/adolescents affected by different diseases ( n = 180) SV40 Tag had a prevalence of 18%, being the difference no significant compared to healthy subjects ( n = 220; 16%) of the same age. Our immunological data indicate that SV40 circulates in children and young adults, both in healthy conditions and affected by distinct diseases. The IgM detection in sera from healthy children suggests that the SV40 infection/seroconversion occurs early in life (>6 months). Our immunological data support the hypothesis that SV40, or a closely related still unknown polyomavirus, infects humans. The SV40 seroprevalence is lower than common polyomaviruses, such as BKPyV and JCPyV, and other new human polyomaviruses. In addition, our immunological surveillance indicates a lack of association between different diseases, considered herein, and SV40.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesca Frontini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Nunzia Zanotta
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Arianna Fioravanti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesca Minelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elena Torreggiani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | | - Annalisa Marcuzzi
- Department of Medical Science, University of Trieste, Trieste, Italy
| | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara, Ferrara, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antoine Touzé
- UMR INRA ISP, Team Biologie des infections à polyomavirus, University de Tours, Tours, France
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Manola Comar
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical Science, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Mazzoni E, Pietrobon S, Bilancia M, Vinante F, Rigo A, Ferrarini I, D'Agostino A, Casali MV, Martini F, Tognon M. High prevalence of antibodies reacting to mimotopes of Simian virus 40 large T antigen, the oncoprotein, in serum samples of patients affected by non-Hodgkin lymphoma. Cancer Immunol Immunother 2017; 66:1189-1198. [PMID: 28455653 PMCID: PMC11028449 DOI: 10.1007/s00262-017-2008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/22/2017] [Indexed: 11/28/2022]
Abstract
A new immunological investigation was carried out to study the association between non-Hodgkin lymphoma and Simian virus 40 (SV40). To this end, a new indirect ELISA was employed with two mimotopes from SV40 large T antigen (Tag), the viral oncoprotein, to analyse for specific reactions to antibodies in sera from non-Hodgkin lymphoma patients and controls, represented by healthy subjects (HS) and breast carcinoma (BC) patients. This study allowed us to assay a new sera collection from non-Hodgkin lymphoma patients (NHL, n = 254). To verify the association between NHL and SV40 Tag, two totally independent cohorts were analysed: NHL1 n = 150 and NHL2 n = 104. The epidemiological survey included sera from HS1, n = 150; HS2, n = 104 and BC, n = 78. This new indirect ELISA revealed that antibodies against SV40 Tag mimotopes are detectable in NHL1 and NHL2 sera with a prevalence of 37 and 36%, respectively. The prevalence of SV40-antibodies detected in both NHL1 and NHL2 cohorts differs statistically from controls, at 19% for HS1 (p < 0.01), HS2 (p < 0.05) and BC patients (p < 0.05). This study, carried out with an immunological assay with specific Tag oncoprotein mimotopes of Simian virus 40, reports the presence of IgG antibodies against the large Tumour antigen in non-Hodgkin lymphomas for the first time. Our immunological data with two independent NHL cohorts show a statistically significant association between Simian virus 40 Tag and non-Hodgkin lymphoma. These results suggest that SV40-positive non-Hodgkin lymphomas could be treated differently from those tested SV40-negative.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Miriam Bilancia
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vinante
- Section of Haematology, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Antonella Rigo
- Section of Haematology, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Section of Haematology, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | | | - Maria Vittoria Casali
- Hospital Headquarter Department, State Hospital, Institute for Social Security, San Marino, Republic of San Marino
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
10
|
Strojnik T, Duh D, Lah TT. Prevalence of Neurotropic Viruses in Malignant Glioma and Their Onco-Modulatory Potential. ACTA ACUST UNITED AC 2017; 31:221-229. [PMID: 28358704 DOI: 10.21873/invivo.11049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND the association between infectious agents and tumour aetiology is relevant in about 20% of cases. PATIENTS AND METHODS We tested high-grade glioma tissues from 45 patients for the presence of viral nucleic acids of six herpes viruses, human adenoviruses (A-G), and two neurotropic human viruses (enteroviruses, tick-borne encephalitis virus). Real-time polymerase chain reaction was used with immunolabelling. RESULTS Three species of herpes viruses were detected: HSV-2, Epstein-Barr virus (EBV), HHV-6, and one human enterovirus. Plasma of these patients was not infected with viruses. In sera of patients, low HSV-1 and HSV-2 immunoreactivity were found in five cases, although these were not detected in their tumour tissue. CONCLUSION Certain common viruses (HSV-1, HSV-2, EBV, human cytomegalovirus) are chronically present in the sera of patients with glioblastoma, but not necessarily in their tissues. Possibly both are associated with glioma progression, as we only found viruses in glioblastoma multiforme, but not in lower stages of glioma. Low titres of viruses in the blood indicate chronic viral virulence.
Collapse
Affiliation(s)
- Tadej Strojnik
- Department of Neurosurgery, University Clinical Centre Maribor, Maribor, Slovenia .,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Darja Duh
- Department for Medical Microbiology Maribor, National Laboratory of Health, Environment and Food (NLZOH), Maribor, Slovenia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Mazzoni E, Di Stefano M, Fiore JR, Destro F, Manfrini M, Rotondo JC, Casali MV, Vesce F, Greco P, Scutiero G, Martini F, Tognon MG. Serum IgG Antibodies from Pregnant Women Reacting to Mimotopes of Simian Virus 40 Large T Antigen, the Viral Oncoprotein. Front Immunol 2017; 8:411. [PMID: 28443094 PMCID: PMC5385463 DOI: 10.3389/fimmu.2017.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (LT) coding sequences were revealed in different human samples, whereas SV40 antibodies (Ab) were detected in human sera of cancer patients and healthy individuals, although with a lower prevalence. Previous studies carried out by the neutralization assay gave a SV40 seroprevalence, in the general population, up to 8%, although higher rates, 12%, were detected in kidney transplant children, in a group of HIV-positive patients, and in healthy females. In this study, serum samples from pregnant women, together with those from non-pregnant women, were analyzed to check the prevalence of IgG Ab reacting to SV40 LT antigens. Serum samples were collected from pregnant and non-pregnant women, with the same mean age. Women were in the range of 15-48 years old. Samples were assayed by an indirect ELISA employing specific SV40 LT mimotopes as antigens, whereas functional analysis was performed by neutralization of the viral infectivity in cell cultures. As a control, sera were analyzed for Ab against BK polyomavirus (BKPyV), which is a human polyomavirus homologous to SV40. Statistical analyses employed chi-square with Yates' correction, and Student's t tests. Indirect ELISAs indicated that pregnant women tested SV40 LT-positive with a prevalence of 17% (23/134), whereas non-pregnant women had a prevalence of 20% (36/180) (P > 0.05). Ab against BKPyV were detected with a prevalence of 80% in pregnant women and with a prevalence of 78% in non-pregnant women. These data indicate that SV40 infects at a low prevalence pregnant women. We may speculate that SV40, or a close human polyomavirus still undetected, could be transmitted from mother to fetus.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Mariantonietta Di Stefano
- Department of Clinical and Experimental Medicine, Clinic of Infectious Diseases, School of Medicine, University of Foggia, Foggia, Italy
| | - Josè R. Fiore
- Department of Clinical and Experimental Medicine, Clinic of Infectious Diseases, School of Medicine, University of Foggia, Foggia, Italy
| | - Federica Destro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Marco Manfrini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Maria V. Casali
- Hospital Headquarter Department, State Hospital, Institute for Social Security, Borgo Maggiore, San Marino
| | - Fortunato Vesce
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, Ferrara, Italy
| | - Gennaro Scutiero
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Mauro G. Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Pietrobon S, Bononi I, Mazzoni E, Lotito F, Manfrini M, Puozzo A, Destro F, Guerra G, Nocini PF, Martini F, Tognon MG. Specific IgG Antibodies React to Mimotopes of BK Polyomavirus, a Small DNA Tumor Virus, in Healthy Adult Sera. Front Immunol 2017; 8:236. [PMID: 28321224 PMCID: PMC5338004 DOI: 10.3389/fimmu.2017.00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
BK polyomavirus (BKPyV) was isolated in 1971 from the urine of a kidney transplant patient. Soon after its identification, BKPyV was characterized as a kidney-tropic virus, which is responsible of a significant fraction of the rejection of transplant kidney in the host. Moreover, in experimental conditions, BKPyV is able to transform different types of animal and human cells and to induce tumors of different histotypes in experimental animals. BKPyV DNA sequences have been detected in healthy individuals and cancer patients using polymerase chain reaction/Shouthern blot hybridization methods. Serum antibodies against this polyomavirus were revealed using immunological techniques, which, however, cross-react with other polyomaviruses such as JC (JCPyV) and Simian Virus 40. These non-specific data indicate the need of novel immunological methods and new investigations to check in a specific manner, BKPyV spread in humans. To this aim, mimotopes from BKPyV structural capsid protein 1 (VP1) were employed for specific immunological reactions to IgG antibodies of human serum samples. An indirect enzyme-linked immunosorbent assay with synthetic peptides mimicking immunogenic epitopes of BKPyV VP1 was set up and employed to test sera of healthy adult subjects. Data from this innovative immunological assay indicate that serum antibodies against BKPyV VP1 mimotopes are detectable in healthy subjects ranging from 18 to 90 years old. The overall prevalence of serum samples that reacted to BKPyV VP1 mimotopes was 72%. The strong points from this investigation are the novelty of the immunological method, its simplicity of the approach, and the specificity of BKPyV antibody reaction to VP1 mimotopes.
Collapse
Affiliation(s)
- Silvia Pietrobon
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Francesca Lotito
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Marco Manfrini
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Andrea Puozzo
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Federica Destro
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara , Ferrara , Italy
| | - Pier Francesco Nocini
- Department of Surgery, Section of Oral and Maxillofacial Surgery, School of Medicine, University of Verona , Verona , Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| | - Mauro G Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
13
|
Fluorometric determination of Simian virus 40 based on strand displacement amplification and triplex DNA using a molecular beacon probe with a guanine-rich fragment of the stem region. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2041-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Tognon M, Corallini A, Manfrini M, Taronna A, Butel JS, Pietrobon S, Trevisiol L, Bononi I, Vaccher E, Barbanti-Brodano G, Martini F, Mazzoni E. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects. PLoS One 2016; 11:e0145720. [PMID: 26731525 PMCID: PMC4701414 DOI: 10.1371/journal.pone.0145720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18–65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral, Tumor/blood
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Host-Pathogen Interactions/immunology
- Humans
- Middle Aged
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Phylogeny
- Polyomavirus Infections/blood
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- Protein Structure, Tertiary
- Rabbits
- Reproducibility of Results
- Simian virus 40/classification
- Simian virus 40/immunology
- Simian virus 40/physiology
- Tumor Virus Infections/blood
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Young Adult
Collapse
Affiliation(s)
- Mauro Tognon
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | | - Marco Manfrini
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Angelo Taronna
- Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silvia Pietrobon
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | | - Ilaria Bononi
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Emanuela Vaccher
- Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Fernanda Martini
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
- * E-mail: (EM); (FM)
| | - Elisa Mazzoni
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
- * E-mail: (EM); (FM)
| |
Collapse
|
15
|
Tognon M, Luppi M, Corallini A, Taronna A, Barozzi P, Rotondo JC, Comar M, Casali MV, Bovenzi M, D'Agostino A, Vinante F, Rigo A, Ferrarini I, Barbanti-Brodano G, Martini F, Mazzoni E. Immunologic evidence of a strong association between non-Hodgkin lymphoma and simian virus 40. Cancer 2015; 121:2618-26. [PMID: 25877010 DOI: 10.1002/cncr.29404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Non-Hodgkin lymphoma (NHL), the most common cancer of the lymphatic system, is of unknown etiology. The identification of etiologic factors in the onset of NHL is a key event that could facilitate the prevention and cure of this malignancy. Simian virus 40 (SV40) has been considered an oncogenic agent in the onset/progression of NHL. METHODS In this study, an indirect enzyme-linked immunosorbent assay with 2 synthetic peptides that mimic SV40 antigens of viral capsid proteins 1 to 3 was employed to detect specific antibodies against SV40. Serum samples were taken from 2 distinct cohorts of NHL-affected patients (NHL1 [n = 89] and NHL2 [n = 61]) along with controls represented by oncologic patients affected by breast cancer (BC; n = 78) and undifferentiated nasopharyngeal carcinoma (UNPC; n = 64) and 3 different cohorts of healthy subjects (HSs; HS1 [n = 130], HS2 [n = 83], and HS3 [n = 87]). RESULTS Immunologic data indicated that in serum samples from NHL patients, antibodies against SV40 mimotopes were detectable with a prevalence of 40% in NHL1 patients and with a prevalence of 43% in NHL2 patients. In HSs of the same median age as NHL patients, the prevalence was 16% for the HS1 group (57 years) and 14% for the HS2 group (65 years). The difference was statistically significant (P < .0001 and P < .001). Interestingly, the difference between NHL1/NHL2 patients and BC patients (40%/43% vs 15%, P < .001) and between NHL1/NHL2 patients and UNPC patients (40%/43% vs 25%, P < .05) was significant. CONCLUSIONS Our data indicate a strong association between NHL and SV40 and thus a need for innovative therapeutic approaches for this hematologic malignancy.
Collapse
Affiliation(s)
- Mauro Tognon
- Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mario Luppi
- Section of Hematology, School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfredo Corallini
- Section of Microbiology, Schools of Medicine and Sciences, University of Ferrara, Ferrara, Italy
| | - Angelo Taronna
- Section of Microbiology, Schools of Medicine and Sciences, University of Ferrara, Ferrara, Italy
| | - Patrizia Barozzi
- Section of Hematology, School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - John Charles Rotondo
- Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Manola Comar
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste Italy, and University of Trieste, Trieste, Italy
| | - Maria Vittoria Casali
- Hospital Headquarter Department, State Hospital, Institute for Social Security, San Marino, Republic of San Marino
| | - Massimo Bovenzi
- Department of Medical Sciences, School of Medicine, University of Trieste, Trieste, Italy
| | - Antonio D'Agostino
- Department of Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Fabrizio Vinante
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Antonella Rigo
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | | | - Fernanda Martini
- Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Hashida Y, Taniguchi A, Yawata T, Hosokawa S, Murakami M, Hiroi M, Ueba T, Daibata M. Prevalence of human cytomegalovirus, polyomaviruses, and oncogenic viruses in glioblastoma among Japanese subjects. Infect Agent Cancer 2015; 10:3. [PMID: 25685179 PMCID: PMC4328287 DOI: 10.1186/1750-9378-10-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background The association between human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM) is becoming a new concept. However, information on the geographic variability of HCMV prevalence in GBM remains scarce. Moreover, the potential roles of various viruses, such as polyomaviruses and oncogenic viruses, in gliomagenesis remain unclear. Our aim was to investigate the prevalence of HCMV in GBM among Japanese patients. Furthermore, this was the first study that evaluated infection with four new human polyomaviruses in GBMs. This study also provided the first data on the detection of human papillomavirus (HPV) in GBM in the Eastern world. Methods We measured the number of various viral genomes in GBM samples from 39 Japanese patients using real-time quantitative PCR. The tested viruses included HCMV, Merkel cell polyomavirus, human polyomavirus (HPyV) 6, HPyV7, HPyV9, Epstein–Barr virus, human herpesvirus 8, and HPV. Our quantitative PCR analysis led to the detection of eight copies of the HCMV DNA mixed with DNA extracted from 104 HCMV-negative cells. The presence of HCMV and HPV genomes was also assessed by nested PCR. Immunohistochemical study was also carried out to detect HPV-derived protein in GBM tissues. Results The viral DNAs were not detectable, with the exception of HPV, which was present in eight out of 39 (21%) GBMs. All HPV-positive cases harbored high-risk-type HPV (HPV16 and HPV18). Moreover, the HPV major capsid protein was detected in GBM tumor cells. Conclusions In contrast with previous reports from Caucasian patients, we did not obtain direct evidence in support of the association between HCMV and GBM. However, high-risk-type HPV infection may play a potential etiological role in gliomagenesis in a subset of patients. These findings should prompt further worldwide epidemiological studies aimed at defining the pathogenicity of virus-associated GBM.
Collapse
Affiliation(s)
- Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Ayuko Taniguchi
- Division of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Toshio Yawata
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Sena Hosokawa
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Masanao Murakami
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Makoto Hiroi
- Laboratory of Diagnostic Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505 Japan
| |
Collapse
|
17
|
Faggioli R, Mazzoni E, Borgna-Pignatti C, Corallini A, Turlà G, Taronna AP, Fiumana E, Martini F, Tognon M. Serum antibodies from epileptic patients react, at high prevalence, with simian virus 40 mimotopes. Eur J Neurol 2015; 22:789-95, e51-2. [PMID: 25598431 DOI: 10.1111/ene.12652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE It has been demonstrated that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy. In this study, the prevalence of antibodies to simian virus 40 (SV40), a kidney and neurotropic polyomavirus, was investigated in serum samples from 88 epileptic children/adolescents/young adults. METHODS Serum antibodies reacting to specific SV40 peptides were analysed by indirect enzyme-linked immunosorbent assay. Synthetic peptides corresponding to the epitopes of viral capsid proteins 1-3 were used as SV40 antigens. RESULTS A significantly higher prevalence of antibodies against SV40 was detected in sera from epileptic patients compared to controls (41% vs. 19%). Specifically, the highest significant difference was revealed in the cohort of patients from 1.1 to 10 years old (54% vs. 21%), with a peak in the sub-cohort of 3.1-6 years old (65% vs. 18%). CONCLUSION Our immunological data suggest a strong association between epilepsy and the SV40 infection.
Collapse
Affiliation(s)
- R Faggioli
- Department of Medical Sciences, Section of Pediatrics, School of Medicine, University of Ferrara, Ferrara, Italy; Pediatric Unit, University Hospital of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mazzoni E, Benassi MS, Corallini A, Barbanti-Brodano G, Taronna A, Picci P, Guerra G, D'Agostino A, Trevisiol L, Nocini PF, Casali MV, Barbanti-Brodano G, Martini F, Tognon M. Significant association between human osteosarcoma and simian virus 40. Cancer 2014; 121:708-15. [PMID: 25377935 DOI: 10.1002/cncr.29137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND Simian virus 40 (SV40) has been considered to be an oncogenic viral agent in the development of osteosarcoma (OS), which to the authors' knowledge continues to be of unknown etiology. METHODS In the current study, serum samples from patients with OS were investigated with an indirect enzyme-linked immunoadsorbent assay (ELISA) to test for the presence of immunoglobulin G antibodies, which react with SV40 antigens. In ELISA, SV40 antigens were represented by 2 synthetic polypeptides that mimic epitopes of the viral capsid proteins 1 to 3. Additional sera from patients with breast cancer and undifferentiated nasopharyngeal carcinoma as well as healthy subjects were the controls. RESULTS Immunologic results suggested that antibodies that react with SV40 mimotopes were more prevalent (44%) in serum samples from patients with OS compared with healthy subjects (17%). The difference in prevalence between these cohorts was statistically significant (P<.001). It is interesting to note that in the patients with OS, significance indicated the difference between OS versus breast cancer (44% vs 15%; P<.001) and OS versus undifferentiated nasopharyngeal carcinoma (44% vs 25%; P<.05). CONCLUSIONS The data from the current study indicate an association between OS and SV40. These data could be transferred to clinical applications for innovative therapies to address SV40-positive OS.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mazzoni E, Pietrobon S, Masini I, Rotondo JC, Gentile M, Fainardi E, Casetta I, Castellazzi M, Granieri E, Caniati ML, Tola MR, Guerra G, Martini F, Tognon M. Significant low prevalence of antibodies reacting with simian virus 40 mimotopes in serum samples from patients affected by inflammatory neurologic diseases, including multiple sclerosis. PLoS One 2014; 9:e110923. [PMID: 25365364 PMCID: PMC4218715 DOI: 10.1371/journal.pone.0110923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
Many investigations were carried out on the association between viruses and multiple sclerosis (MS). Indeed, early studies reported the detections of neurotropic virus footprints in the CNS of patients with MS. In this study, sera from patients affected by MS, other inflammatory (OIND) and non-inflammatory neurologic diseases (NIND) were analyzed for antibodies against the polyomavirus, Simian Virus 40 (SV40). An indirect enzyme-linked immunosorbent assay (ELISA), with two synthetic peptides, which mimic SV40 antigens, was employed to detect specific antibodies in sera from patients affected by MS, OIND, NIND and healthy subjects (HS). Immunologic data indicate that in sera from MS patients antibodies against SV40 mimotopes are detectable with a low prevalence, 6%, whereas in HS of the same mean age, 40 yrs, the prevalence was 22%. The difference is statistically significant (P = 0.001). Significant is also the difference between MS vs. NIND patients (6% vs. 17%; P = 0.0254), whereas no significant difference was detected between MS vs OIND (6% vs 10%; P>0.05). The prevalence of SV40 antibodies in MS patients is 70% lower than that revealed in HS.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Irene Masini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro Gentile
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Unit of Neuroradiology, University Hospital of Ferrara, Ferrara, Italy
| | - Ilaria Casetta
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Massimiliano Castellazzi
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Enrico Granieri
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Comar M, Wong C, Tognon M, Butel JS. Neutralizing and IgG antibodies against simian virus 40 in healthy pregnant women in Italy. PLoS One 2014; 9:e110700. [PMID: 25335106 PMCID: PMC4205009 DOI: 10.1371/journal.pone.0110700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Polyomavirus simian virus 40 (SV40) sequences have been detected in various human specimens and SV40 antibodies have been found in human sera from both healthy individuals and cancer patients. This study analyzed serum samples from healthy pregnant women as well as cord blood samples to determine the prevalence of SV40 antibodies in pregnancy. METHODS Serum samples were collected at the time of delivery from two groups of pregnant women as well as cord bloods from one group. The women were born between 1967 and 1993. Samples were assayed by two different serological methods, one group by neutralization of viral infectivity and the other by indirect ELISA employing specific SV40 mimotopes as antigens. Viral DNA assays by real-time polymerase chain reaction were carried out on blood samples. RESULTS Neutralization and ELISA tests indicated that the pregnant women were SV40 antibody-positive with overall prevalences of 10.6% (13/123) and 12.7% (14/110), respectively. SV40 neutralizing antibodies were detected in a low number of cord blood samples. Antibody titers were generally low. No viral DNA was detected in either maternal or cord bloods. CONCLUSIONS SV40-specific serum antibodies were detected in pregnant women at the time of delivery and in cord bloods. There was no evidence of transplacental transmission of SV40. These data indicate that SV40 is circulating at a low prevalence in the northern Italian population long after the use of contaminated vaccines.
Collapse
Affiliation(s)
- Manola Comar
- Medical Science Department, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|