1
|
Moertel CL, Hirbe AC, Shuhaiber HH, Bielamowicz K, Sidhu A, Viskochil D, Weber MD, Lokku A, Smith LM, Foreman NK, Hajjar FM, McNall-Knapp RY, Weintraub L, Antony R, Franson AT, Meade J, Schiff D, Walbert T, Ambady P, Bota DA, Campen CJ, Kaur G, Klesse LJ, Maraka S, Moots PL, Nevel K, Bornhorst M, Aguilar-Bonilla A, Chagnon S, Dalvi N, Gupta P, Khatib Z, Metrock LK, Nghiemphu PL, Roberts RD, Robison NJ, Sadighi Z, Stapleton S, Babovic-Vuksanovic D, Gershon TR. ReNeu: A Pivotal, Phase IIb Trial of Mirdametinib in Adults and Children With Symptomatic Neurofibromatosis Type 1-Associated Plexiform Neurofibroma. J Clin Oncol 2024:JCO2401034. [PMID: 39514826 DOI: 10.1200/jco.24.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Pharmacologic therapies for neurofibromatosis type 1-associated plexiform neurofibromas (NF1-PNs) are limited; currently, none are US Food and Drug Administration-approved for adults. METHODS ReNeu is an open-label, multicenter, pivotal, phase IIb trial of mirdametinib in 58 adults (≥18 years of age) and 56 children (2 to 17 years of age) with NF1-PN causing significant morbidities. Patients received mirdametinib capsules or tablets for oral suspension (2 mg/m2 twice daily, maximum 4 mg twice daily), regardless of food intake, in 3 weeks on/1 week off 28-day cycles. The primary end point was confirmed objective response rate (ORR; proportion of patients with a ≥20% reduction of target PN volume from baseline on consecutive scans during the 24-cycle treatment phase) assessed by blinded independent central review (BICR) of volumetric magnetic resonance imaging. RESULTS Twenty-four of 58 adults (41%) and 29 of 56 children (52%) had a BICR-confirmed objective response during the 24-cycle treatment phase; in addition, two adults and one child had confirmed responses during long-term follow-up. Median (range) target PN volumetric best response was -41% (-90 to 13) in adults and -42% (-91 to 48) in children. Both cohorts reported significant and clinically meaningful improvement in patient- or parent proxy-reported outcome measures of worst tumor pain severity, pain interference, and health-related quality of life (HRQOL) that began early and were sustained during treatment. The most commonly reported treatment-related adverse events were dermatitis acneiform, diarrhea, and nausea in adults and dermatitis acneiform, diarrhea, and paronychia in children. CONCLUSION In ReNeu, the largest multicenter NF1-PN trial reported to date, mirdametinib treatment demonstrated significant confirmed ORRs by BICR, deep and durable PN volume reductions, and early, sustained, and clinically meaningful improvement in pain and HRQOL. Mirdametinib was well-tolerated in adults and children.
Collapse
Affiliation(s)
| | - Angela C Hirbe
- Washington University School of Medicine in St Louis, St Louis, MO
| | | | - Kevin Bielamowicz
- The University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, AR
| | - Alpa Sidhu
- University of Iowa Hospitals and Clinics, Iowa City, IA
| | | | | | | | | | | | | | | | | | | | | | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David Schiff
- University of Virginia Medical Center, Charlottesville, VA
| | - Tobias Walbert
- Henry Ford Health, Wayne State University and Michigan State University, Detroit, MI
| | | | | | - Cynthia J Campen
- Stanford/Lucile Packard Children's Hospital and Stanford Children's Health, Palo Alto, CA
| | - Gurcharanjeet Kaur
- New York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY
| | - Laura J Klesse
- University of Texas Southwestern/Children's Health, Dallas, TX
| | | | - Paul L Moots
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Kathryn Nevel
- Indiana University Health/Indiana University School of Medicine, Indianapolis, IL
| | | | | | - Sarah Chagnon
- Children's Hospital of the Kings Daughters, Norfolk, VA
| | - Nagma Dalvi
- Montefiore Medical Center/Children's Hospital at Montefiore, New York City, NY
| | - Punita Gupta
- St Joseph's Regional Medical Center, Paterson, NJ
| | | | | | | | | | | | - Zsila Sadighi
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | |
Collapse
|
2
|
Kresbach C, Hack K, Ricklefs F, Schüller U. Specifics of spinal neuropathology in the molecular age. Neurooncol Adv 2024; 6:iii3-iii12. [PMID: 39430396 PMCID: PMC11485660 DOI: 10.1093/noajnl/vdad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Tumors located in the spinal cord and its coverings can be diagnostically challenging and require special consideration regarding treatment options. During the last decade, important advances regarding the molecular characterization of central and peripheral nervous system tumors were achieved, resulting in improved diagnostic precision, and understanding of the tumor spectrum of this compartment. In particular, array-based global DNA methylation profiling has emerged as a valuable tool to delineate biologically and clinically relevant tumor subgroups and has been incorporated in the current WHO classification for central nervous system tumors of 2021. In addition, several genetic drivers have been described, which may also help to define distinct tumor types and subtypes. Importantly, the current molecular understanding not only sharpens diagnostic precision but also provides the opportunity to investigate both targeted therapies as well as risk-adapted changes in treatment intensity. Here, we discuss the current knowledge and the clinical relevance of molecular neuropathology in spinal tumor entities.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Hack
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Reiners JJ, Mathieu PA, Gargano M, George I, Shen Y, Callaghan JF, Borch RF, Mattingly RR. Synergistic Suppression of NF1 Malignant Peripheral Nerve Sheath Tumor Cell Growth in Culture and Orthotopic Xenografts by Combinational Treatment with Statin and Prodrug Farnesyltransferase Inhibitor PAMAM G4 Dendrimers. Cancers (Basel) 2023; 16:89. [PMID: 38201517 PMCID: PMC10778372 DOI: 10.3390/cancers16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a disorder in which RAS is constitutively activated due to the loss of the Ras-GTPase-activating activity of neurofibromin. RAS must be prenylated (i.e., farnesylated or geranylgeranylated) to traffic and function properly. Previous studies showed that the anti-growth properties of farnesyl monophosphate prodrug farnesyltransferase inhibitors (FTIs) on human NF1 malignant peripheral nerve sheath tumor (MPNST) cells are potentiated by co-treatment with lovastatin. Unfortunately, such prodrug FTIs have poor aqueous solubility. In this study, we synthesized a series of prodrug FTI polyamidoamine generation 4 (PAMAM G4) dendrimers that compete with farnesyl pyrophosphate for farnesyltransferase (Ftase) and assessed their effects on human NF1 MPNST S462TY cells. The prodrug 3-tert-butylfarnesyl monophosphate FTI-dendrimer (i.e., IG 2) exhibited improved aqueous solubility. Concentrations of IG 2 and lovastatin (as low as 0.1 μM) having little to no effect when used singularly synergistically suppressed cell proliferation, colony formation, and induced N-RAS, RAP1A, and RAB5A deprenylation when used in combination. Combinational treatment had no additive or synergistic effects on the proliferation/viability of immortalized normal rat Schwann cells, primary rat hepatocytes, or normal human mammary epithelial MCF10A cells. Combinational, but not singular, in vivo treatment markedly suppressed the growth of S462TY xenografts established in the sciatic nerves of immune-deficient mice. Hence, prodrug farnesyl monophosphate FTIs can be rendered water-soluble by conjugation to PAMAM G4 dendrimers and exhibit potent anti-tumor activity when combined with clinically achievable statin concentrations.
Collapse
Affiliation(s)
- John J. Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patricia A. Mathieu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mary Gargano
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irene George
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
- Currently College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - John F. Callaghan
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
4
|
Pillay-Smiley N, Fletcher JS, de Blank P, Ratner N. Shedding New Light: Novel Therapies for Common Disorders in Children with Neurofibromatosis Type I. Pediatr Clin North Am 2023; 70:937-950. [PMID: 37704352 DOI: 10.1016/j.pcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Current Address: Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Peter de Blank
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Kotch C, Dombi E, Shah AC, Smith K, Brown S, Li Y, Widemann BC, Fisher MJ. Retrospective Cohort Analysis of the Impact of Puberty on Plexiform Neurofibroma Growth in Patients with Neurofibromatosis Type 1. J Pediatr 2023; 260:113513. [PMID: 37244583 PMCID: PMC10691506 DOI: 10.1016/j.jpeds.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/07/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To assess the hypothesis that plexiform neurofibroma (PN) growth rates increase during puberty. STUDY DESIGN PN growth rates before and during puberty were compared in a retrospective cohort of children with neurofibromatosis type 1 with puberty defined by Tanner staging. Of 33 potentially eligible patients, 25 had adequate quality magnetic resonance imaging for volumetric analysis and were included in ≥1 anchor cohort. Volumetric analysis was performed for all available imaging studies within the 4 years before and after puberty, and before and after 9- and 11-year-old anchor scans. Linear regression was performed to estimate the slope of change (PN growth rate); growth rates were compared with paired t test or Wilcoxon matched-pairs signed rank test. RESULTS There were no significant difference in rates of PN growth in milliliters per month or milliliters per kilogram per month in the prepubertal vs pubertal periods (mean, 1.33 ± 1.67 vs 1.15 ± 1.38 [P = .139] and -0.003 ± 0.015 vs -0.002 ± 0.02 [P = .568]). Percent increases of PN volumes from baseline per month were significantly higher prepubertally (1.8% vs 0.84%; P = .041) and seemed to be related inversely to advancing age. CONCLUSIONS Puberty and its associated hormonal changes do not seem to influence PN growth rate. These findings support those previously reported, but from a typical population of children with neurofibromatosis type 1 with puberty confirmed by Tanner staging.
Collapse
Affiliation(s)
- Chelsea Kotch
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Amish C Shah
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine Smith
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Symone Brown
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Black LE, Longo JF, Anderson JC, Carroll SL. Inhibition of Erb-B2 Receptor Tyrosine Kinase 3 and Associated Regulatory Pathways Potently Impairs Malignant Peripheral Nerve Sheath Tumor Proliferation and Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1298-1318. [PMID: 37328102 PMCID: PMC10477957 DOI: 10.1016/j.ajpath.2023.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, currently untreatable Schwann cell-derived neoplasms with hyperactive mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. To identify potential therapeutic targets, previous studies used genome-scale shRNA screens that implicated the neuregulin-1 receptor erb-B2 receptor tyrosine kinase 3 (erbB3) in MPNST proliferation and/or survival. The current study shows that erbB3 is commonly expressed in MPNSTs and MPNST cell lines and that erbB3 knockdown inhibits MPNST proliferation and survival. Kinomic and microarray analyses of Schwann and MPNST cells implicate Src- and erbB3-mediated calmodulin-regulated signaling as key pathways. Consistent with this, inhibition of upstream (canertinib, sapitinib, saracatinib, and calmodulin) and parallel (AZD1208) signaling pathways involving mitogen-activated protein kinase and mammalian target of rapamycin reduced MPNST proliferation and survival. ErbB inhibitors (canertinib and sapitinib) or erbB3 knockdown in combination with Src (saracatinib), calmodulin [trifluoperazine (TFP)], or proviral integration site of Moloney murine leukemia kinase (AZD1208) inhibition even more effectively reduces proliferation and survival. Drug inhibition enhances an unstudied calmodulin-dependent protein kinase IIα phosphorylation site in an Src-dependent manner. The Src family kinase inhibitor saracatinib reduces both basal and TFP-induced erbB3 and calmodulin-dependent protein kinase IIα phosphorylation. Src inhibition (saracatinib), like erbB3 knockdown, prevents these phosphorylation events; and when combined with TFP, it even more effectively reduces proliferation and survival compared with monotherapy. These findings implicate erbB3, calmodulin, proviral integration site of Moloney murine leukemia kinases, and Src family members as important therapeutic targets in MPNSTs and demonstrate that combinatorial therapies targeting critical MPNST signaling pathways are more effective.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
7
|
Kotch C, Wagner K, Broad JH, Dombi E, Minturn JE, Phillips P, Smith K, Li Y, Jacobs IN, Elden LM, Fisher MJ, Belasco J. Vinblastine/Methotrexate for Debilitating and Progressive Plexiform Neurofibroma in Children and Young Adults with Neurofibromatosis Type 1: A Phase 2 Study. Cancers (Basel) 2023; 15:cancers15092621. [PMID: 37174087 PMCID: PMC10177272 DOI: 10.3390/cancers15092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Limited therapies exist for neurofibromatosis type 1 (NF1)-associated plexiform neurofibroma (PN). For this reason, the activity of vinblastine (VBL) and methotrexate (MTX) was evaluated in children and young adults with NF1 and PN. Patients ≤ 25 years of age with progressive and/or inoperable NF1-PN received VBL 6 mg/m2 and MTX 30 mg/m2 weekly for 26 weeks, followed by every 2 weeks for 26 weeks. Objective response rate was the primary endpoint. Of 25 participants enrolled, 23 were evaluable. The median age of participants was 6.6 years (range 0.3-20.7). The most frequent toxicities were neutropenia and elevation of transaminases. On two-dimensional (2D) imaging, 20 participants (87%) had stable tumor, with a median time to progression of 41.5 months (95% confidence interval 16.9, 64.9). Two of eight participants (25%) with airway involvement demonstrated functional improvements including decreased positive pressure requirements and apnea-hypopnea index. A post hoc three-dimensional (3D) analysis of PN volumes was completed on 15 participants with amenable imaging; 7 participants (46%) had progressive disease on or by the end of therapy. VBL/MTX was well-tolerated but did not result in objective volumetric response. Furthermore, 3D volumetric analysis highlighted the lack of sensitivity of 2D imaging for PN response evaluation.
Collapse
Affiliation(s)
- Chelsea Kotch
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristina Wagner
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J Harris Broad
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Valley Medical Center, Renton, WA 98055, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jane E Minturn
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Phillips
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Smith
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yimei Li
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian N Jacobs
- Division of Otolaryngology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa M Elden
- Division of Otolaryngology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Fisher
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Belasco
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Jackson M, Ahmari N, Wu J, Rizvi TA, Fugate E, Kim MO, Dombi E, Arnhof H, Boehmelt G, Düchs MJ, Long CJ, Maier U, Trapani F, Hofmann MH, Ratner N. Combining SOS1 and MEK Inhibitors in a Murine Model of Plexiform Neurofibroma Results in Tumor Shrinkage. J Pharmacol Exp Ther 2023; 385:106-116. [PMID: 36849412 PMCID: PMC10108440 DOI: 10.1124/jpet.122.001431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK. Single agent SOS1 inhibition had no significant effect in the DhhCre;Nf1 fl/fl mouse model of plexiform neurofibroma, but pharmacokinetics (PK)-driven combination of selumetinib with BI-3406 significantly improved tumor parameters. Tumor volumes and neurofibroma cell proliferation, reduced by MEK inhibition, were further reduced by the combination. Neurofibromas are rich in ionized calcium binding adaptor molecule 1 (Iba1)+ macrophages; combination treatment resulted in small and round macrophages, with altered cytokine expression indicative of altered activation. The significant effects of MEK inhibitor plus SOS1 inhibition in this preclinical study suggest potential clinical benefit of dual targeting of the RAS-MAPK pathway in neurofibromas. SIGNIFICANCE STATEMENT: Interfering with the RAS-mitogen-activated protein kinase (RAS-MAPK) cascade upstream of mitogen activated protein kinase kinase (MEK), together with MEK inhibition, augment effects of MEK inhibition on neurofibroma volume and tumor macrophages in a preclinical model system. This study emphasizes the critical role of the RAS-MAPK pathway in controlling tumor cell proliferation and the tumor microenvironment in benign neurofibromas.
Collapse
Affiliation(s)
- Mark Jackson
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Niousha Ahmari
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Elizabeth Fugate
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Mi-Ok Kim
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Eva Dombi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Heribert Arnhof
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Guido Boehmelt
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Matthias J Düchs
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Clive J Long
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Udo Maier
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Francesca Trapani
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Marco H Hofmann
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| |
Collapse
|
9
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Pellerino A, Verdijk RM, Nichelli L, Andratschke NH, Idbaih A, Goldbrunner R. Diagnosis and Treatment of Peripheral and Cranial Nerve Tumors with Expert Recommendations: An EUropean Network for RAre CANcers (EURACAN) Initiative. Cancers (Basel) 2023; 15:cancers15071930. [PMID: 37046591 PMCID: PMC10093509 DOI: 10.3390/cancers15071930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The 2021 WHO classification of the CNS Tumors identifies as "Peripheral nerve sheath tumors" (PNST) some entities with specific clinical and anatomical characteristics, histological and molecular markers, imaging findings, and aggressiveness. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is particularly low due to the rarity, and drawn recommendations accordingly. Tumor diagnosis is primarily based on hematoxylin and eosin-stained sections and immunohistochemistry. Molecular analysis is not essential to establish the histological nature of these tumors, although genetic analyses on DNA extracted from PNST (neurofibromas/schwannomas) is required to diagnose mosaic forms of NF1 and SPS. MRI is the gold-standard to delineate the extension with respect to adjacent structures. Gross-total resection is the first choice, and can be curative in benign lesions; however, the extent of resection must be balanced with preservation of nerve functioning. Radiotherapy can be omitted in benign tumors after complete resection and in NF-related tumors, due to the theoretic risk of secondary malignancies in a tumor-suppressor syndrome. Systemic therapy should be considered in incomplete resected plexiform neurofibromas/MPNSTs. MEK inhibitor selumetinib can be used in NF1 children ≥2 years with inoperable/symptomatic plexiform neurofibromas, while anthracycline-based treatment is the first choice for unresectable/locally advanced/metastatic MPNST. Clinical trials on other MEK1-2 inhibitors alone or in combination with mTOR inhibitors are under investigation in plexiform neurofibromas and MPNST, respectively.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, 10126 Turin, Italy
| | - Robert M Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, 75005 Paris, France
- Assistance Publique-Hôpitaux de Paris, 75610 Paris, France
- Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 75013 Paris, France
| | - Nicolaus H Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75005 Paris, France
- Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, 75013 Paris, France
- ICM, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Roland Goldbrunner
- Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
11
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
12
|
Cacchione A, Fabozzi F, Carai A, Colafati GS, del Baldo G, Rossi S, Diana M, Megaro G, Milano GM, Macchiaiolo M, Crocoli A, De Ioris MA, Boccuto L, Secco DE, Zama M, Agolini E, Tomà P, Mastronuzzi A. Safety and Efficacy of Mek Inhibitors in the Treatment of Plexiform Neurofibromas: A Retrospective Study. Cancer Control 2023; 30:10732748221144930. [PMID: 36598023 PMCID: PMC9830579 DOI: 10.1177/10732748221144930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Plexiform neurofibromas (PN) represent the main cause of morbidity in patients affected by Neurofibromatosis Type 1 (NF1). Until recently, surgery has been the main treatment option in these patients, but it is burdened with a low efficacy rate and a high incidence of side effects as well as recurrence. In recent years, MEK inhibitors (MEKi) such as selumetinib and trametinib have shown great promise. METHODS We retrospectively describe a single center cohort of NF1 patients affected by PN1 and treated with MEKi since 2019 to 2021. Patients recruited in the study were affected by PN that were not eligible to complete surgical excision, symptomatic or with major cosmetic deformation or functional neurological deficits. RESULTS Most patients experienced improvement in clinical symptoms and quality of life, with reduction or stabilization of lesions. However, no complete response was achieved. The most common adverse effects involved the skin, affecting every patient. Importantly, no life-threatening adverse effects occurred. CONCLUSIONS In our experience, MEKi treatment has been shown to be both safe and effective in improving symptomatology and quality of life.
Collapse
Affiliation(s)
- Antonella Cacchione
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy,Department of Pediatrics, University of Tor Vergata, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Giada del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Martino Diana
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giacomina Megaro
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Maria Antonietta De Ioris
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Domitilla Elena Secco
- PsD of Department of Paediatric Haematology/Oncology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Mario Zama
- Surgery Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Tomà
- Department of Imaging, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome, Italy,Unicamillus, Saint Camillus International University of Health Sciences, Rome, Italy,Angela Mastronuzzi, MD, PhD, Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Rome 00165, Italy.
| |
Collapse
|
13
|
Fisher MJ, Blakeley JO, Weiss BD, Dombi E, Ahlawat S, Akshintala S, Belzberg AJ, Bornhorst M, Bredella MA, Cai W, Ferner RE, Gross AM, Harris GJ, Listernick R, Ly I, Martin S, Mautner VF, Salamon JM, Salerno KE, Spinner RJ, Staedtke V, Ullrich NJ, Upadhyaya M, Wolters PL, Yohay K, Widemann BC. Management of neurofibromatosis type 1-associated plexiform neurofibromas. Neuro Oncol 2022; 24:1827-1844. [PMID: 35657359 PMCID: PMC9629437 DOI: 10.1093/neuonc/noac146] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plexiform Neurofibromas (PN) are a common manifestation of the genetic disorder neurofibromatosis type 1 (NF1). These benign nerve sheath tumors often cause significant morbidity, with treatment options limited historically to surgery. There have been tremendous advances over the past two decades in our understanding of PN, and the recent regulatory approvals of the MEK inhibitor selumetinib are reshaping the landscape for PN management. At present, there is no agreed upon PN definition, diagnostic evaluation, surveillance strategy, or clear indications for when to initiate treatment and selection of treatment modality. In this review, we address these questions via consensus recommendations from a panel of multidisciplinary NF1 experts.
Collapse
Affiliation(s)
- Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jaishri O Blakeley
- Division of Neuro-Oncology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian D Weiss
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Shivani Ahlawat
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Allan J Belzberg
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miriam Bornhorst
- Family Neurofibromatosis Institute, Center for Neuroscience and Behavioral Medicine,Children's National Hospital, Washington, District of Columbia, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalie E Ferner
- Neurofibromatosis Service, Department of Neurology, Guy's Hospital, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Listernick
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Staci Martin
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes M Salamon
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Verena Staedtke
- Division of Neuro-Oncology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Wales, UK
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kaleb Yohay
- Grossman School of Medicine, Department of Neurology, New York, New York, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
王 生, 李 艳, 张 杰, 倪 鑫. [Progress in diagnosis and treatment of neurofibromatosis in children]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:477-482. [PMID: 35822370 PMCID: PMC10128489 DOI: 10.13201/j.issn.2096-7993.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 06/15/2023]
Abstract
Neurofibromatosis type 1(NF1) is an autosomal dominant genetic disease in which a mutation in the NF1 gene on chromosome 17q11.2 results in inactivation or down-regulation of neurofibromin. This results in a series of neurocutaneous lesions characterized by neurofibromatosis. Patients with plexiform neurofibromas(PN), as one of the main manifestations of NF1, often experience pain, dysfunction, skeletal deformities, changes in appearance and other symptoms. In severe cases, compression of the airways and vital organs occurs, and the PN is at risk of malignancy progression. At present, its treatment is still challenging. Surgery is the primary treatment for PN, but complete resection is often difficult. In recent years, chemotherapy for PN has become a hot topic. This article reviews the research progress in the pathogenesis, diagnosis and treatment of PN in recent years.
Collapse
Affiliation(s)
- 生才 王
- 首都医科大学附属北京儿童医院耳鼻咽喉头颈外科 国家儿童医学中心 儿童耳鼻咽喉头颈外科疾病北京市重点实验室(北京,100045)Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory for Pediatric Disease of Otolaryngology Head and Neck Surgery, Beijing, 100045, China
| | - 艳珍 李
- 首都医科大学附属北京儿童医院耳鼻咽喉头颈外科 国家儿童医学中心 儿童耳鼻咽喉头颈外科疾病北京市重点实验室(北京,100045)Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory for Pediatric Disease of Otolaryngology Head and Neck Surgery, Beijing, 100045, China
| | - 杰 张
- 首都医科大学附属北京儿童医院耳鼻咽喉头颈外科 国家儿童医学中心 儿童耳鼻咽喉头颈外科疾病北京市重点实验室(北京,100045)Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory for Pediatric Disease of Otolaryngology Head and Neck Surgery, Beijing, 100045, China
| | - 鑫 倪
- 首都医科大学附属北京儿童医院耳鼻咽喉头颈外科 国家儿童医学中心 儿童耳鼻咽喉头颈外科疾病北京市重点实验室(北京,100045)Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory for Pediatric Disease of Otolaryngology Head and Neck Surgery, Beijing, 100045, China
| |
Collapse
|
15
|
Odeniyide P, Yohe ME, Pollard K, Vaseva AV, Calizo A, Zhang L, Rodriguez FJ, Gross JM, Allen AN, Wan X, Somwar R, Schreck KC, Kessler L, Wang J, Pratilas CA. Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma. Oncogene 2022; 41:2973-2983. [PMID: 35459782 PMCID: PMC9122815 DOI: 10.1038/s41388-022-02305-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/11/2023]
Abstract
Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.
Collapse
Affiliation(s)
- Patience Odeniyide
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina V Vaseva
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ana Calizo
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Laboratory Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy N Allen
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolin Wan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiawan Wang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
17
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
18
|
Roman Souza G, Abdalla A, Mahadevan D. Clinical Trials Targeting Neurofibromatoses-associated Tumors: A Systematic Review. Neurooncol Adv 2022; 4:vdac005. [PMID: 35291225 PMCID: PMC8919406 DOI: 10.1093/noajnl/vdac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background There is a paucity of literature that comprehensively analyzes previous and current clinical trials targeting neurofibromatoses-related tumors. This article aims to provide readers with drug development efforts targeting these tumors by analyzing translational and clinical findings. Methods This systematic review was written according to the PRISMA guidelines. Inclusion criteria were clinical trials involving patients with neurofibromatosis type 1, type 2, or schwannomatosis that were treated with therapies targeting neurofibromatoses-associated tumors and that were registered on clinicaltrials.gov. In addition, a search was performed in PubMed, Web of Science, Google Scholar, and Embase European for articles fully describing these clinical trials. Results A total of 265 clinical trials were registered and screened for eligibility. Ninety-two were included in this systematic review involving approximately 4636 participants. The number of therapies analyzed was more than 50. Drugs under investigation mainly act on the MAPK/ERK and PI3K/AKT/mTOR pathways, tumor microenvironment, or aberrantly over-expressed cell surface receptors. Selumetinib was the most effective medication for treating a neurofibromatosis type 1-associated tumor with approximately 68%–71% partial response for inoperable or progressive plexiform neurofibromas in children 2 years of age and older and bevacizumab for a neurofibromatosis type 2-related tumor with approximately 36%–41% partial response for vestibular schwannomas in patients 12 years of age and older. Conclusions This systematic review presents the results of previous clinical investigations and those under development for neurofibromatoses-associated tumors. Clinicians may use this information to strategize patients to appropriate clinical trials.
Collapse
Affiliation(s)
- Gabriel Roman Souza
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Ahmed Abdalla
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Daruka Mahadevan
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| |
Collapse
|
19
|
External Control Arms in Oncology: Current Use and Future Directions. Ann Oncol 2022; 33:376-383. [DOI: 10.1016/j.annonc.2021.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
|
20
|
Acar S, Armstrong AE, Hirbe AC. Plexiform neurofibroma: shedding light on the investigational agents in clinical trials. Expert Opin Investig Drugs 2021; 31:31-40. [PMID: 34932916 DOI: 10.1080/13543784.2022.2022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic condition, which predisposes individuals to the development of plexiform neurofibromas (PN), benign nerve sheath tumors seen in 30-50% of patients with NF1. These tumors may cause significant pain and disfigurement or may compromise organ function. Given the morbidity associated with these tumors, therapeutic options for patients with NF1-related PN are necessary. AREAS COVERED We searched the www.clinicaltrials.gov database for 'plexiform neurofibroma.' This article summarizes completed and ongoing trials involving systemic therapies for PN. EXPERT OPINION Surgery is the mainstay treatment; however, complete resection is not possible in many cases. Numerous systemic therapies have been evaluated in patients with NF1, with MEK inhibitors (MEKi) showing the greatest efficacy for volumetric reduction and improvement in functional and patient-reported outcomes. The MEKi selumetinib is now FDA approved for the treatment of inoperable, symptomatic PN in pediatric NF1 patients. Questions remain regarding the use of this drug class in terms of when to initiate therapy, overall duration, reduced dosing schedules, and side effect management. Future studies are needed to fully understand the clinical application of MEKi and to evaluate other potential therapies through appropriate trial designs for this potentially devastating, manifestation in NF1.
Collapse
Affiliation(s)
- Simge Acar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,School of Medicine, Koç University, Istanbul, Turkey
| | - Amy E Armstrong
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Mo, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela C Hirbe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Mo, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Sanchez LD, Bui A, Klesse LJ. Targeted Therapies for the Neurofibromatoses. Cancers (Basel) 2021; 13:cancers13236032. [PMID: 34885143 PMCID: PMC8657309 DOI: 10.3390/cancers13236032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past several years, management of the tumors associated with the neurofibromatoses has been recognized to often require approaches that are distinct from their spontaneous counterparts. Focus has shifted to therapy aimed at minimizing symptoms given the risks of persistent, multiple tumors and new tumor growth. In this review, we will highlight the translation of preclinical data to therapeutic trials for patients with neurofibromatosis, particularly neurofibromatosis type 1 and neurofibromatosis type 2. Successful inhibition of MEK for patients with neurofibromatosis type 1 and progressive optic pathway gliomas or plexiform neurofibromas has been a significant advancement in patient care. Similar success for the malignant NF1 tumors, such as high-grade gliomas and malignant peripheral nerve sheath tumors, has not yet been achieved; nor has significant progress been made for patients with either neurofibromatosis type 2 or schwannomatosis, although efforts are ongoing.
Collapse
Affiliation(s)
- Lauren D. Sanchez
- Department of Pediatrics, Division of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Ashley Bui
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
- Correspondence:
| |
Collapse
|
22
|
Amaravathi A, Oblinger JL, Welling DB, Kinghorn AD, Chang LS. Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Front Oncol 2021; 11:698192. [PMID: 34604034 PMCID: PMC8485038 DOI: 10.3389/fonc.2021.698192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor suppressor syndromes characterized by multiple nervous system tumors, particularly Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of them have been treated by but are refractory to conventional chemotherapy. Recent advances in molecular genetics and genomics alongside the development of multiple animal models have provided a better understanding of NF tumor biology and facilitated target identification and therapeutic evaluation. Many targeted therapies have been evaluated in preclinical models and patients with limited success. One major advance is the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory properties, selected natural compounds could be useful as a primary therapy or as an adjuvant therapy prior to or following surgery and/or radiation for patients with tumor predisposition syndromes, as patients often take them as dietary supplements and for health enhancement purposes. Here we review the natural compounds that have been evaluated in NF models. Some have demonstrated potent anti-tumor effects and may become viable treatments in the future.
Collapse
Affiliation(s)
- Anusha Amaravathi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - D Bradley Welling
- Department of Otolaryngology Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, and Massachusetts General Hospital, Boston, MA, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
23
|
Anderson MK, Johnson M, Thornburg L, Halford Z. A Review of Selumetinib in the Treatment of Neurofibromatosis Type 1-Related Plexiform Neurofibromas. Ann Pharmacother 2021; 56:716-726. [PMID: 34541874 DOI: 10.1177/10600280211046298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of selumetinib, a novel MEK inhibitor, for the treatment of plexiform neurofibromas (PN) in patients with neurofibromatosis type 1 (NF1). DATA SOURCES An English-based literature search of PubMed, EMBASE, and ClinicalTrials.gov was conducted using the terms selumetinib AND neurofibromatosis from inception to August 1, 2021. STUDY SELECTION AND DATA EXTRACTION Relevant prescribing information, abstracts, and articles identified through the search were considered for inclusion in this review. DATA SYNTHESIS The open-label, multicenter, single-arm, phase II SPRINT trial demonstrated clinically significant improvements in PN-related complications. Of 50 symptomatic patients, 68% experienced a partial response, with a median change in tumor volume of -27.9% from baseline. Estimated progression-free survival at 3 years was 84%. Additionally, clinically meaningful improvements were seen on patient- and parent-reported assessments evaluating pain, range of motion, disfigurement, and quality of life. Overall, the adverse effect profile for selumetinib appears mild and manageable. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Selumetinib is the first FDA-approved treatment for inoperable PN in patients with NF1, demonstrating that MEK inhibition is a promising therapeutic strategy. Studies are ongoing to assess the effect of selumetinib on other NF1-associated tumor types and to determine the optimal dosing schedule and treatment duration. Cost and treatment burden must be considered when selecting selumetinib therapy. CONCLUSION Selumetinib exhibits impressive antitumor activity and sustained clinical benefit in patients lacking other viable treatment options. Further studies are warranted to determine the optimal age of initiation, treatment duration, and overall cost-effectiveness of selumetinib.
Collapse
|
24
|
Longo JF, Carroll SL. The RASopathies: Biology, genetics and therapeutic options. Adv Cancer Res 2021; 153:305-341. [PMID: 35101235 DOI: 10.1016/bs.acr.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW An early understanding of the role of the Ras/Raf/MEK/ERK signalling pathway in regulating cell proliferation has set the stage for the development of several potent and selective MEK inhibitors (MEKi). MEKi represent promising therapies for RAS-driven neoplasias and RASopathies associated with increased Ras/MAPK activity. RECENT FINDINGS Neurofibromatosis 1 (NF1) is a prototypic RASopathy in which early-phase clinical trials with MEKi have been successful in the treatment of plexiform neurofibromas (pNF) and low-grade gliomas (LGGs). The phase 2 trial (SPRINT) of selumetinib in pNF resulted in at least 20% reduction in the size of pNF from baseline in 71% of patients and was associated with clinically meaningful improvements. On the basis of this trial, selumetinib (Koselugo) received FDA approval for children 2 years of age and older with inoperable, symptomatic pNF. The phase 2 trial of selumetinib in LGG resulted in 40% partial response and 96% of patients had 2 years of progression-free survival. SUMMARY Given the potential of MEK inhibition as an effective and overall well tolerated medical treatment, the use of targeted agents in the NF1 population is likely to increase considerably. Future work on non-NF1 RASopathies should focus on developing preclinical models and defining endpoints for measurement of efficacy in order to conduct clinical trials.
Collapse
|
26
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
27
|
Solares I, Viñal D, Morales-Conejo M, Rodriguez-Salas N, Feliu J. Novel molecular targeted therapies for patients with neurofibromatosis type 1 with inoperable plexiform neurofibromas: a comprehensive review. ESMO Open 2021; 6:100223. [PMID: 34388689 PMCID: PMC8363824 DOI: 10.1016/j.esmoop.2021.100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that carries a higher risk of tumor development. Plexiform neurofibromas (PNs) are present in 50% of NF1 and cause significant morbidity when surgery is not feasible. Systemic therapies had not succeeded to reduce PN tumor volume until 2016 when the first trial with an MAPK/extracellular-signal-regulated kinase (MEK) inhibitor was published. We performed a systematic research on novel targeted therapies for patients with NF1 and PNs in PubMed, EMBASE, and conference abstracts with the last update in February 2021. Since 2016, seven trials have reported positive results with MEK inhibitors and other molecular targeted therapies (cabozantinib). Selumetinib has shown an overall response rate of 68% in children with NF1 and symptomatic inoperable PNs, and was associated with pain improvement and a manageable adverse events profile. This led to Food and Drug Administration (FDA) approval of selumetinib in May 2020. Recently, cabozantinib and mirdametinib have also proven their efficacy in adult population. Other MEK inhibitors such as trametinib and binimetinib have also communicated promising preliminary results. Ongoing trials in different populations and with intermittent dosing strategies are underway.
Collapse
Affiliation(s)
- I Solares
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain
| | - D Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.
| | - M Morales-Conejo
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain; Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - N Rodriguez-Salas
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| | - J Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| |
Collapse
|
28
|
Feroze K, Kaliyadan F. Targeted genetic and molecular therapies in neurofibromatosis - A review of present therapeutic options and a glimpse into the future. Indian J Dermatol Venereol Leprol 2021; 88:1-10. [PMID: 34379966 DOI: 10.25259/ijdvl_6_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/01/2021] [Indexed: 11/04/2022]
Abstract
Neurofibromatosis type 1, the most common phakomatoses, can present with a host of signs and symptoms, usually involving the skin and the peripheral nervous system. It is characterized by a mutation in the neurofibromatosis type 1 gene on chromosome 17q11.2 that codes for the protein neurofibromin. Neurofibromin acts as a tumor suppressor gene by inhibiting rat sarcoma (Ras) activity and its deficiency leads to increased Ras activity, cellular proliferation and tumor formation. This review was conducted to analyze the various targeted therapies at the genetic and molecular level employed to manage the tumors and other clinical presentations associated with neurofibromatosis type 1. Twenty-eight studies of treatment modalities for the conditions associated with neurofibromatosis and which involved either targeted gene therapy or molecular level therapies, including the latest advances, were included in this review. Mitogen-activated protein kinase kinase inhibition, mammalian target of Rapamycin inhibition and Tyrosine kinase inhibition, represent some of the newer treatment options in this category. Although there are a number of trials for providing therapeutic options at the genetic and molecular level for the various physical and psychological morbidities associated with neurofibromatosis type 1, most of them are in the preclinical stage. Increased clinical trials of the molecules and gene therapies could significantly help in managing the various chronic and sometimes, life-threatening conditions associated with neurofibromatosis 1 and these will probably represent the preferred treatment direction of the future.
Collapse
Affiliation(s)
- Kaberi Feroze
- Department of Ophthalmology, Al Azhar Medical College, Thodupuzha, Kerala, India
| | - Feroze Kaliyadan
- Department of Dermatology, College of Medicine, King Faisal University, Hofuf, Saudi Arabia.,Department of Dermatology, Sree Narayana Institute of Medical Sciences, Chalakka, Kerala, India
| |
Collapse
|
29
|
Dhaenens BAE, Ferner RE, Evans DG, Heimann G, Potratz C, van de Ketterij E, Kaindl AM, Hissink G, Carton C, Bakker A, Nievo M, Legius E, Oostenbrink R. Lessons learned from drug trials in neurofibromatosis: A systematic review. Eur J Med Genet 2021; 64:104281. [PMID: 34237445 DOI: 10.1016/j.ejmg.2021.104281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromatosis (NF) is the umbrella term for neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) and schwannomatosis (SWN). EU-PEARL aims to create a framework for platform trials in NF. The aim of this systematic review is to create an overview of recent clinical drug trials in NF, to identify learning points to guide development of the framework. We searched Embase, Medline and Cochrane register of trials on October 1, 2020 for publications of clinical drug trials in NF patients. We excluded publications published before 2010, systematic reviews, secondary analyses and studies with <10 patients. Data was extracted on manifestations studied, study design, phase, number of participating centres and population size. Full-text review resulted in 42 articles: 31 for NF1, 11 for NF2, none for SWN. Most NF1 trials focused on plexiform neurofibromas (32%). Trials in NF2 solely studied vestibular schwannomas. In NF1, single-arm trials (58%) were most common, and the majority was phase II (74%). For NF2 most trials were single-arm (55%) and exclusively phase II. For both diseases, trials were predominantly single-country and included five centres or less. Study population sizes were small, with the majority including ≤50 patients (74%). In conclusion, NF research is dominated by studies on a limited number out of the wide range of manifestations. We need more trials for cutaneous manifestations and high-grade gliomas in NF1, manifestations other than vestibular schwannoma in NF2 and trials for SWN. Drug development in NF may profit from innovative trials on multiple interventions and increased international collaboration.
Collapse
Affiliation(s)
- Britt A E Dhaenens
- Department of General Paediatrics, Sophia's Children's Hospital, Rotterdam, the Netherlands; ENCORE, Erasmus MC Rotterdam, the Netherlands
| | - Rosalie E Ferner
- Department of Neurology, Guy's and St. Thomas' NHS Foundation Trust London, UK
| | - D Gareth Evans
- Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Guenter Heimann
- Biostatistics & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | - Cornelia Potratz
- Department of Paediatric Neurology, Charité Universitätsmedizin Berlin, Germany
| | | | - Angela M Kaindl
- Department of Paediatric Neurology, Charité Universitätsmedizin Berlin, Germany; Institute of Cell- and Neurobiology, Charité Universitätsmedizin Berlin, Germany; Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité Universitätsmedizin Berlin, Germany
| | - Geesje Hissink
- Department of General Paediatrics, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | - Eric Legius
- Department of Clinical Genetics, UZ Leuven, Belgium; Full Member of the European Reference Network on Genetic Tumour Risk Syndromes, (ERN GENTURIS)-Project ID No 739547, UK
| | - Rianne Oostenbrink
- Department of General Paediatrics, Sophia's Children's Hospital, Rotterdam, the Netherlands; ENCORE, Erasmus MC Rotterdam, the Netherlands; Full Member of the European Reference Network on Genetic Tumour Risk Syndromes, (ERN GENTURIS)-Project ID No 739547, UK.
| |
Collapse
|
30
|
Gross AM. Using real world data to support regulatory approval of drugs in rare diseases: A review of opportunities, limitations & a case example. Curr Probl Cancer 2021; 45:100769. [PMID: 34247834 DOI: 10.1016/j.currproblcancer.2021.100769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Conducting clinical research in patients with rare diseases presents a variety of challenges. At the same time, rare diseases represent a large area of unmet medical need with a significant burden of morbidity throughout the world. One of the most common issues with designing clinical trials for rare disease populations is that the gold-standard randomized controlled trial design is often not feasible in these small and usually geographically dispersed populations. Real world data therefore has particular relevance in the rare disease setting, where it may be used as a comparator for single-arm treatment trials and in support of submissions to regulatory agencies for drugs to treat these conditions. In this report, we review the potential utility and limitations of external controls for regulatory approval of drugs in rare diseases and present a recent case example of the successful utilization of external controls in the Neurofibromatosis type 1 (NF1) population.
Collapse
|
31
|
Metrock LK, Lobbous M, Korf B. An evaluation of selumetinib for the treatment of neurofibromatosis type 1-associated symptomatic, inoperable plexiform neurofibromas. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1917989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Laura K. Metrock
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mina Lobbous
- Division of Neuro-Oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Copley-Merriman C, Yang X, Juniper M, Amin S, Yoo HK, Sen SS. Natural History and Disease Burden of Neurofibromatosis Type 1 with Plexiform Neurofibromas: A Systematic Literature Review. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2021; 12:55-66. [PMID: 34040477 PMCID: PMC8141405 DOI: 10.2147/ahmt.s303456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an incurable genetic condition that frequently includes the development of plexiform neurofibromas (PNs) in patients. A systematic literature review was conducted to identify data on the natural history, disease burden, and treatment patterns among patients diagnosed with NF1 and PN, as well as to identify evidence gaps in these areas. MEDLINE and MEDLINE In-Process, Embase, and Cochrane Library Searches were searched using predefined terms. Potential references underwent two phases of screening by two independent researchers. A total of 39 references focusing on populations of patients with both NF1 and PN were included in this review. The wide range of PN-related complications creates a substantial quality-of-life (QOL) burden for patients, including pain, social functioning, physical function impact, stigma, and emotional distress. The severe burden of NF1 with PN on the QOL of patients demonstrates the high unmet need for an effective treatment option that can reduce tumor burden and improve QOL. The heterogeneity of measurement tools used to evaluate QOL and the gap in data evaluating the health economic burden of PN should be the focus of future research.
Collapse
|
33
|
Mukhopadhyay S, Maitra A, Choudhury S. Selumetinib: the first ever approved drug for neurofibromatosis-1 related inoperable plexiform neurofibroma. Curr Med Res Opin 2021; 37:789-794. [PMID: 33683166 DOI: 10.1080/03007995.2021.1900089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plexiform neurofibroma (PN) is one of the most striking clinical features of neurofibromatosis 1. Growth of PN can occur at any stage of life but mostly in childhood and during hormonal changes. They arise from multiple nerve fascicles and may transform into malignant peripheral nerve sheath tumors. There was previously no approved medical therapy for tumor shrinkage or regression. Surgery is not always possible due to inaccessible location, involvement of vital tissue, optimal timing, and incomplete removal. Recently, the US Food and Drug Administration approved selumetinib for pediatric patients, 2 years of age and older, with neurofibromatosis type 1 who have symptomatic, inoperable tumor. Neurofibromin, a 2818 amino acid long cytoplasmic protein, is the product of the NF1 gene. It inhibits the activity of Ras GTPase proteins. Lack of functional neurofibromin in patients with NF1 leads to dysregulated Ras and tumorigenesis. RAS MAPK pathway is hyper activated in NF1. Selumetinib is an inhibitor of MEK1 and MEK2 proteins, which play an important role in the MAPK signaling pathway related to tumor growth. Approval was based on one pivotal, single-arm, phase II trial. 70% of participants experienced confirmed partial response of tumor shrinkage, and 68% also had improvement of related complications, and other studies have also shown beneficial responses. The major limitation of this molecule regarding its mechanism of action is the dose-dependent effect of MEK inhibition in growth of neurofibroma. Long-term safety and efficacy studies are to be done in the future to establish selumetininb as a useful medicine.
Collapse
Affiliation(s)
| | - Arpita Maitra
- Department of Pharmacology, Burdwan Medical College, Burdwan, India
| | | |
Collapse
|
34
|
Population pharmacokinetics and exposure-response of selumetinib and its N-desmethyl metabolite in pediatric patients with neurofibromatosis type 1 and inoperable plexiform neurofibromas. Cancer Chemother Pharmacol 2021; 88:189-202. [PMID: 33903938 DOI: 10.1007/s00280-021-04274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Selumetinib (ARRY-142886) is a potent, selective, MEK1/2 inhibitor approved in the US for the treatment of children (≥ 2 years) with neurofibromatosis type 1 (NF1) and symptomatic, inoperable plexiform neurofibromas (PN). We characterized population pharmacokinetics (PK) of selumetinib and its active N-desmethyl metabolite, evaluated exposure-safety/efficacy relationships, and assessed the proposed therapeutic dose of 25 mg/m2 bid based on body surface area (BSA) in this patient population. METHODS Population PK modeling and covariate analysis (demographics, formulation, liver enzymes, BSA, patients/healthy volunteers) were based on pooled PK data from adult healthy volunteers (n = 391), adult oncology patients (n = 83) and pediatric patients with NF1-PN (n = 68). Longitudinal selumetinib/metabolite exposures were predicted with the final model. Exposure-safety/efficacy analyses were applied to pediatric patients (dose levels: 20, 25, 30 mg/m2 bid). RESULTS Selumetinib and metabolite concentration-time courses were modeled using a joint compartmental model. Typical selumetinib plasma clearance was 11.6 L/h (95% CI 11.0-12.2 L/ h). Only BSA had a clinically relevant (> 20%) impact on exposure, supporting BSA-based administration in children. Selumetinib and metabolite exposures in responders (≥ 20% PN volume decrease from baseline) and non-responders were largely overlapping, with medians numerically higher in responders. No clear relationships between exposure and safety events were established; exposure was not associated with key adverse events (AEs) including rash acneiform, diarrhea, vomiting, and nausea. CONCLUSION Findings support continuous selumetinib 25 mg/m2 bid in pediatric patients. Importantly, the updated dosing nomogram ensures that patients will receive a clinically active, yet tolerable, dose regardless of differences in BSA and allows dose reductions, if necessary.
Collapse
|
35
|
Kang E, Yoon HM, Lee BH. Neurofibromatosis type I: points to be considered by general pediatricians. Clin Exp Pediatr 2021; 64:149-156. [PMID: 32683805 PMCID: PMC8024119 DOI: 10.3345/cep.2020.00871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/23/2020] [Indexed: 11/27/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a prevalent genetic disease that is transmitted in an autosomal dominant manner, is characterized by multiple cutaneous café-au-lait spots and neurofibromas as well as various degrees of neurological, skeletal, and neoplastic manifestations. The clinical features of NF1 increase in frequency with age, while the clinical diagnosis can remain undetermined in some pediatric patients. Importantly, affected patients are at risk for developing tumors of the central and peripheral nervous system. Therefore, adequate counseling for genetic testing, age-appropriate surveillance, and management are important. This review suggests several issues that should be considered to help general pediatricians provide adequate clinical care and genetic counseling to patients with NF1 and their families.
Collapse
Affiliation(s)
- Eungu Kang
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Hee Mang Yoon
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
37
|
Current status of MEK inhibitors in the treatment of plexiform neurofibromas. Childs Nerv Syst 2020; 36:2443-2452. [PMID: 32607696 DOI: 10.1007/s00381-020-04731-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1)-related plexiform neurofibromas (pNF) can be debilitating and until recently, surgery was the only potentially effective therapy for these tumors. METHODS We review critical steps in the path towards the FDA approval of the first medical therapy for NF1 pNF and the current status of MEK inhbitor therapy. RESULTS Sustained efforts by the NF community have resulted in a detailed understanding of the natural history and biology of NF1-related peripheral nerve sheath tumors. This work provided the basis for the development of meaningful clinical trials targeting pNF. Inhibition of the RAS/MAPK signaling pathway with MEK inhibitors identified the first medical therapy which resulted in shrinkage in the majority of children with NF1 and large inoperable pNF. Based on this finding and subsequent demonstration of clinical benefit, the MEK inhibitor selumetinib recently received approval by the United States Food and Drug Administration (FDA) for children with symptomatic pNF. CONCLUSIONS Sustained efforts and collaborations have resulted in identification of MEK inhibitors as effective therapy for NF1 pNF. Future work work will be directed at prevention of pNF morbidity and deepening the reponse in symptomatic pNF.
Collapse
|
38
|
Strowd RE. Available Therapies for Patients with Neurofibromatosis-Related Nervous System Tumors. Curr Treat Options Oncol 2020; 21:81. [DOI: 10.1007/s11864-020-00779-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol 2020; 84:1667-1676. [PMID: 32771543 DOI: 10.1016/j.jaad.2020.07.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 is the most common neurocutaneous syndrome, with a frequency of 1 in 2500 persons. Diagnosis is paramount in the pretumor stage to provide proper anticipatory guidance for a number of neoplasms, both benign and malignant. Loss-of-function mutations in the NF1 gene result in truncated and nonfunctional production of neurofibromin, a tumor suppressor protein involved in downregulating the RAS signaling pathway. New therapeutic and preventive options include tyrosine kinase inhibitors, mTOR inhibitors, interferons, and radiofrequency therapy. This review summarizes recent updates in genetics, mutation analysis assays, and treatment options targeting aberrant genetic pathways. We also propose modified diagnostic criteria and provide an algorithm for surveillance of patients with neurofibromatosis type 1.
Collapse
|
40
|
Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer 2020; 123:178-186. [PMID: 32439933 PMCID: PMC7374719 DOI: 10.1038/s41416-020-0903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumour syndrome that predisposes to benign and malignant tumours originating from neural crest cells. Biallelic inactivation of the tumour-suppressor gene NF1 in glial cells in the skin, along a nerve plexus or in the brain results in the development of benign tumours: cutaneous neurofibroma, plexiform neurofibroma and glioma, respectively. Despite more than 40 years of research, only one medication was recently approved for treatment of plexiform neurofibroma and no drugs have been specifically approved for the management of other tumours. Work carried out over the past several years indicates that inhibiting different cellular signalling pathways (such as Hippo, Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase and those mediated by sex hormones) in tumour cells or targeting cells in the microenvironment (nerve cells, macrophages, mast cells and T cells) might benefit NF1 patients. In this review, we outline previous strategies aimed at targeting these signalling pathways or cells in the microenvironment, agents that are currently in clinical trials, and the latest advances in basic research that could culminate in the development of novel therapeutics for patients with NF1.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
41
|
Foiadelli T, Naso M, Licari A, Orsini A, Magistrali M, Trabatti C, Luzzi S, Mosconi M, Savasta S, Marseglia GL. Advanced pharmacological therapies for neurofibromatosis type 1-related tumors. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:101-114. [PMID: 32608378 PMCID: PMC7975824 DOI: 10.23750/abm.v91i7-s.9961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is an autosomal dominant tumor-predisposition disorder that is caused by a heterozygous loss of function variant in the NF1 gene, which encodes a protein called neurofibromin. The absence of neurofibromin causes increased activity in the Rat sarcoma protein (RAS) signalling pathway, which results in an increased growth and cell proliferation. As a result, both oncological and non-oncological comorbidities contribute to a high morbidity and mortality in these patients. Optic pathways gliomas, plexiform neurofibromas and malignant peripheral nerve sheath tumor (MPNST) are the most frequent NF1-associated tumors. The treatment of these complications is often challenging, since surgery may not be feasible due to the location, size, and infiltrative nature of these tumors, and standard chemotherapy or radiotherapy are burdened by significant toxicity and risk for secondary malignancies. For these reasons, following the novel discoveries of the pathophysiological mechanisms that lead to cell proliferation and tumorigenesis in NF1 patients, emerging drugs targeting specific signalling pathways (i.e. the MEK/ERK cascade), have been developed with promising results.
Collapse
Affiliation(s)
- Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Matteo Naso
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Amelia Licari
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Italy.
| | - Mariasole Magistrali
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Chiara Trabatti
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Gian Luigi Marseglia
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| |
Collapse
|
42
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, Martin S, Roderick MC, Pichard DC, Carbonell A, Paul SM, Therrien J, Kapustina O, Heisey K, Clapp DW, Zhang C, Peer CJ, Figg WD, Smith M, Glod J, Blakeley JO, Steinberg SM, Venzon DJ, Doyle LA, Widemann BC. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N Engl J Med 2020; 382:1430-1442. [PMID: 32187457 PMCID: PMC7305659 DOI: 10.1056/nejmoa1912735] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND No approved therapies exist for inoperable plexiform neurofibromas in patients with neurofibromatosis type 1. METHODS We conducted an open-label, phase 2 trial of selumetinib to determine the objective response rate among patients with plexiform neurofibromas and to assess clinical benefit. Children with neurofibromatosis type 1 and symptomatic inoperable plexiform neurofibromas received oral selumetinib twice daily at a dose of 25 mg per square meter of body-surface area on a continuous dosing schedule (28-day cycles). Volumetric magnetic resonance imaging and clinical outcome assessments (pain, quality of life, disfigurement, and function) were performed at least every four cycles. Children rated tumor pain intensity on a scale from 0 (no pain) to 10 (worst pain imaginable). RESULTS A total of 50 children (median age, 10.2 years; range, 3.5 to 17.4) were enrolled from August 2015 through August 2016. The most frequent neurofibroma-related symptoms were disfigurement (44 patients), motor dysfunction (33), and pain (26). A total of 35 patients (70%) had a confirmed partial response as of March 29, 2019, and 28 of these patients had a durable response (lasting ≥1 year). After 1 year of treatment, the mean decrease in child-reported tumor pain-intensity scores was 2 points, considered a clinically meaningful improvement. In addition, clinically meaningful improvements were seen in child-reported and parent-reported interference of pain in daily functioning (38% and 50%, respectively) and overall health-related quality of life (48% and 58%, respectively) as well as in functional outcomes of strength (56% of patients) and range of motion (38% of patients). Five patients discontinued treatment because of toxic effects possibly related to selumetinib, and 6 patients had disease progression. The most frequent toxic effects were nausea, vomiting, or diarrhea; an asymptomatic increase in the creatine phosphokinase level; acneiform rash; and paronychia. CONCLUSIONS In this phase 2 trial, most children with neurofibromatosis type 1 and inoperable plexiform neurofibromas had durable tumor shrinkage and clinical benefit from selumetinib. (Funded by the Intramural Research Program of the National Institutes of Health and others; ClinicalTrials.gov number, NCT01362803.).
Collapse
Affiliation(s)
- Andrea M Gross
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Pamela L Wolters
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Eva Dombi
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Andrea Baldwin
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Patricia Whitcomb
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Michael J Fisher
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Brian Weiss
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - AeRang Kim
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Miriam Bornhorst
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Amish C Shah
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Staci Martin
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Marie C Roderick
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Dominique C Pichard
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Amanda Carbonell
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Scott M Paul
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Janet Therrien
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Oxana Kapustina
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Kara Heisey
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - D Wade Clapp
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Chi Zhang
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Cody J Peer
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - William D Figg
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Malcolm Smith
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - John Glod
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Jaishri O Blakeley
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Seth M Steinberg
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - David J Venzon
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - L Austin Doyle
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| | - Brigitte C Widemann
- From the Pediatric Oncology Branch (A.M.G., P.L.W., E.D., P.W., S.M., M.C.R., D.C.P., A.C., J.T., O.K., J.G., B.C.W.) and the Clinical Pharmacology Program (C.J.P., W.D.F.), Center for Cancer Research, National Cancer Institute, and the Rehabilitation Medicine Department, Clinical Center (S.M.P), National Institutes of Health, Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick (A.B., K.H.), the Cancer Therapy Evaluation Program (M.S., L.A.D.) and the Biostatistics and Data Management Section, Center for Cancer Research (S.M.S., D.J.V.), National Cancer Institute, National Institutes of Health, Shady Grove, and Johns Hopkins University School of Medicine, Baltimore (J.O.B.) - all in Maryland; Children's Hospital of Philadelphia, Philadelphia (M.J.F., A.C.S.); Cincinnati Children's Hospital, Cincinnati (B.W.); Children's National Hospital, Washington, DC (A.K., M.B.); and Indiana University School of Medicine, Indianapolis (D.W.C., C.Z.)
| |
Collapse
|
44
|
Bergqvist C, Servy A, Valeyrie-Allanore L, Ferkal S, Combemale P, Wolkenstein P. Neurofibromatosis 1 French national guidelines based on an extensive literature review since 1966. Orphanet J Rare Dis 2020; 15:37. [PMID: 32014052 PMCID: PMC6998847 DOI: 10.1186/s13023-020-1310-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromatosis type 1 is a relatively common genetic disease, with a prevalence ranging between 1/3000 and 1/6000 people worldwide. The disease affects multiple systems with cutaneous, neurologic, and orthopedic as major manifestations which lead to significant morbidity or mortality. Indeed, NF1 patients are at an increased risk of malignancy and have a life expectancy about 10-15 years shorter than the general population. The mainstay of management of NF1 is a patient-centered longitudinal care with age-specific monitoring of clinical manifestations, aiming at the early recognition and symptomatic treatment of complications as they occur. Protocole national de diagnostic et de soins (PNDS) are mandatory French clinical practice guidelines for rare diseases required by the French national plan for rare diseases. Their purpose is to provide health care professionals with guidance regarding the optimal diagnostic and therapeutic management of patients affected with a rare disease; and thus, harmonizing their management nationwide. PNDS are usually developed through a critical literature review and a multidisciplinary expert consensus. The purpose of this article is to present the French guidelines on NF1, making them even more available to the international medical community. We further dwelled on the emerging new evidence that might have therapeutic potential or a strong impact on NF1 management in the coming feature. Given the complexity of the disease, the management of children and adults with NF1 entails the full complement healthcare providers and communication among the various specialties.
Collapse
Affiliation(s)
- Christina Bergqvist
- Faculty of medicine, Université Paris-Est Creteil (UPEC), F-94010 Créteil Cedex, France
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
| | - Amandine Servy
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
| | - Laurence Valeyrie-Allanore
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| | - Salah Ferkal
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| | - Patrick Combemale
- Rhône-Alpes Auvergne Competence Center for the treatment of Neurofibromatosis type 1, Léon Bérard Comprehensive Cancer Center, Hôpitaux Universitaires de Lyon, Université de Lyon, F-69008 Lyon, France
| | - Pierre Wolkenstein
- Faculty of medicine, Université Paris-Est Creteil (UPEC), F-94010 Créteil Cedex, France
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| |
Collapse
|
45
|
Gross AM, Singh G, Akshintala S, Baldwin A, Dombi E, Ukwuani S, Goodwin A, Liewehr DJ, Steinberg SM, Widemann BC. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro Oncol 2019; 20:1643-1651. [PMID: 29718344 DOI: 10.1093/neuonc/noy067] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Plexiform neurofibromas (PN) in neurofibromatosis 1 (NF1) can cause substantial morbidities. Clinical trials targeting PN have recently described decreases in PN volumes. However, no previous study has assessed the association between changes in PN volumes and PN-related morbidities. Our objective was to assess if increasing PN volume in NF1 is associated with increasing PN-related morbidity. Methods This is a retrospective review of patients enrolled on the NCI NF1 natural history study with ≥7 years of data available. Morbidities including pain, motor dysfunction, vision loss, and PN-related surgery were assessed at time of baseline PN MRI with volumetric analysis and time of MRI with maximum PN volume. Results Forty-one patients (median age at baseline 8 y) with 57 PN were included. At baseline, 40 PN had at least 1 PN-associated morbidity. During the observation period, 27 PN required increasing pain medication, and these PN grew faster per year (median difference 8.3%; 95% CI: 2.4, 13.8%) than those PN which did not. PN resulting in motor impairment at baseline (n = 11) had larger volumes compared with those that did not (median difference 461 mL; 95% CI: 66.9, 820). Conclusions Many NF1 PN were associated with clinically significant morbidity at baseline, highlighting the need for longitudinal morbidity evaluations starting at an early age to capture changes in PN-associated morbidities. Prospective evaluation of standardized patient reported and functional outcomes in clinical trials are ongoing and may allow further characterization of the association of PN volume increase or decrease and clinical changes.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Gurbani Singh
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Andrea Baldwin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Somto Ukwuani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Anne Goodwin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - David J Liewehr
- Center for Cancer Research, National Cancer Institute (NCI) of the National Institutes of Health, Bethesda, Maryland
| | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute (NCI) of the National Institutes of Health, Bethesda, Maryland
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
46
|
Burks CA, Rhodes SD, Bessler WK, Chen S, Smith A, Gehlhausen JR, Hawley ET, Jiang L, Li X, Yuan J, Lu Q, Jacobsen M, Sandusky GE, Jones DR, Clapp DW, Blakeley JO. Ketotifen Modulates Mast Cell Chemotaxis to Kit-Ligand, but Does Not Impact Mast Cell Numbers, Degranulation, or Tumor Behavior in Neurofibromas of Nf1-Deficient Mice. Mol Cancer Ther 2019; 18:2321-2330. [PMID: 31527226 DOI: 10.1158/1535-7163.mct-19-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes in humans. Mutant NF1 results in dysregulated RAS allowing neoplasms throughout the neuroaxis. Plexiform neurofibromas (pNF) afflict up to 50% of patients with NF1. They are complex tumors of the peripheral nerve that cause major morbidity via nerve dysregulation and mortality via conversion to malignant sarcoma. Genetically engineered mouse models (GEMM) of NF1 provide valuable insights for the identification of therapies that have utility in people with pNF. Preclinical studies in GEMMs implicate mast cells and the c-Kit/Kit ligand pathway in pNF tumorigenesis. Kit ligand is a potent chemokine secreted by tumorigenic, Nf1-deficient Schwann cells. Ketotifen is an FDA-approved drug for the treatment of allergic conjunctivitis and asthma that promotes mast cell stabilization and has been used in prior case studies to treat or prevent pNFs. This study investigated the effect of ketotifen on mast cell infiltration and degranulation in the presence and absence of Kit ligand provocation and the effect of ketotifen on shrinking or preventing pNF formation in the Nf1flox/flox ;PostnCre + GEMM. Ketotifen decreased mast cell infiltration in response to exogenous Kit ligand administration, but did not affect mast cell degranulation. Importantly, ketotifen did not reduce mast cells numbers or activity in pNF and did not prevent pNF formation or decrease the volume of established pNF despite administration of pharmacologically active doses. These findings suggest that ketotifen has limited use as monotherapy to prevent or reduce pNF burden in the setting of Nf1 mutations.
Collapse
Affiliation(s)
- Ciersten A Burks
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Steven D Rhodes
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Abbi Smith
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | | | - Eric T Hawley
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Li Jiang
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Xiaohong Li
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Jin Yuan
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Qingbo Lu
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
48
|
Jia J, Zhang H, Zhang H, Du H, Liu W, Shu M. Activated androgen receptor accelerates angiogenesis in cutaneous neurofibroma by regulating VEGFA transcription. Int J Oncol 2019; 55:157-166. [PMID: 31059067 DOI: 10.3892/ijo.2019.4797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/16/2019] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence has demonstrated the significant progression of cutaneous neurofibroma (cNF) without necrosis during puberty. However, the molecular events involved in this process remain unclear. The alteration of the steroid hormone levels during puberty has led to the investigation of the expression levels of the androgen receptor (AR). A positive correlation between AR expression and microvessel density has been reported in human cNF tissues in combination with enhanced endothelial cell tube formation in vitro. In addition, activated AR signaling can promote neurofibroma cell growth in vivo and in vitro and tube formation in vitro. In the present study, AR was shown to bind directly to the promoter of vascular endothelial growth factor A (VEGFA), a key factor involved in angiogenesis, and to sequentially induce its expression. Furthermore, the AR inhibitor, MDV3100, downregulated VEGFA expression and abolished endothelial cell recruitment and tube formation. Taken collectively, the findings of this study revealed that AR signaling enhanced tumor growth and angiogenesis in cNF by regulating VEGFA transcription. However, whether AR can be regarded a therapeutic target for cNF requires further investigation.
Collapse
Affiliation(s)
- Jing Jia
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haibao Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongke Zhang
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huicong Du
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenbo Liu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Maoguo Shu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
Abd-El-Barr MM, Huang KT, Moses ZB, Iorgulescu JB, Chi JH. Recent advances in intradural spinal tumors. Neuro Oncol 2019; 20:729-742. [PMID: 29216380 DOI: 10.1093/neuonc/nox230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intradural spinal tumors are rare tumors of the central nervous system. Due to the eloquence of the spinal cord and its tracts, the compact architecture of the cord and nerves, and the infiltrative nature of some of these tumors, surgical resection is difficult to achieve without causing neurological deficits. Likewise, chemotherapy and radiotherapy are utilized more cautiously in the treatment of intradural spinal tumors than their cranial counterparts. Targeted therapies aimed at the genetic alterations and molecular biology tailored to these tumors would be helpful but are lacking.Here, we review the major types of intradural spinal tumors, with an emphasis on genetic alterations, molecular biology, and experimental therapies for these difficult to treat neoplasms.
Collapse
Affiliation(s)
- Muhammad M Abd-El-Barr
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin T Huang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ziev B Moses
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Goutagny S, Kalamarides M. Medical treatment in neurofibromatosis type 2. Review of the literature and presentation of clinical reports. Neurochirurgie 2018; 64:370-374. [DOI: 10.1016/j.neuchi.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
|