1
|
Pool KD, Hemmat GJ, Dorschner RA. ECRG4 mediates host response to cutaneous infection by regulating neutrophil recruitment and adhesion receptor expression. PLoS One 2024; 19:e0310810. [PMID: 39509414 PMCID: PMC11542879 DOI: 10.1371/journal.pone.0310810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024] Open
Abstract
Rapid neutrophil recruitment is critical for controlling infection, with dysfunctional neutrophil responses in diseases like diabetes associated with greater morbidity and mortality. We have shown that the leukocyte protein ECRG4 enhances early neutrophil recruitment to cutaneous wounds and hypothesized that ECRG4 regulates the early host response to infection. Using a cutaneous infection model, we found that ECRG4 KO mice had decreased early neutrophil recruitment with persistent larger lesions, increased bacterial proliferation and systemic dissemination. Although previous work identified ECRG4 as a negative regulator of CD44 on neutrophils, the mechanism regulating neutrophil recruitment remained unknown. We demonstrated that pro-inflammatory responses were intact in ECRG4 KO mice, but found decreased neutrophil mobilization from bone marrow and decreased migration to chemokines. ECRG4 KO mouse neutrophils demonstrated an increase in adhesion molecules that regulate recruitment, including enhanced induction of integrin CD11b and increased L-selectin and CD44 on bone marrow neutrophils. Analysis of gene expression in leukocytes from diabetic patients found decreased ECRG4 expression with similar increased L-selectin and CD44. We propose a previously unrecognized mechanism governing neutrophil recruitment, whereby ECRG4 mediates neutrophil surface adhesion molecules that determine both recruitment and outside-in signaling that modulates neutrophil response to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Katie D. Pool
- Department of Dermatology, University of California San Diego, San Diego, CA, United States of America
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California San Diego, San Diego, CA, United States of America
| | - Gracie J. Hemmat
- Department of Dermatology, University of California San Diego, San Diego, CA, United States of America
| | - Robert A. Dorschner
- Department of Dermatology, University of California San Diego, San Diego, CA, United States of America
| |
Collapse
|
2
|
Liu Y, Hou J, Zhao Y, Zhou J, Bai S, Ding Y. Comprehensive pan-cancer analysis of the C2ORF40 expression: Infiltration associations and prognostic implications. FASEB J 2024; 38:e23761. [PMID: 38941213 DOI: 10.1096/fj.202302386rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
In recent years, C2ORF40 has been identified as a tumor suppressor gene with multiple functions, including roles in cell proliferation, migration, and senescence. To explore the role of the C2ORF40 gene in different tumors, we used multiple databases for analysis. Compared to adjacent normal tissues, C2ORF40 is downregulated in a variety of malignant tumors, including tumors such as breast cancer, colorectal cancer, bladder cancer, hepatocellular carcinoma and prostate cancer. Notably, low expression of the gene is significantly associated with poor overall survival and relapse-free survival rates. In specific cancers including colon cancer and prostate cancer, the expression of C2ORF40 is correlated with the infiltration of CAFs. C2ORF40 is also involved in biological processes such as cell apoptosis and regulation of protein stability. In conclusion, C2ORF40 can hold promise as a prognostic marker for pan-cancer analysis.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | | | - Yunrong Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Jiangshan Zhou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shuhua Bai
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Yi Ding
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Richter M, Lalli E, Ruggiero C. Complex and pleiotropic signaling pathways regulated by the secreted protein augurin. Cell Commun Signal 2023; 21:69. [PMID: 37041625 PMCID: PMC10088197 DOI: 10.1186/s12964-023-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
The secreted protein augurin, the product of the tumor suppressor gene Ecrg4, has been identified as a peptide hormone in the human proteome in 2007. Since then, a number of studies have been carried out to highlight its structure and processing and its potential roles in physiopathology. Although augurin has been shown to be implicated in a variety of processes, ranging from tumorigenesis, inflammation and infection to neural stem cell proliferation, hypothalamo-pituitary adrenal axis regulation and osteoblast differentiation, the molecular mechanisms of its biological effects and the signaling pathways it regulates are still poorly characterized. Here we provide a comprehensive overview of augurin-dependent signal transduction pathways. Because of their secreted nature and the potential to be manipulated pharmacologically, augurin and its derived peptides represent attractive targets for diagnostic development and discovery of new therapeutic agents for the human diseases resulting from the deregulation of the signaling cascades they modulate. From this perspective, the characterization of the precise nature of augurin derived peptides and the identification of the receptor(s) on the cell surface conveying augurin signaling to downstream effectors are crucial to develop agonists and antagonists for this protein. Video abstract.
Collapse
Affiliation(s)
- Margaux Richter
- Institut de Pharmacologie Moleculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Universite Cote d'Azur, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moleculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Universite Cote d'Azur, Valbonne, France
- Inserm, Valbonne, France
| | - Carmen Ruggiero
- Institut de Pharmacologie Moleculaire et Cellulaire CNRS UMR 7275, Valbonne, France.
- Universite Cote d'Azur, Valbonne, France.
| |
Collapse
|
5
|
Yang Z, Ye X, Zhang Y, Huang Y, Chen J, Zeng Y, Chen J. ECRG4 acts as a tumor suppressor in nasopharyngeal carcinoma by suppressing the AKT/GSK3β/β-catenin signaling pathway. Cytotechnology 2022; 74:231-243. [PMID: 35464163 PMCID: PMC8976024 DOI: 10.1007/s10616-022-00520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is a malignant tumor with a poor prognosis. Studies have shown that esophageal carcinoma related gene 4 (ECRG4) is hypermethylated and significantly downregulated in NPC tissues. However, the role of ECRG4 in NPC, and in particular the underlying molecular mechanism, is largely unclear. In this study, using immunohistochemical staining of ECRG4 in NPC and normal specimens, we confirmed that ECRG4 was downregulated in human NPC tissues. In addition, various biological and molecular studies were carried out and the results showed that ECRG4 exerted anticancer effect in NPC, including inhibiting cell growth, migration, and invasion of NPC cells in vitro. Moreover, restoring ECRG4 expression suppressed the in vivo tumorigenesis of CNE2 cells. ECRG4 inhibited AKT/GSK3β/β-catenin signaling, as well as the downstream targets of β-catenin. LiCl treatment, which reduced GSK3β phosphorylation and upregulated β-catenin expression, restored the invasive ability of ECRG4-overexpressing NPC cells. Furthermore, we showed that the DNA methylation inhibitor 5-aza-dC reduced ECRG4 methylation and the invasive ability of negative control cells, but not that of ECRG4-overexpressing cells, suggesting that the inhibitory effect of 5-aza-dC depends on low expression of ECRG4. Collectively, our results demonstrated that ECRG4 downregulation contributed to NPC growth and invasion by activating AKT/GSK3β/β-catenin signaling pathway. ECRG4 could be a promising therapeutic target for the treatment of NPC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-022-00520-8.
Collapse
Affiliation(s)
- Zhengyuan Yang
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Xiajun Ye
- Department of Medical Affairs, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, No. 241 Daxue Road, Shantou, 515031 People’s Republic of China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 People’s Republic of China
| | - Jian Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| | - Jiongyu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| |
Collapse
|
6
|
Is Autophagy Always a Barrier to Cisplatin Therapy? Biomolecules 2022; 12:biom12030463. [PMID: 35327655 PMCID: PMC8946631 DOI: 10.3390/biom12030463] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023] Open
Abstract
Cisplatin has long been a first-line chemotherapeutic agent in the treatment of cancer, largely for solid tumors. During the course of the past two decades, autophagy has been identified in response to cancer treatments and almost uniformly detected in studies involving cisplatin. There has been increasing recognition of autophagy as a critical factor affecting tumor cell death and tumor chemoresistance. In this review and commentary, we introduce four mechanisms of resistance to cisplatin followed by a discussion of the factors that affect the role of autophagy in cisplatin-sensitive and resistant cells and explore the two-sided outcomes that occur when autophagy inhibitors are combined with cisplatin. Our goal is to analyze the potential for the combinatorial use of cisplatin and autophagy inhibitors in the clinic.
Collapse
|
7
|
Alexandre YO, Schienstock D, Lee HJ, Gandolfo LC, Williams CG, Devi S, Pal B, Groom JR, Cao W, Christo SN, Gordon CL, Starkey G, D'Costa R, Mackay LK, Haque A, Ludewig B, Belz GT, Mueller SN. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Sci Immunol 2022; 7:eabj0641. [PMID: 34995096 DOI: 10.1126/sciimmunol.abj0641] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, VIC, Australia.,Department of Surgery, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia.,Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Glioblastoma-initiating cell heterogeneity generated by the cell-of-origin, genetic/epigenetic mutation and microenvironment. Semin Cancer Biol 2021; 82:176-183. [PMID: 33453403 DOI: 10.1016/j.semcancer.2020.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) and other malignant tumours consist of heterogeneous cancer cells, including GBM-initiating cells (GICs). This heterogeneity is likely to arise from the following: different sets of genetic mutations and epigenetic modifications, which GICs gain in the transformation process; differences in cells of origin, such as stem cells, precursor cells or differentiated cells; and the cancer microenvironment, in which GICs communicate with neural cells, endothelial cells and immune cells. Furthermore, considering that various types of GICs can be generated at different time points of the transformation process, GBM very likely consists of heterogeneous GICs and their progeny. Because cancer cell heterogeneity is responsible for therapy resistance, it is crucial to develop methods of reducing such heterogeneity. Here, I summarize how GIC heterogeneity is generated in the transformation process and present how cell heterogeneity in cancer can be addressed based on recent findings.
Collapse
|
9
|
IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci Rep 2020; 10:16506. [PMID: 33020569 PMCID: PMC7536433 DOI: 10.1038/s41598-020-73574-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022] Open
Abstract
Like pro-inflammatory cytokines, the role of anti-inflammatory cytokines in both learning and memory has been investigated, revealing beneficial effects for both interleukin-4 and interleukin-13 via the common interleukin-4 receptor alpha chain complex. In this study, using the Morris water maze spatial task for cognition, we compared interleukin-4 receptor alpha- deficient mice and their ligands interleukin-4/ interleukin-13 double deficient mice, on a Balb/c background. We demonstrate that while interleukin-4/ interleukin-13 double deficient mice are significantly impaired in both learning and reference memory, interleukin-4 receptor alpha-deficiency impairs only reference memory, compared to the wild-type control mice. In order to better understand how interleukin-4 receptor alpha- deficient mice are able to learn but not remember, we investigated the BDNF/TrkB- and the ARC-signaling pathways. We show that interleukin-4 receptor alpha-deficiency disrupts activation of BDNF/TrkB- and ARC-signaling pathways during reference memory, while the pathway for spatial learning is spared.
Collapse
|
10
|
Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P, Hindré F, Garcion E. Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Front Pharmacol 2020; 11:368. [PMID: 32322199 PMCID: PMC7158850 DOI: 10.3389/fphar.2020.00368] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is the most common and devastating form of brain cancer. Despite conventional treatments, progression or recurrences are systematic. In recent years, immunotherapies have emerged as an effective treatment in a number of cancers, leaving the question of their usefulness also faced with the particular case of brain tumors. The challenge here is major not only because the brain is the seat of our consciousness but also because of its isolation by the blood-brain barrier and the presence of a unique microenvironment that constitutes the central nervous system (CNS) with very specific constituent or patrolling cells. Much of the microenvironment is made up of immune cells or inflammation. Among these, tumor-associated macrophages (TAMs) are of significant interest as they are often involved in facilitating tumor progression as well as the development of resistance to standard therapies. In this review, the ubiquity of TAMs in GB will be discussed while the specific case of microglia resident in the brain will be also emphasized. In addition, the roles of TAMs as accomplices in the progression of GB and resistance to treatment will be presented. Finally, clinical trials targeting TAMs as a means of treating cancer will be discussed.
Collapse
Affiliation(s)
- Hélène Grégoire
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Loris Roncali
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Audrey Rousseau
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Michel Chérel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - François Hindré
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PRIMEX, Plateforme de radiobiologie et d'imagerie expérimentale, SFR ICAT, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PACeM, Plateforme d'analyses cellulaires et moléculaires, SFR ICAT, Université d'Angers, Angers, France
| |
Collapse
|
11
|
Dorschner RA, Lee J, Cohen O, Costantini T, Baird A, Eliceiri BP. ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury. SCIENCE ADVANCES 2020; 6:eaay0518. [PMID: 32195341 PMCID: PMC7065879 DOI: 10.1126/sciadv.aay0518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
The complex molecular microenvironment of the wound bed regulates the duration and degree of inflammation in the wound repair process, while its dysregulation leads to impaired healing. Understanding factors controlling this response provides therapeutic targets for inflammatory disease. Esophageal cancer-related gene 4 (ECRG4) is a candidate chemokine that is highly expressed on leukocytes. We used ECRG4 knockout (KO) mice to establish that the absence of ECRG4 leads to defective neutrophil recruitment with a delay in wound healing. An in vitro human promyelocyte model identified an ECRG4-mediated suppression of the hyaluronic acid receptor, CD44, a key receptor mediating inflammation resolution. In ECRG4 KO mouse leukocytes, there was an increase in CD44 expression, consistent with a model in which ECRG4 negatively regulates CD44 levels. Therefore, we propose a previously unidentified mechanism in which ECRG4 regulates early neutrophil recruitment and subsequent CD44-mediated resolution of inflammation.
Collapse
Affiliation(s)
- Robert A. Dorschner
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - Jisook Lee
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Olga Cohen
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Todd Costantini
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Andrew Baird
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Brian P. Eliceiri
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
12
|
Dang X, Coimbra R, Mao L, Podvin S, Li X, Yu H, Costantini TW, Zeng X, Larocca D, Eliceiri BP, Baird A. Open reading frame mining identifies a TLR4 binding domain in the primary sequence of ECRG4. Cell Mol Life Sci 2019; 76:5027-5039. [PMID: 31190084 PMCID: PMC11105628 DOI: 10.1007/s00018-019-03159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
Abstract
The embedding of small peptide ligands within large inactive pre-pro-precursor proteins encoded by orphan open reading frames (ORFs) makes them difficult to identify and study. To address this problem, we generated oligonucleotide (< 100-400 base pair) combinatorial libraries from either the epidermal growth factor (EGF) ORF that encodes the > 1200 amino acid EGF precursor protein or the orphan ECRG4 ORF, that encodes a 148 amino acid Esophageal Cancer Related Gene 4 (ECRG4), a putative cytokine precursor protein of up to eight ligands. After phage display and 3-4 rounds of biopanning for phage internalization into prostate cancer epithelial cells, sequencing identified the 53-amino acid EGF ligand encoded by the 5' region of the EGF ORF and three distinct domains within the primary sequence of ECRG4: its membrane targeting hydrophobic signal peptide, an unanticipated amino terminus domain at ECRG437-63 and a C-terminus ECRG4133-148 domain. Using HEK-blue cells transfected with the innate immunity receptor complex, we show that both ECRG437-63 and ECRG4133-148 enter cells by interaction with the TLR4 immune complex but neither stimulate NFkB. Taken together, the results help establish that phage display can be used to identify cryptic domains within ORFs of the human secretome and identify a novel TLR4-targeted internalization domain in the amino terminus of ECRG4 that may contribute to its effects on cell migration, immune cell activation and tumor suppression.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Raul Coimbra
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Sonia Podvin
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xue Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Hua Yu
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Todd W Costantini
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xiaorong Zeng
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | | | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Surgery, University of California San Diego, La Jolla, San Diego, CA, 98896, USA.
| |
Collapse
|
13
|
Potential functions of esophageal cancer-related gene-4 in the cardiovascular system. Front Med 2019; 13:639-645. [PMID: 31468282 DOI: 10.1007/s11684-019-0701-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer-related gene-4 (Ecrg4) is cloned from the normal epithelium of the esophagus. It is constitutively expressed in quiescent epithelial cells and downregulated during tumorigenesis, and Ecrg4 expression levels are inversely correlated with the malignant phenotype of tumor cells, validating that Ecrg4 is a real tumor suppressor gene. Unlike other tumor suppressor genes that usually encode membrane or intracellular proteins, Ecrg4 encodes a 148-amino acid pre-pro-peptide that is tethered on the cell surface in epithelial cells, specialized epithelial cells, and human leukocytes, where it can be processed tissue dependently into several small peptides upon cell activation. Ecrg4 is expressed in a wide variety of other cells/tissues, including cardiomyocytes and conduction system of the heart, the glomus cells of the carotid body, adrenal glands, choroid plexus, and leukocytes among others, where it exerts distinct functions, such as promoting/suppressing inflammation, inducing neuron senescence, stimulating the hypothalamus-pituitary-adrenal axis, maintaining the stemness of stem cells, participating in the rhythm and rate control of the heart, and possibly gauging the responsiveness of the cardiovascular system (CVS) to hypoxia, in addition to tumor suppression. Here, we briefly review the latest discoveries on Ecrg4 and its underlying molecular mechanisms as a tumor suppressor and focus on the emerging roles of Ecrg4 in the CVS.
Collapse
|
14
|
Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, He L, Peng Y. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene 2019; 38:7399-7415. [PMID: 31427735 DOI: 10.1038/s41388-019-0952-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have been shown to be involved in the progression and tumor microenvironment of glioblastoma multiforme (GBM). Our previous research has indicated that miR-340-5p has an antitumor effect in vitro. However, the role of miR-340-5p in GBM has not been fully elucidated. Here, we show that downregulation of miR-340-5p in GBM is correlated with tumor size, recurrence, and poor survival. Moreover, we found that miR-340-5p levels are correlated with the density of tumor-associated macrophages (TAMs) and M2-polarized TAMs in GBM. Biofunctional investigations revealed that downregulation of miR-340-5p promoted TAM recruitment and M2-TAMs polarization in vitro and in vivo. In addition, we found that upregulation of miR-340-5p inhibited tumor growth and was associated with good prognosis in vivo. Through gene expression profiles and bioinformatics analysis, we showed that miR-340-5p directly targets POSTN, which recruited TAMs through integrin αvβ3. Downregulation of miR-340-5p in GBM did not induce the differentiation of TAMs into polarized M2 cells but was able to promote the M2 polarization of TAMs through directly targeting LTBP-1. Furthermore, we found that M2-TAMs promoted tumorigenesis and were associated with a poor prognosis in vivo. In an in vitro study, we demonstrated that M2-TAMs inhibited miR-340-5p expression in GBM cells by upregulation of TGFβ-1, which increased HMGA-2 expression in GBM. A ChIP assay confirmed that HMGA-2 transcriptionally suppressed miR-340-5p expression. Patients with low-miR-340-5p expression, high CD163, high POSTN, high LIBP1 levels, and high HMGA-2 had a poor prognosis with shorter overall survival, confirming data from the TCGA database. These findings suggest that an miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of GBM and may represent a prognostic biomarker and therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Xiaoyu Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Yuanpei Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Xiongming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Jialing Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Lei He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| |
Collapse
|
15
|
Huang W, Zhou R, Mao L, Deng C, Dang X. Esophageal cancer related gene-4 inhibits the migration and proliferation of oral squamous cell carcinoma through BC200 lncRNA/MMP-9 and -13 signaling pathway. Cell Signal 2019; 62:109327. [PMID: 31152845 DOI: 10.1016/j.cellsig.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/22/2022]
Abstract
Esophageal cancer related gene-4 (ECRG4) inhibits the malignant phenotype of oral squamous cell carcinoma. However, the molecular mechanisms remain to be explored. Using the tongue carcinoma cell line, TCA8113 as a cell model, we showed that forced expression of ECRG4 down-regulated the expression of the BC200 long non-coding RNA (lncRNA) and matrix metalloproteinases (MMP-9 and MMP-13). Restoration of BC200 lncRNA rescued ECRG4-mediated down-regulation of MMP-9 and -13. Furthermore, over-expression of Ecrg4 inhibited cell proliferation and migration, which was abolished by forced expression of BC200 lncRNA in TCA8113 cells. Our results indicate that ECRG4 inhibits the malignant phenotype of TCA8113 cells most likely through suppression of BC200 lncRNA/MMPs signaling pathway, rationalizing that BC200 lncRNA may be a potential target for oral squamous cell carcinoma (OSCC) therapy.
Collapse
Affiliation(s)
- Wenjun Huang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai 6th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200237, China.
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
16
|
Nakatani Y, Kiyonari H, Kondo T. Ecrg4 deficiency extends the replicative capacity of neural stem cells in a Foxg1-dependent manner. Development 2019; 146:dev.168120. [PMID: 30745428 DOI: 10.1242/dev.168120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/28/2019] [Indexed: 02/03/2023]
Abstract
The self-renewal activity of neural stem cells (NSCs) has been suggested to decrease with aging, resulting in age-dependent declines in brain function, such as presbyopia and memory loss. The molecular mechanisms underlying decreases in NSC proliferation with age need to be elucidated in more detail to develop treatments that promote brain function. We have previously reported that the expression of esophageal cancer-related gene 4 (Ecrg4) was upregulated in aged NSCs, whereas its overexpression decreased NSC proliferation, suggesting a functional relationship between Ecrg4 and NSC aging. Using Ecrg4-deficient mice in which the Ecrg4 locus was replaced with the lacZ gene, we here show that Ecrg4 deficiency recovered the age-dependent decline in NSC proliferation and enhanced spatial learning and memory in the Morris water-maze paradigm. We demonstrate that the proliferation of Ecrg4-deficient NSCs was partly maintained by the increased expression of Foxg1. Collectively, these results determine Ecrg4 as a NSC aging factor.
Collapse
Affiliation(s)
- Yuka Nakatani
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, Center for Life Science Technology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
17
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
18
|
ECRG4: a new potential target in precision medicine. Front Med 2018; 13:540-546. [PMID: 30003403 DOI: 10.1007/s11684-018-0637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
Given the rapid development in precision medicine, tremendous efforts have been devoted to discovering new biomarkers for disease diagnosis and treatment. Esophageal cancer-related gene-4 (ECRG4), which is initially known as a new candidate tumor suppressor gene, is emerging as a sentinel molecule for gauging tissue homeostasis. ECRG4 is unique in its cytokine-like functional pattern and epigenetically-regulated gene expression pattern. The gene can be released from the cell membrane upon activation and detected in liquid biopsy, thus offering considerable potential in precision medicine. This review provides an updated summary on the biology of ECRG4, with emphasis on its important roles in cancer diagnosis and therapy. The future perspectives of ECRG4 as a potential molecular marker in precision medicine are also discussed in detail.
Collapse
|
19
|
Mao L, Li X, Gong S, Yuan H, Jiang Y, Huang W, Sun X, Dang X. Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis. Cancer Gene Ther 2018; 25:248-259. [PMID: 29983418 DOI: 10.1038/s41417-018-0032-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Esophageal cancer related gene-4 (Ecrg4) has been shown to be a tumor suppressor in many organs. Exosomes are naturally secreted nanosized particles that carry signal molecules including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) among others. Upon internalization, exosomes unload their cargos that in turn modulate the biology of the recipient cells. Mounting evidence has shown that exosomal miRNAs are functional. However, reports that exosomes carry functional mRNAs remain scarce. We found that serum exosomes contain ECRG4 open reading frame. To simulate serum exosomal ECRG4, stable cell line expressing ECRG4 was created, from which exosomes were isolated and characterized, and the internalization and the resulting biological effects of exosomal ECRG4 were evaluated. Results showed that serum exosomes contain higher levels of ECRG4 mRNA in healthy individuals than their cancer counterparts. Exosomal ECRG4 can be internalized and unload the encapsulated ECRG4 into recipient cells, which subsequently suppressed cell proliferation in vitro, and inhibited tumor growth in a xenograft mouse model. Mechanistically, ECRG4-containing exosomes, when internalized, suppressed the expression of genes commonly implicated in inflammation, cell proliferation, and angiogenesis. Given that exosome is an ideal vehicle for therapeutics delivery and that ECRG4 is a tumor suppressor gene, the exosomal ECRG4 can be exploited as a formulation for cancer gene therapy.
Collapse
Affiliation(s)
- Liang Mao
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xue Li
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shu Gong
- Department of Pathophysiology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haiyang Yuan
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Jiang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wenjun Huang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xingwang Sun
- Department of Pathology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
20
|
Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T, Shannon Weickert C. Overexpression of Neuregulin 1 Type III Confers Hippocampal mRNA Alterations and Schizophrenia-Like Behaviors in Mice. Schizophr Bull 2018; 44:865-875. [PMID: 28981869 PMCID: PMC6007747 DOI: 10.1093/schbul/sbx122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuregulin 1 (NRG1) is a schizophrenia candidate gene whose protein product is involved in neuronal migration, survival, and synaptic plasticity via production of specific isoforms. Importantly, NRG1 type III (NRG1 III) mRNA is increased in humans inheriting a schizophrenia risk haplotype for the NRG1 gene (HapICE), and NRG1 protein levels can be elevated in schizophrenia. The nature by which NRG1 type III overexpression results in schizophrenia-like behavior and brain pathology remains unclear, therefore we constructed a transgenic mouse with Nrg1 III overexpression in forebrain neurons (CamKII kinase+). Here, we demonstrate construct validity for this mouse model, as juvenile and adult Nrg1 III transgenic mice exhibit an overexpression of Nrg1 III mRNA and Nrg1 protein in multiple brain regions. Furthermore, Nrg1 III transgenic mice have face validity as they exhibit schizophrenia-relevant behavioral phenotypes including deficits in social preference, impaired fear-associated memory, and reduced prepulse inhibition. Additionally, microarray assay of hippocampal mRNA uncovered transcriptional alterations downstream of Nrg1 III overexpression, including changes in serotonin receptor 2C and angiotensin-converting enzyme. Transgenic mice did not exhibit other schizophrenia-relevant behaviors including hyperactivity, social withdrawal, or an increased vulnerability to the effects of MK-801 malate. Our results indicate that this novel Nrg1 III mouse is valid for modeling potential pathological mechanisms of some schizophrenia-like behaviors, for determining what other neurobiological changes may be downstream of elevated NRG1 III levels and for preclinically testing therapeutic strategies that may be specifically efficacious in patients with the NRG1 (HapICE) risk genotype.
Collapse
Affiliation(s)
- Juan C Olaya
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | - Duncan Sinclair
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Mari A Kondo
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Tim Karl
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia,To whom correspondence should be addressed; Neuroscience Research Australia, Barker Street, Randwick, NSW 2031, Australia; tel: +61-2-9399-1117, fax: +61-2-9399-1005, e-mail:
| |
Collapse
|
21
|
Li C, Zhang P, Jiang A, Mao JH, Wei G. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer. Oncotarget 2018; 8:41963-41974. [PMID: 28410214 PMCID: PMC5522041 DOI: 10.18632/oncotarget.16713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Anli Jiang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
22
|
Abstract
Esophageal cancer-related gene 4 (Ecrg4) encodes a hormone-like peptide that is believed to be involved in a variety of physiological phenomena, including tumour suppression. Recent progress in the study of Ecrg4 has shown that Ecrg4 is a proinflammatory factor and induces the expression of several cytokines and chemokines in macrophages/microglia. However, the detailed molecular mechanisms of Ecrg4 signalling, especially the Ecrg4 receptors, remain poorly understood. Here, using retrovirus-mediated expression cloning, we identified lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) as a membrane protein that binds amino acid residues 71–132 of Ecrg4 (Ecrg4(71–132)). Moreover, in addition to LOX-1, several scavenger receptors, such as Scarf1, Cd36 and Stabilin-1, facilitated the efficient internalisation of Ecrg4(71–132) into cells. A broad competitive inhibitor of scavenger receptors, polyinosinic acid, reduced both the binding of Ecrg4(71–132) and the activation of NF-κB in microglia. This activation was dependent on MyD88, an adaptor protein that recruits signalling proteins to Toll-like receptors (TLRs), with the consequent induction of various immune responses. These data suggest that multiple scavenger receptors recognise Ecrg4(71–132) and transduce its signals, together with TLRs, in microglia.
Collapse
|
23
|
Dang X, Zeng X, Coimbra R, Eliceiri BP, Baird A. Counter regulation of ECRG4 gene expression by hypermethylation-dependent inhibition and the Sp1 transcription factor-dependent stimulation of the c2orf40 promoter. Gene 2017; 636:103-111. [PMID: 28870864 DOI: 10.1016/j.gene.2017.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
The human cytokine precursor ECRG4 has been associated with multiple physiological, developmental and pathophysiological processes involving cell proliferation, cell migration, innate immunity, inflammation, cancer progression and metastases. Although down-regulation of ECRG4 gene expression has been largely attributed to hypermethylation of CpG islands in the 5'untranslated region of the ECRG4 promoter, the mechanisms that underlie the dynamics of its regulation have never been systematically described. Here we show that the ECRG4 gene is widely expressed in human tissues and report that its core promoter lies between the -780 to +420 base pairs relative to the ATG start codon of the ECRG4 open reading frame. This sequence, which contains several CpG islands, also includes multiple overlapping Sp1 consensus binding sequences and a putative binding site for NF-kB activation. 5'RACE of mRNA derived from human leukocytes shows that ECRG4 transcription initiates from the guanidine at -11 from the initiation ATG of the ECRG4 open reading frame. While there is no canonical TATA- or CAAT-boxes proximal to this translational initiation site, there is a distal TATA-sequence in the 5'UTR. This region was identified as the sequence targeted by hypermethylation because in vitro methylation of plasmids encoding the ECRG4 promoter abolish promoter activity and the treatment of Jurkat cells (which naturally express ECRG4) with the methylation inhibitor 5-AzaC, increases endogenous ECRG4 expression. Because ChIP assays show that Sp1 binds the ECRG4 promoter, that forced Sp1 expression trans-activates the ECRG4 promoter and Sp1 inhibition with mithramycin inhibits ECRG4 expression, we conclude that the dynamic positive and negative regulatory elements controlling ECRG4 expression include a counter regulation between promoter methylation and Sp1 activation.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Surgery, UC San Diego School of Medicine, University of California San Diego, CA 92139, USA; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiaorong Zeng
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Raul Coimbra
- Department of Surgery, UC San Diego School of Medicine, University of California San Diego, CA 92139, USA
| | - Brian P Eliceiri
- Department of Surgery, UC San Diego School of Medicine, University of California San Diego, CA 92139, USA
| | - Andrew Baird
- Department of Surgery, UC San Diego School of Medicine, University of California San Diego, CA 92139, USA.
| |
Collapse
|
24
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
25
|
Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain 2017; 140:1548-1560. [PMID: 28334886 DOI: 10.1093/brain/aww355] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common and most malignant primary adult human brain tumour. Diagnosis of glioblastoma carries a dismal prognosis. Treatment resistance and tumour recurrence are the result of both cancer cell proliferation and their interaction with the tumour microenvironment. A large proportion of the tumour microenvironment consists of an inflammatory infiltrate predominated by microglia and macrophages, which are thought to be subverted by glioblastoma cells for tumour growth. Thus, glioblastoma-associated microglia and macrophages are logical therapeutic targets. Their emerging roles in glioblastoma progression are reflected in the burgeoning research into therapeutics directed at their modification or elimination. Here, we review the biology of glioblastoma-associated microglia and macrophages, and model systems used to study these cells in vitro and in vivo. We discuss translation of results using these model systems and review recent advances in immunotherapies targeting microglia and macrophages in glioblastoma. Significant challenges remain but medications that affect glioblastoma-associated microglia and macrophages hold considerable promise to improve the prognosis for patients with this disease.
Collapse
Affiliation(s)
- Candice C Poon
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - John J P Kelly
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Moriguchi T, Kaneumi S, Takeda S, Enomoto K, Mishra SK, Miki T, Koshimizu U, Kitamura H, Kondo T. Ecrg4 contributes to the anti-glioma immunosurveillance through type-I interferon signaling. Oncoimmunology 2016; 5:e1242547. [PMID: 28123880 DOI: 10.1080/2162402x.2016.1242547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023] Open
Abstract
Esophageal cancer-related gene 4 (Ecrg4), a hormone-like peptide, is thought to be a tumor suppressor, however, little is known about the mechanism of how Ecrg4 suppresses tumorigenesis. Here, we show that the ecrg4 null glioma-initiating cell (GIC) line, which was generated from neural stem cells of ecrg4 knockout (KO) mice, effectively formed tumors in the brains of immunocompetent mice, whereas the transplanted ecrg4 wild type-GIC line GIC(+/+) was frequently eliminated. This was caused by host immune system including adaptive T cell responses, since depletion of CD4+, CD8+, or NK cells by specific antibodies in vivo recovered tumorigenicity of GIC(+/+). We demonstrate that Ecrg4 fragments, amino acid residues 71-132 and 133-148, which are produced by the proteolitic cleavage, induced the expression of pro-inflammatory cytokines in microglia in vitro. Moreover, blockades of type-I interferon (IFN) signaling in vivo, either depleting IFN-α/β receptor 1 or using stat1 KO mice, abrogated the Ecrg4-dependent antitumor activity. Together, our findings indicate a major antitumor function of Ecrg4 in enhancing host immunity via type-I IFN signaling, and suggest its potential as a clinical candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Tetsuo Moriguchi
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University , Sapporo, Hokkaido, Japan
| | - Shun Kaneumi
- Division of Functional immunology, Institute for Genetic Medicine, Hokkaido University , Sapporo, Hokkaido, Japan
| | | | | | - Shyam Kumar Mishra
- Department of Anti-aging and Genomics, Ehime University Proteo-Medicine Research Center , To-on, Ehime, Japan
| | - Tetsuro Miki
- Department of Anti-aging and Genomics, Ehime University Proteo-Medicine Research Center , To-on, Ehime, Japan
| | | | - Hidemitsu Kitamura
- Division of Functional immunology, Institute for Genetic Medicine, Hokkaido University , Sapporo, Hokkaido, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University , Sapporo, Hokkaido, Japan
| |
Collapse
|
27
|
Podvin S, Miller MC, Rossi R, Chukwueke J, Donahue JE, Johanson CE, Baird A, Stopa EG. The Orphan C2orf40 Gene is a Neuroimmune Factor in Alzheimer's Disease. JSM ALZHEIMER'S DISEASE AND RELATED DEMENTIA 2016; 3:1020. [PMID: 27990492 PMCID: PMC5157699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer's disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8-10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD.
Collapse
Affiliation(s)
- Sonia Podvin
- Department of Surgery, University of California San Diego School of Medicine, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - Miles C. Miller
- Department of Pathology, Rhode Island Hospital, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| | - Ryan Rossi
- Department of Pathology, Rhode Island Hospital, USA
| | | | | | - Conrad E. Johanson
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego School of Medicine, USA
| | - Edward G. Stopa
- Department of Pathology, Rhode Island Hospital, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| |
Collapse
|
28
|
You Y, Li H, Qin X, Ran Y, Wang F. Down-regulated ECRG4 expression in breast cancer and its correlation with tumor progression and poor prognosis--A short Report. Cell Oncol (Dordr) 2015; 39:89-95. [PMID: 26631111 DOI: 10.1007/s13402-015-0260-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, we identified the esophageal carcinoma related gene 4 (ECRG4) as a novel candidate tumor suppressor gene and a promising therapeutic target in nasopharyngeal carcinoma (NPC). In addition, we found that reduced ECRG4 expression in NPC was associated with promoter hypermethylation. The aim of the current study was to assess the expression status of the ECRG4 protein in breast cancer and to clarify its clinicopathological significance and potential prognostic implications. METHODS Western blotting was used to examine ECRG4 protein levels in 20 paired breast cancer tissues and adjacent noncancerous tissues. In addition, we performed ECRG4 immunohistochemistry on 113 clinicopathologically well-characterized breast cancer samples and assessed putative associations between its expression and overall patient survival rates. RESULTS We found that ECRG4 protein expression was significantly reduced in the breast cancer tissues compared to the noncancerous tissues. Clinicopathological analyses revealed that loss of ECRG4 protein expression, observed in 41.6 % (47/113) of the primary breast cancer tissues tested, was significantly correlated with lymph node metastasis (P = 0.026), advanced tumor stage (P = 0.042) and unfavorable overall survival (P = 0.004). Additional multivariate analyses revealed that ECRG4 protein expression may serve as an independent prognostic factor for the prediction of patient survival (P = 0.033). CONCLUSION Our data suggest that loss of ECRG4 protein expression may be involved in tumor progression and may serve as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yanjie You
- Pathological Examination and Research Center, Luohe Medical College, Luohe, 462002, China
- Department of Pharmacy, Luohe Medical College, Luohe, 462002, China
- Luohe Key Laboratory of Medical Bioengineering, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China
| | - Haijun Li
- Department of Radiation Oncology, The Second People's Hospital of Neijiang City, Neijiang, 641000, China
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yonggang Ran
- Department of Teaching and Training, Bethune Military Medical NCO Academy of PLA, Shijiazhuang, 050081, China
| | - Fei Wang
- Luohe Key Laboratory of Medical Bioengineering, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China.
- Bioengineering Laboratory, Luohe Medical College, Luohe, 462002, China.
| |
Collapse
|
29
|
Downregulated ECRG4 is associated with poor prognosis in renal cell cancer and is regulated by promoter DNA methylation. Tumour Biol 2015; 37:1121-9. [PMID: 26276361 DOI: 10.1007/s13277-015-3913-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer-related gene 4 (ECRG4) has been proposed as a putative tumor suppressor gene in several tumors. However, the role and regulation of ECRG4 in the pathogenesis of human renal cancer remain largely unknown. Our current study revealed that expression of ECRG4 is downregulated in renal cell lines and renal cancer tissues. ECRG4 expression was significantly associated with histological grade of tumors (p < 0.001), primary tumor stage (p = 0.017), and distant metastasis (p = 0.017). Low expression of ECRG4 was an independent prognostic indicator for survival of renal cancer patients. Silencing of ECRG4 expression in renal cell lines was associated with its promoter methylation. Moreover, ectopic expression of ECRG4 markedly inhibited cell proliferation and invasion in renal cancer cell lines. These results indicated that ECRG4 is frequently silenced by the methylation of promoter in renal cell cancers. ECRG4 may be a tumor suppressor in renal cancer and serve as a prognostic marker.
Collapse
|
30
|
Porzionato A, Rucinski M, Macchi V, Sarasin G, Malendowicz LK, De Caro R. ECRG4 expression in normal rat tissues: expression study and literature review. Eur J Histochem 2015; 59:2458. [PMID: 26150152 PMCID: PMC4503965 DOI: 10.4081/ejh.2015.2458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023] Open
Abstract
The Esophageal Cancer Related Gene 4 (ECRG4) is a highly conserved tumour suppressor gene encoding various peptides (augurin, CΔ16 augurin, ecilin, argilin, CΔ16 argilin) which can be processed and secreted. In the present work, we examined ECRG4 expression and location in a wide range of rat organs and reviewed the available literature. ECRG4 mRNA was identified in all examined tissues by quantitative PCR (qPCR). ECRG4 immunoreaction was mainly cytoplasmic, and was detected in heart and skeletal muscles, smooth muscle cells showing only weak reactions. In the digestive system, ECRG4 immunostaining was stronger in the esophageal epithelium, bases of gastric glands, hepatocytes and pancreatic acinar epithelium. In the lymphatic system, immunoreactive cells were detectable in the thymus cortex, lymph node medulla and splenic red pulp. In the central and peripheral nervous systems, different neuronal groups showed different reaction intensities. In the endocrine system, ECRG4 immunoreaction was detected in the hypothalamic paraventricular and supraoptic nuclei, hypophysis, thyroid and parathyroid glands, adrenal zona glomerularis and medulla and Leydig cells, as well as in follicular and luteal cells of the ovary. In the literature, ECRG4 has been reported to inhibit cell proliferation and increase apoptosis in various cell types. It is down-regulated, frequently due to hypermethylation, in esophageal, prostate, breast and colon cancers, together with glioma (oncosuppressor function), although it is up-regulated in papillary thyroid cancer (oncogenic role). ECRG4 expression is also higher in non-proliferating cells of the lymphatic system. In conclusion, our identification of ECRG4 in many structures suggests the involvement of ECRG4 in the tumorigenesis of other organs and also the need for further research. In addition, on the basis of the location of ECRG4 in neurons and endocrine cells and the fact that it can be secreted, its role as a neurotransmitter/neuromodulator and endocrine factor must be examined in depth in the future.
Collapse
|
31
|
Kao S, Shaterian A, Cauvi DM, Dang X, Chun HB, De Maio A, Costantini TW, Coimbra R, Eliceiri BP, Baird A. Pulmonary preconditioning, injury, and inflammation modulate expression of the candidate tumor suppressor gene ECRG4 in lung. Exp Lung Res 2014; 41:162-72. [PMID: 25513848 DOI: 10.3109/01902148.2014.983282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The human c2orf40 gene encodes a candidate tumor suppressor called Esophageal Cancer-Related Gene-4 (ECRG4) that is a cytokine-like epigenetically-regulated protein that is characteristically downregulated in cancer, injury, inflammation, and infection. Here, we asked whether ECRG4 gene expression is detectable in lung epithelial cells and if its expression changes with inflammation, infection, and/or protective preconditioning. MATERIALS AND METHODS We used immunoblotting, PCR, and quantitative PCR to measure ECRG4 and either inhalation anesthesia preconditioning, lipopolysaccharide injection, or laparotomy to modulate lung inflammation. RESULTS Immunoblotting establishes the presence of the full-length 14 kDa ECRG4 peptide in mouse lung. Immunohistochemistry localizes ECRG4 to type l alveolar epithelial cells. Basal ECRG4 mRNA is greater than TNF-α, IL-1β, and IL-6 but following inflammatory lung injury, TNF-α, IL-1β, IL-6, and IL-10 are upregulated while ECRG4 gene expression is decreased. Similar findings are observed after an intravenous administration of lipopolysaccharide. In contrast, lung preconditioning with isoflurane anesthesia increases lung ECRG4 gene expression. Over-expression of ECRG4 in human lung epithelial cells in vitro decreases cell proliferation implying that a loss of ECRG4 in vivo would be permissive to cell growth. CONCLUSIONS This study supports the hypothesis that ECRG4 acts as a sentinel growth inhibitor in lung alveolar epithelial cells. Its downregulation by injury, infection, and inflammation and upregulation by preconditioning supports a role for ECRG4 in regulating the alveolar epithelium response to injury and inflammation. By extension, the findings support a functional consequence to its inhibition by promoter hypermethylation (i.e. lung cancer) and suggest potential benefits to its upregulation.
Collapse
Affiliation(s)
- Steven Kao
- Department of Surgery Division of Trauma, Surgical Critical Care, Burn and Acute Care Surgery, School of Medicine, University of California in San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Podvin S, Dang X, Meads M, Kurabi A, Costantini T, Eliceiri BP, Baird A, Coimbra R. Esophageal cancer-related gene-4 (ECRG4) interactions with the innate immunity receptor complex. Inflamm Res 2014; 64:107-18. [PMID: 25511108 DOI: 10.1007/s00011-014-0789-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE AND DESIGN The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex. METHODS Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, and co-immunoprecipitation. Phage display was used for ligand targeting to cells that overexpress the TLR4-MD2-CD14. RESULTS Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4-MD2-CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14(+) and CD16(+) leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4(133-148)) appears to be processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence internalizes into cells through the TLR4/CD14/MD2 complex, but modulates inflammation through non-canonical, NFκB signal transduction. CONCLUSIONS ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action.
Collapse
Affiliation(s)
- Sonia Podvin
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Baird A, Lee J, Podvin S, Kurabi A, Dang X, Coimbra R, Costantini T, Bansal V, Eliceiri BP. Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy. ACTA ACUST UNITED AC 2014; 2014:131-142. [PMID: 25580077 PMCID: PMC4287990 DOI: 10.2147/gictt.s49085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, esophageal cancer-related gene 4 (ECRG4) is encoded by four exons in the c2orf40 locus of chromosome 2. Translation of ECRG4 messenger ribonucleic acid produces a 148 amino acid-secreted 17 KDa protein that is then processed to 14, ten, eight, six, four, and two KDa peptides, depending on the cell in which the gene is expressed. As hypermethylation at the c2orf40 locus inhibits ECRG4 gene expression in many epithelial cancers, several investigators have speculated that ECRG4 is a candidate tumor suppressor. Indeed, overexpression of ECRG4 inhibits cell proliferation in vitro, but it also has a wide range of effects in vivo beyond its antitumor activity. ECRG4 overexpression affects apoptosis, senescence, cell migration, inflammation, injury, and infection responsiveness. ECRG4 activities also depend on its cellular localization, secretion, and post-translational processing. These cytokine/chemokine-like characteristics argue that ECRG4 is not a traditional candidate tumor suppressor gene, as originally predicted by its downregulation in cancer. We review how insights into the regulation of ECRG4 gene expression, knowledge of its primary structure, and the study of its emerging physiological functions come together to support a much more complex role for ECRG4 at the interface of inflammation, infection, and malignancy.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Jisook Lee
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Sonia Podvin
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Arwa Kurabi
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Xitong Dang
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Raul Coimbra
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Todd Costantini
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Vishal Bansal
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Brian P Eliceiri
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| |
Collapse
|