1
|
Cero C, House JS, Verdi V, Ferguson JL, Jima DD, Selmek AA, Patania OM, Dwyer JE, Wei BR, Lloyd DT, Shive HR. Profiling the cancer-prone microenvironment in a zebrafish model for MPNST. Oncogene 2025; 44:179-191. [PMID: 39511408 PMCID: PMC11725499 DOI: 10.1038/s41388-024-03210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Microenvironmental contributions to soft tissue sarcoma progression are relatively undefined, particularly during sarcoma onset. Use of animal models to reveal these contributions is impeded by difficulties in discriminating between microenvironmental, precancerous, and cancer cells, and challenges in defining a precancerous microenvironment. We developed a zebrafish model that allows segregation of microenvironmental, precancerous, and cancerous cell populations by fluorescence-activated cell sorting. This model has high predilection for malignant peripheral nerve sheath tumor (MPNST), a type of soft tissue sarcoma that exhibits rapid, aggressive growth. Using RNA-seq, we profiled the transcriptomes of microenvironmental, precancerous, and cancer cells from our zebrafish MPNST model. We show broad activation of inflammation/immune-associated signaling networks, describe gene expression patterns that uniquely characterize the transition from precancerous to cancer ME, and identify macrophages as potential contributors to microenvironmental phenotypes. We identify conserved gene expression changes and candidate genes of interest by comparative genomics analysis of MPNST versus benign lesions in both humans and zebrafish. Finally, we functionally validate a candidate extracellular matrix protein, periostin (POSTN), in human MPNST. This work provides insight into how the microenvironment may regulate MPNST initiation and progression.
Collapse
Affiliation(s)
- Cheryl Cero
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Cancer Biology, Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Vincenzo Verdi
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jordan L Ferguson
- State Laboratory of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Dereje D Jima
- Center of Human Health and the Environment and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon T Lloyd
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Heather R Shive
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Xiao K, Yang K, Hirbe AC. A Sequencing Overview of Malignant Peripheral Nerve Sheath Tumors: Findings and Implications for Treatment. Cancers (Basel) 2025; 17:180. [PMID: 39857962 PMCID: PMC11763529 DOI: 10.3390/cancers17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare but aggressive malignancies with a low 5-year survival rate despite current treatments. MPNSTs frequently harbor mutations in key genes such as NF1, CDKN2A, TP53, and PRC2 components (EED or SUZ12) across different disease stages. With the rapid advancement of high-throughput sequencing technologies, the molecular characteristics driving MPNST development are becoming clearer. This review summarizes recent sequencing studies on peripheral nerve sheath tumors, including plexiform neurofibromas (PNs), atypical neurofibromatous neoplasm with uncertain biologic potential (ANNUBP), and MPNSTs, highlighting key mutation events in tumor progression from the perspectives of epigenetics, transcriptomics, genomics, proteomics, and metabolomics. We also discuss the therapeutic implications of these genomic findings, focusing on preclinical and clinical trials targeting these alterations. Finally, we conclude that overcoming tumor resistance through combined targeted therapies and personalized treatments based on the molecular characteristics of MPNSTs will be a key direction for future treatment strategies.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.X.); (K.Y.)
| |
Collapse
|
3
|
Lingo JJ, Voigt E, Quelle DE. Linking FOXM1 and PD-L1 to CDK4/6-MEK targeted therapy resistance in malignant peripheral nerve sheath tumors. Oncotarget 2024; 15:638-643. [PMID: 39347707 PMCID: PMC11441412 DOI: 10.18632/oncotarget.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the NF1 tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with de novo MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.
Collapse
Affiliation(s)
- Joshua J. Lingo
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Seres R, Hameed H, McCabe MG, Russell D, Lee ATJ. The Multimodality Management of Malignant Peripheral Nerve Sheath Tumours. Cancers (Basel) 2024; 16:3266. [PMID: 39409887 PMCID: PMC11475700 DOI: 10.3390/cancers16193266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that have nerve sheath differentiation and can present at any anatomical site. They can arise from precursor neurofibroma in the context of neurofibromatosis type 1 (NF1) or as de novo and sporadic tumours in the absence of an underlying genetic predisposition. The primary therapeutic approach is most often radical surgery, with non-surgical modalities playing an important role, especially in locally advanced or metastatic cases. The aim of multimodality approaches is to optimize both local and systemic control while keeping to a minimum acute and late treatment morbidity. Advances in the understanding of the underlying biology of MPNSTs in both sporadic and NF-1-related contexts are essential for the management and implementation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Remus Seres
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Hassan Hameed
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Martin G. McCabe
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - David Russell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, Lancashire Teaching Hospitals NHS Trust, Chorley PR7 1PP, UK
| | - Alexander T. J. Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- NHS England Highly Specialised Service for Complex Neurofibromatosis Type 1: Manchester, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
5
|
James NE, Guan Y, Musa F, Cuffolo G. Granular cell tumour of the breast. BMJ Case Rep 2024; 17:e258326. [PMID: 39153762 DOI: 10.1136/bcr-2023-258326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024] Open
Abstract
Granular cell tumours (GCT) of the breast have similar clinical and radiological features to breast carcinomas. We present a case of a female patient with a tender, palpable lump, and associated skin changes. Imaging of the lesion was suspicious of malignancy. Initial histological examination showed uniform sheets of polygonal cells with abundant granular cytoplasm, and follow-up immunohistochemistry showed strongly positive staining of tumour cells with S100 and CD68, confirming the diagnosis of GCT. Wide local excision with complete resection margins was performed as a curative treatment for this lesion. This case report highlights the importance of considering GCTs in the differential diagnoses of breast lesions suspicious of malignancy and emphasises the necessity of accurate diagnosis of GCT for proper treatment.
Collapse
Affiliation(s)
| | - Yue Guan
- Department of Cellular Pathology, Royal Berkshire Hospital, Reading, UK
| | - Fawaz Musa
- Department of Cellular Pathology, Royal Berkshire Hospital, Reading, UK
| | | |
Collapse
|
6
|
Nikrad JA, Galvin RT, Sheehy MM, Novacek EL, Jacobsen KL, Corbière SMAS, Beckmann PJ, Jubenville TA, Yamamoto M, Largaespada DA. Conditionally replicative adenovirus as a therapy for malignant peripheral nerve sheath tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200783. [PMID: 38595983 PMCID: PMC10959710 DOI: 10.1016/j.omton.2024.200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.
Collapse
Affiliation(s)
- Julia A Nikrad
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Robert T Galvin
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Mackenzie M Sheehy
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Ethan L Novacek
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Kari L Jacobsen
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Stanislas M A S Corbière
- Institute for Research in Immunology and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Marcelle-Coutu Pavilion, Montréal, QC H3T1J4, Canada
| | - Pauline J Beckmann
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Abu-Hijlih R, Sharaf B, Salah S, Bani Hani H, Alqaisieh M, Alzibdeh A, Ababneh L, Mahafdah S, Abdel-Razeq H. Germline Genetic Mutations in Adult Patients with Sarcoma: Insight into the Middle East Genetic Landscape. Cancers (Basel) 2024; 16:1668. [PMID: 38730621 PMCID: PMC11083501 DOI: 10.3390/cancers16091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Data on germline mutations in soft tissue and bone sarcomas are scarce. We sought to identify the prevalence of germline mutations in adult sarcoma patients treated at a tertiary cancer center. Newly diagnosed patients were offered germline genetic testing via an 84-gene panel. The prevalence of pathogenic germline variants (PGVs) and their association with disease-, and patient- related factors are reported. A total of 87 patients were enrolled, the median age was 48 (19-78) years, and 47 (54%) were females. Gastrointestinal stromal tumors (n = 12, 13.8%), liposarcoma (n = 10, 11.5%), and Ewing sarcoma (n = 10, 11.5%) were the main subtypes. A total of 20 PGVs were detected in 18 (20.7%) patients. Variants of uncertain significance, in the absence of PGVs, were detected in 40 (45.9%) patients. Young age (p = 0.031), presence of a second primary cancer (p = 0.019), and female gender (p = 0.042) were correlated with the presence of PGVs. All identified PGVs have potential clinical actionability and cascade testing, and eight (44.44%) suggested eligibility for a targeted therapy. Almost one in five adult patients with soft tissue and bone sarcomas harbor pathogenic or likely pathogenic variants. Many of these variants are potentially actionable, and almost all have implications on cancer screening and family counselling. In this cohort from the Middle East, younger age, presence of a second primary tumor, and female gender were significantly associated with higher PGVs rates. Larger studies able to correlate treatment outcomes with genetic variants are highly needed.
Collapse
Affiliation(s)
- Ramiz Abu-Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.-H.); (A.A.)
| | - Baha Sharaf
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Samer Salah
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Hira Bani Hani
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Mohammad Alqaisieh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Abdulla Alzibdeh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.-H.); (A.A.)
| | - Layan Ababneh
- School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Suleiman Mahafdah
- Department of Surgery, Royal Jordanian Medical Services, Amman 11855, Jordan;
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Creus‐Bachiller E, Fernández‐Rodríguez J, Magallón‐Lorenz M, Ortega‐Bertran S, Navas‐Rutete S, Romagosa C, Silva TM, Pané M, Estival A, Perez Sidelnikova D, Morell M, Mazuelas H, Carrió M, Lausová T, Reuss D, Gel B, Villanueva A, Serra E, Lázaro C. Expanding a precision medicine platform for malignant peripheral nerve sheath tumors: New patient-derived orthotopic xenografts, cell lines and tumor entities. Mol Oncol 2024; 18:895-917. [PMID: 37798904 PMCID: PMC10994238 DOI: 10.1002/1878-0261.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas with a poor survival rate, presenting either sporadically or in the context of neurofibromatosis type 1 (NF1). The histological diagnosis of MPNSTs can be challenging, with different tumors exhibiting great histological and marker expression overlap. This heterogeneity could be partly responsible for the observed disparity in treatment response due to the inherent diversity of the preclinical models used. For several years, our group has been generating a large patient-derived orthotopic xenograft (PDOX) MPNST platform for identifying new precision medicine treatments. Herein, we describe the expansion of this platform using six primary tumors clinically diagnosed as MPNSTs, from which we obtained six additional PDOX mouse models and three cell lines, thus generating three pairs of in vitro-in vivo models. We extensively characterized these tumors and derived preclinical models, including genomic, epigenomic, and histological analyses. Tumors were reclassified after these analyses: three remained as MPNSTs (two being classic MPNSTs), one was a melanoma, another was a neurotrophic tyrosine receptor kinase (NTRK)-rearranged spindle cell neoplasm, and, finally, the last was an unclassifiable tumor bearing neurofibromin-2 (NF2) inactivation, a neuroblastoma RAS viral oncogene homolog (NRAS) oncogenic mutation, and a SWI/SNF-related matrix-associated actin-dependent regulator of chromatin (SMARCA4) heterozygous truncated variant. New cell lines and PDOXs faithfully recapitulated histology, marker expression, and genomic characteristics of the primary tumors. The diversity in tumor identity and their specific associated genomic alterations impacted treatment responses obtained when we used the new cell lines for testing compounds against known altered pathways in MPNSTs. In summary, we present here an extension of our MPNST precision medicine platform, with new PDOXs and cell lines, including tumor entities confounded as MPNSTs in a real clinical scenario. This platform may constitute a useful tool for obtaining correct preclinical information to guide MPNST clinical trials.
Collapse
Affiliation(s)
- Edgar Creus‐Bachiller
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
| | - Juana Fernández‐Rodríguez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Mouse Lab, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | | | - Sara Ortega‐Bertran
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
| | - Susana Navas‐Rutete
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
| | | | - Tulio M. Silva
- Department of PathologyHospital Vall d'HebronBarcelonaSpain
| | - Maria Pané
- Department of PathologyHUB‐IDIBELL, L'Hospitalet de LlobregatBarcelonaSpain
| | - Anna Estival
- Department of Medical OncologyCatalan Institute of OncologyBarcelonaSpain
| | | | - Mireia Morell
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Mouse Lab, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
| | - Helena Mazuelas
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP)BarcelonaSpain
| | - Meritxell Carrió
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP)BarcelonaSpain
| | - Tereza Lausová
- Department of NeuropathologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK)HeidelbergGermany
| | - David Reuss
- Department of NeuropathologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK)HeidelbergGermany
| | - Bernat Gel
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP)BarcelonaSpain
| | - Alberto Villanueva
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Procure ProgramCatalan Institute of OncologyBarcelonaSpain
| | - Eduard Serra
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP)BarcelonaSpain
| | - Conxi Lázaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ICO‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
9
|
Lim Z, Gu TY, Tai BC, Puhaindran ME. Survival outcomes of malignant peripheral nerve sheath tumors (MPNSTs) with and without neurofibromatosis type I (NF1): a meta-analysis. World J Surg Oncol 2024; 22:14. [PMID: 38191386 PMCID: PMC10775467 DOI: 10.1186/s12957-023-03296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION Malignant peripheral nerve sheath tumors (MPNSTs) are malignancies that demonstrate nerve sheath differentiation in the peripheral nervous system. They can occur sporadically or be associated with neurofibromatosis type 1 (NF1), an autosomal dominant neurocutaneous disorder, with up to 13% of patients developing MPNSTs in their lifetimes. Previous studies have suggested conflicting findings regarding the prognosis of NF1 for patients with MPNSTs. The elucidation of NF1 as an independent prognostic factor on mortality has implications for clinical management. We aim to investigate the role of NF1 status as an independent prognostic factor of overall survival (OS) and disease-specific survival (DSS) in MPNSTs. METHODS An electronic literature search of PubMed and MEDLINE was performed on studies reporting OS or DSS outcomes of MPNSTs with and without NF1. A grey literature search by reviewing bibliographies of included studies and review articles was performed to find pertinent studies. Data was extracted and assessed in accordance with the PRISMA guidelines. A meta-analysis was performed to calculate hazard ratios (HRs) using a random-effects model. The primary and secondary outcomes were all-cause and disease-specific mortality, respectively, with NF1 as an independent prognostic factor of interest. RESULTS A total of 59 retrospective studies involving 3602 patients fulfilled the inclusion criteria for OS analysis, and 23 studies involving 704 MPNST patients were included to evaluate DSS outcomes. There was a significant increase in the hazard of all-cause mortality (HR 1.63, 95% CI 1.45 to 1.84) and disease-specific mortality (HR 1.52, 95% CI 1.24 to 1.88) among NF1 as compared to sporadic cases. Subgroup analyses and meta-regression showed that this result was consistent regardless of the quality of the study and year of publication. CONCLUSION NF1 is associated with a substantially higher risk of all-cause and disease-specific mortality. This finding suggests that closer surveillance is required for NF1 patients at risk of developing MPNSTs.
Collapse
Affiliation(s)
- Zhixue Lim
- Department of Hand & Reconstructive Microsurgery, University Orthopaedic, Hand & Reconstructive Microsurgical Cluster, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore.
| | - Tian Yuan Gu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive, #10-01, Singapore, 117549, Singapore
| | - Bee Choo Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive, #10-01, Singapore, 117549, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Mark Edward Puhaindran
- Department of Hand & Reconstructive Microsurgery, University Orthopaedic, Hand & Reconstructive Microsurgical Cluster, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore
| |
Collapse
|
10
|
Chang WI, Honeyman JN, Zhang J, Lin C, Sharma A, Zhou L, Oliveira J, Tapinos N, Lulla RR, Prabhu VV, El-Deiry WS. Novel combination of imipridones and histone deacetylase inhibitors demonstrate cytotoxic effect through integrated stress response in pediatric solid tumors. Am J Cancer Res 2023; 13:6241-6255. [PMID: 38187038 PMCID: PMC10767354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
There is a demonstrated need for new chemotherapy options in pediatric oncology, as pediatric solid tumors continue to plateau at 60% with event-free survival. Imipridones, a novel class of small molecules, represent a potential new therapeutic option, with promising pre-clinical data and emerging clinical trial data in adult malignancies. ONC201, ONC206, and ONC212 are imipridones showing pro-apoptotic anti-cancer response. Using cell viability assays, and protein immunoblotting, we were able to demonstrate single-agent efficacy of all 3 imipridones inducing cell death in pediatric solid tumor cell lines, including osteosarcoma, malignant peripheral nerve sheath tumors, Ewing sarcoma (EWS), and neuroblastoma. ONC201 displayed IC50 values for non-H3K27M-mutated EWS cell lines ranging from 0.86 µM (SK-N-MC) to 2.76 µM (RD-ES), which were comparable to the range of IC50 values for H3K27M-mutated DIPG cells lines (range 1.06 to 1.56 µM). ONC212 demonstrated the highest potency in single-agent cell killing, followed by ONC206, and ONC201. Additionally, pediatric solid tumor cells were treated with single-agent therapy with histone deacetylase inhibitors (HDACi) vorinostat, entinostat, and panobinostat, showing cell killing with all 3 HDACi drugs, with panobinostat showing the greatest potency. We demonstrate that dual-agent therapy with combinations of imipridones and HDACi lead to synergistic cell killing and apoptosis in all pediatric solid tumor cell lines tested, with ONC212 and panobinostat combinations demonstrating maximal potency. The imipridones induced the integrated stress response with ATF4 and TRAIL receptor upregulation, as well as reduced expression of ClpX. Hyperacetylation of H3K27 was associated with synergistic killing of tumor cells following exposure to imipridone plus HDAC inhibitor therapies. Our results introduce a novel class of small molecules to treat pediatric solid tumors in a precision medicine framework. Use of impridones in pediatric oncology is novel and shows promising pre-clinical efficacy in pediatric solid tumors, including in combination with HDAC inhibitors.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Joshua N Honeyman
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Surgery, Department of Surgery, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Jun Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Claire Lin
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Aditi Sharma
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Janice Oliveira
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Nikos Tapinos
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
| | - Rishi R Lulla
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | | | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
11
|
Ogasawara N, Yamashita S, Yamasaki K, Kawano T, Kawano T, Muta J, Matsumoto F, Watanabe T, Ohta H, Yokogami K, Fukushima T, Sato Y, Takeshima H. Spontaneous malignant transformation of trigeminal schwannoma: consideration of responsible gene alterations for tumorigenesis-a case report. Brain Tumor Pathol 2023; 40:222-229. [PMID: 37515639 DOI: 10.1007/s10014-023-00466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) arising from the trigeminal nerves are extremely rare (only 45 cases, including the present case, have been published) and have been reported to develop de novo from the peripheral nerve sheath and are not transformed from a schwannoma or neurofibroma. Here, we report a case of MPNSTs of the trigeminal nerve caused by the malignant transformation of a trigeminal schwannoma, with a particular focus on genetic considerations. After undergoing a near-total resection of a histologically typical benign schwannoma, the patient presented with regrowth of the tumor 10 years after the primary excision. Histopathologic and immunochemical examinations confirmed the recurrent tumor to be an MPNST. Comprehensive genomic analyses (FoundationOne panel-based gene assay) showed that only the recurrent MPNST sample, not the initial diagnosis of schwannoma, harbored genetic mutations, including NF1-p.R2637* and TP53-p.Y234H, candidate gene mutations associated with malignant transformation. Moreover, the results of reverse transcription polymerase chain reaction showed that the fusion of SH3PXD2A and HTRA1, which has been reported as one of the responsible genetic aberrations of schwannoma, was detected in the recurrent tumor. Taken together, we could illustrate the accumulation process of gene abnormalities for developing MPNSTs from normal cells via schwannomas.
Collapse
Affiliation(s)
- Natsuki Ogasawara
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Shinji Yamashita
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koji Yamasaki
- Department of Neurosurgery, Miyazaki Prefectural Nichinan Hospital, Miyazaki, Japan
| | - Tomoki Kawano
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tomohiro Kawano
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Junichiro Muta
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fumitaka Matsumoto
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takashi Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hajime Ohta
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kiyotaka Yokogami
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, Division of Pathology, University of Miyazaki Hospital, Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
12
|
Chung MH, Aimaier R, Yu Q, Li H, Li Y, Wei C, Gu Y, Wang W, Guo Z, Long M, Li Q, Wang Z. RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST. Cell Oncol (Dordr) 2023; 46:1399-1413. [PMID: 37086345 DOI: 10.1007/s13402-023-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs. METHODS Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis. RESULTS RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation. CONCLUSIONS RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.
Collapse
Affiliation(s)
- Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Bhandarkar AR, Bhandarkar S, Babovic-Vuksanovic D, Parney IF, Spinner RJ. Characterizing T-cell dysfunction and exclusion signatures in malignant peripheral nerve sheath tumors reveals susceptibilities to immunotherapy. J Neurooncol 2023; 164:693-699. [PMID: 37755632 DOI: 10.1007/s11060-023-04467-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that arise from peripheral nerves and are the leading cause of mortality in Neurofibromatosis Type 1 (NF1). In this study, we characterized whether transcriptomic signatures of T-cell dysfunction (TCD) and exclusion (TCE) that inversely correlate with response to immune checkpoint blockade (ICB) immunotherapy exist in MPNSTs. METHODS MPNST transcriptomes were pooled from Gene Expression Omnibus (GEO). For each sample, a tumor immune dysfunction and exclusion (TIDE) score, TCD and TCE subscores, and cytotoxic T-cell(CTL) level were calculated. In the TIDE predictive algorithm, tumors are predicted to have an ICB response if they are either immunologically hot (CTL-high) without TCD or immunologically cold (CTL-low) without TCE. TIDE scores greater than zero correspond with ICB nonresponse. RESULTS 73 MPNST samples met inclusion criteria, including 50 NF1-associated MPNSTs (68.5%). The average TIDE score was + 0.41 (SD = 1.16) with 22 (30.1%) predicted ICB responders. 11 samples were CTL-high (15.1%) with an average TCD score of + 0.99 (SD = 0.63). Among 62 CTL-low tumors, 21 were predicted to have ICB response with an average TCE score of + 0.31(SD = 1.20). Age(p = 0.18), sex(p = 0.41), NF1 diagnosis (p = 0.17), and PRC2 loss(p = 0.29) were not associated with ICB responder status. CONCLUSIONS Transcriptomic analysis of TCD and TCE signatures in MPNST samples reveals that a select subset of patients with MPNSTs may benefit from ICB immunotherapy.
Collapse
Affiliation(s)
| | - Shaan Bhandarkar
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dusica Babovic-Vuksanovic
- Division of Pediatric Genetics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Yoshida Y. Neurofibromatosis 1 (von Recklinghausen Disease). Keio J Med 2023:2023-0013-IR. [PMID: 37635082 DOI: 10.2302/kjm.2023-0013-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Neurofibromatosis 1 (NF1), also known as von Recklinghausen disease, is one of the most common neurocutaneous genetic disorders. Loss of function of the NF1 gene results in overactivation of the RAS/MAPK pathway, leading to neurocutaneous manifestations and osseous abnormalities. Because of medical progress, molecular testing for NF1 after genetic counseling is now available in Japan. In addition, revised diagnostic criteria for NF1 were proposed by NF1 experts of an international panel in 2021. Because the overall degree of severity and manifestations in each patient are not predictable, age-specific annual monitoring and patient education by a multidisciplinary team are important for the management of NF1. Although treatment of plexiform neurofibroma has been challenging, selumetinib (an oral selective MEK1/2 inhibitor), which targets a pathway downstream of RAS, was approved in 2022 for use in children with inoperable, symptomatic plexiform neurofibromas in Japan. This article summarizes recent progress in diagnosis, clinical characteristics, and treatment of various manifestations of NF1 and proposes the future direction required to resolve unmet needs in patients with NF1 in Japan.
Collapse
Affiliation(s)
- Yuichi Yoshida
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
16
|
Soto-Castillo JJ, Llavata-Marti L, Fort-Culillas R, Andreu-Cobo P, Moreno R, Codony C, García Del Muro X, Alemany R, Piulats JM, Martin-Liberal J. SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy. Int J Mol Sci 2023; 24:11143. [PMID: 37446319 DOI: 10.3390/ijms241311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.
Collapse
Affiliation(s)
- Juan José Soto-Castillo
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Lucía Llavata-Marti
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Roser Fort-Culillas
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Pablo Andreu-Cobo
- Medical Oncology Department, Parc Tauli Hospital Universitari, 08208 Sabadell, Spain
| | - Rafael Moreno
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Carles Codony
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Xavier García Del Muro
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
17
|
Cortes-Ciriano I, Steele CD, Piculell K, Al-Ibraheemi A, Eulo V, Bui MM, Chatzipli A, Dickson BC, Borcherding DC, Feber A, Galor A, Hart J, Jones KB, Jordan JT, Kim RH, Lindsay D, Miller C, Nishida Y, Proszek PZ, Serrano J, Sundby RT, Szymanski JJ, Ullrich NJ, Viskochil D, Wang X, Snuderl M, Park PJ, Flanagan AM, Hirbe AC, Pillay N, Miller DT. Genomic Patterns of Malignant Peripheral Nerve Sheath Tumor (MPNST) Evolution Correlate with Clinical Outcome and Are Detectable in Cell-Free DNA. Cancer Discov 2023; 13:654-671. [PMID: 36598417 PMCID: PMC9983734 DOI: 10.1158/2159-8290.cd-22-0786] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Christopher D. Steele
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
| | - Katherine Piculell
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Vanessa Eulo
- Division of Oncology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marilyn M. Bui
- Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aikaterini Chatzipli
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dana C. Borcherding
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew Feber
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alon Galor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jesse Hart
- Department of Pathology, Lifespan Laboratories, Rhode Island Hospital, Providence, Rhode Island
| | - Kevin B. Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Justin T. Jordan
- Pappas Center for Neuro-oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Raymond H. Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Sinai Health System, Toronto, Ontario, Canada
- Hospital for Sick Children, University of Toronto, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Daniel Lindsay
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Colin Miller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Yoshihiro Nishida
- Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Paula Z. Proszek
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey J. Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole J. Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - David Viskochil
- Division of Medical Genetics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Xia Wang
- GeneHome, Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Adrienne M. Flanagan
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Angela C. Hirbe
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nischalan Pillay
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - David T. Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
18
|
Yao C, Zhou H, Dong Y, Alhaskawi A, Hasan Abdullah Ezzi S, Wang Z, Lai J, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Lu H. Malignant Peripheral Nerve Sheath Tumors: Latest Concepts in Disease Pathogenesis and Clinical Management. Cancers (Basel) 2023; 15:cancers15041077. [PMID: 36831419 PMCID: PMC9954030 DOI: 10.3390/cancers15041077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma with limited therapeutic options and a poor prognosis. Although neurofibromatosis type 1 (NF1) and radiation exposure have been identified as risk factors for MPNST, the genetic and molecular mechanisms underlying MPNST pathogenesis have only lately been roughly elucidated. Plexiform neurofibroma (PN) and atypical neurofibromatous neoplasm of unknown biological potential (ANNUBP) are novel concepts of MPNST precancerous lesions, which revealed sequential mutations in MPNST development. This review summarized the current understanding of MPNST and the latest consensus from its diagnosis to treatment, with highlights on molecular biomarkers and targeted therapies. Additionally, we discussed the current challenges and prospects for MPNST management.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, #138 Tongzipo Road, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-87236121
| |
Collapse
|
19
|
Magallón-Lorenz M, Terribas E, Ortega-Bertran S, Creus-Bachiller E, Fernández M, Requena G, Rosas I, Mazuelas H, Uriarte-Arrazola I, Negro A, Lausová T, Castellanos E, Blanco I, DeVries G, Kawashima H, Legius E, Brems H, Mautner V, Kluwe L, Ratner N, Wallace M, Fernández-Rodriguez J, Lázaro C, Fletcher JA, Reuss D, Carrió M, Gel B, Serra E. Deep genomic analysis of malignant peripheral nerve sheath tumor cell lines challenges current malignant peripheral nerve sheath tumor diagnosis. iScience 2023; 26:106096. [PMID: 36818284 PMCID: PMC9929861 DOI: 10.1016/j.isci.2023.106096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1, CDKN2A, and SUZ12/EED tumor suppressor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered mutational frequencies and COSMIC signatures, and different methylome-based classifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis.
Collapse
Affiliation(s)
- Miriam Magallón-Lorenz
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Ernest Terribas
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Sara Ortega-Bertran
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08098 Barcelona, Spain,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Edgar Creus-Bachiller
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08098 Barcelona, Spain,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marco Fernández
- Cytometry Core Facility, Germans Trias & Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Gerard Requena
- Cytometry Core Facility, Germans Trias & Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Inma Rosas
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Clinical Genomics Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital (HGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Helena Mazuelas
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Itziar Uriarte-Arrazola
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Alex Negro
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Clinical Genomics Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital (HGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Tereza Lausová
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Clinical Genomics Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital (HGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Ignacio Blanco
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Genetic Counseling Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Palliative Care Team, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Viktor Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret Wallace
- Department of Molecular Genetics & Microbiology, and UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Juana Fernández-Rodriguez
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08098 Barcelona, Spain,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08098 Barcelona, Spain,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, MA 02115, USA
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Meritxell Carrió
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain
| | - Bernat Gel
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), 08036 Barcelona, Spain,Corresponding author
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain,Corresponding author
| |
Collapse
|
20
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Ge LL, Xing MY, Zhang HB, Wang ZC. Neurofibroma Development in Neurofibromatosis Type 1: Insights from Cellular Origin and Schwann Cell Lineage Development. Cancers (Basel) 2022; 14:cancers14184513. [PMID: 36139671 PMCID: PMC9497298 DOI: 10.3390/cancers14184513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1), a genetic tumor predisposition syndrome that affects about 1 in 3000 newborns, is caused by mutations in the NF1 gene and subsequent inactivation of its encoded neurofibromin. Neurofibromin is a tumor suppressor protein involved in the downregulation of Ras signaling. Despite a diverse clinical spectrum, one of several hallmarks of NF1 is a peripheral nerve sheath tumor (PNST), which comprises mixed nervous and fibrous components. The distinct spatiotemporal characteristics of plexiform and cutaneous neurofibromas have prompted hypotheses about the origin and developmental features of these tumors, involving various cellular transition processes. METHODS We retrieved published literature from PubMed, EMBASE, and Web of Science up to 21 June 2022 and searched references cited in the selected studies to identify other relevant papers. Original articles reporting the pathogenesis of PNSTs during development were included in this review. We highlighted the Schwann cell (SC) lineage shift to better present the evolution of its corresponding cellular origin hypothesis and its important effects on the progression and malignant transformation of neurofibromas. CONCLUSIONS In this review, we summarized the vast array of evidence obtained on the full range of neurofibroma development based on cellular and molecular pathogenesis. By integrating findings relating to tumor formation, growth, and malignancy, we hope to reveal the role of SC lineage shift as well as the combined impact of additional determinants in the natural history of PNSTs.
Collapse
Affiliation(s)
- Ling-Ling Ge
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming-Yan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
| | - Hai-Bing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| |
Collapse
|
22
|
Thiel JT, Daigeler A, Kolbenschlag J, Rachunek K, Hoffmann S. The Role of CDK Pathway Dysregulation and Its Therapeutic Potential in Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:3380. [PMID: 35884441 PMCID: PMC9323700 DOI: 10.3390/cancers14143380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas (STSs) are tumors that are challenging to treat due to their pathologic and molecular heterogeneity and their tumor biology that is not yet fully understood. Recent research indicates that dysregulation of cyclin-dependent kinase (CDK) signaling pathways can be a strong driver of sarcogenesis. CDKs are enzyme forms that play a crucial role in cell-cycle control and transcription. They belong to the protein kinases group and to the serine/threonine kinases subgroup. Recently identified CDK/cyclin complexes and established CDK/cyclin complexes that regulate the cell cycle are involved in the regulation of gene expression through phosphorylation of critical components of transcription and pre-mRNA processing mechanisms. The current and continually growing body of data shows that CDKs play a decisive role in tumor development and are involved in the proliferation and growth of sarcoma cells. Since the abnormal expression or activation of large numbers of CDKs is considered to be characteristic of cancer development and progression, dysregulation of the CDK signaling pathways occurs in many subtypes of STSs. This review discusses how reversal and regulation can be achieved with new therapeutics and summarizes the current evidence from studies regarding CDK modulation for STS treatment.
Collapse
Affiliation(s)
- Johannes Tobias Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany; (A.D.); (J.K.); (K.R.); (S.H.)
| | | | | | | | | |
Collapse
|
23
|
Odeyemi OO, Ozawa MG, Charville GW. CDX2 expression in malignant peripheral nerve sheath tumour: a potential diagnostic pitfall associated with PRC2 inactivation. Histopathology 2022; 80:995-1000. [PMID: 35122289 PMCID: PMC9097546 DOI: 10.1111/his.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
AIMS Malignant peripheral nerve sheath tumour (MPNST) is a soft tissue sarcoma that exhibits features of Schwann cell differentiation. Heterologous, often mesenchymal-type differentiation occurs in a subset of MPNST, while glandular morphology also is encountered in rare cases. We observed in MPNST unanticipated expression of CDX2, a transcription factor that regulates intestinal epithelial differentiation, and aimed to further characterize this phenomenon. METHODS/RESULTS Expression of CDX2 was assessed by immunohistochemistry in a total of 32 high-grade MPNSTs lacking morphological evidence of epithelial differentiation, including twelve tumours (38%) that developed in the setting of neurofibromatosis and four (13%) in the setting of prior radiation therapy. CDX2 was expressed by 14 of 32 MPNSTs (44%), wherein immunoreactivity, varying from weak to strong, was present in 2-95% of neoplastic spindle cells (median 10%, mean 23%). Notably, CDX2 expression was limited to tumours with PRC2 inactivation (22/32; 69%), as evidenced immunohistochemically by diffuse loss of trimethylated histone H3K27. Analysing publicly available RNA-sequencing data from twelve MPNST cell lines, two of which are clonally related, we observed CDX2 expression in all six PRC2-inactivated cell lines, while CDX2 expression was negligible in six cell lines with intact PRC2, amounting to a 58-fold increase in CDX2 expression on average with PRC2 inactivation. CONCLUSIONS CDX2 is expressed in a subset of MPNSTs, even in the absence of morphological evidence of epithelial differentiation. CDX2 expression in MPNST is strongly associated with underlying PRC2 inactivation.
Collapse
Affiliation(s)
- Olumide O. Odeyemi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
25
|
Sanchez LD, Bui A, Klesse LJ. Targeted Therapies for the Neurofibromatoses. Cancers (Basel) 2021; 13:cancers13236032. [PMID: 34885143 PMCID: PMC8657309 DOI: 10.3390/cancers13236032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past several years, management of the tumors associated with the neurofibromatoses has been recognized to often require approaches that are distinct from their spontaneous counterparts. Focus has shifted to therapy aimed at minimizing symptoms given the risks of persistent, multiple tumors and new tumor growth. In this review, we will highlight the translation of preclinical data to therapeutic trials for patients with neurofibromatosis, particularly neurofibromatosis type 1 and neurofibromatosis type 2. Successful inhibition of MEK for patients with neurofibromatosis type 1 and progressive optic pathway gliomas or plexiform neurofibromas has been a significant advancement in patient care. Similar success for the malignant NF1 tumors, such as high-grade gliomas and malignant peripheral nerve sheath tumors, has not yet been achieved; nor has significant progress been made for patients with either neurofibromatosis type 2 or schwannomatosis, although efforts are ongoing.
Collapse
Affiliation(s)
- Lauren D. Sanchez
- Department of Pediatrics, Division of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Ashley Bui
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
- Correspondence:
| |
Collapse
|
26
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
27
|
Jones J, Cain S, Pesic-Smith J, Choong PFM, Morokoff AP, Drummond KJ, Dabscheck G. Circulating tumor DNA for malignant peripheral nerve sheath tumors in neurofibromatosis type 1. J Neurooncol 2021; 154:265-274. [PMID: 34529228 DOI: 10.1007/s11060-021-03846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The leading cause of early death in patients with neurofibromatosis type 1 (NF1) is malignant peripheral nerve sheath tumor (MPNST). The principles of management include early diagnosis, surgical clearance and close monitoring for tumor recurrence. Current methods for diagnosis, detection of residual disease and monitoring tumor burden are inadequate, as clinical and radiological features are non-specific for malignancy in patients with multiple tumors and lack the sensitivity to identify early evidence of malignant transformation or tumor recurrence. Circulating tumor DNA (ctDNA) is a promising tool in cancer management and has the potential to improve the care of patients with NF1. In the following article we summarise the current understanding of the genomic landscape of MPNST, report on the previous literature of ctDNA in MPNST and outline the potential clinical applications for ctDNA in NF1 associated MPNST. Finally, we describe our prospective cohort study protocol investigating the utility of using ctDNA as an early diagnostic tool for MPNSTs in NF1 patients.
Collapse
Affiliation(s)
- Jordan Jones
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia.
| | - Sarah Cain
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - Jonathan Pesic-Smith
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - Peter F M Choong
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Bone and Soft Tissue Sarcoma Service, Perter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - Kate J Drummond
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Mohamad T, Plante C, Brosseau JP. Toward Understanding the Mechanisms of Malignant Peripheral Nerve Sheath Tumor Development. Int J Mol Sci 2021; 22:ijms22168620. [PMID: 34445326 PMCID: PMC8395254 DOI: 10.3390/ijms22168620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) originate from the neural crest lineage and are associated with the neurofibromatosis type I syndrome. MPNST is an unmet clinical need. In this review article, we summarize the knowledge and discuss research perspectives related to (1) the natural history of MPNST development; (2) the mouse models recapitulating the progression from precursor lesions to MPNST; (3) the role of the tumor microenvironment in MPNST development, and (4) the signaling pathways linked to MPNST development.
Collapse
Affiliation(s)
- Teddy Mohamad
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Camille Plante
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 72477)
| |
Collapse
|
29
|
Velez Torres JM, Duarte EM, Diaz-Perez JA, Leibowitz J, Weed DT, Thomas G, Sargi Z, Civantos FJ, Arnold DJ, Gomez-Fernandez C, Montgomery EA, Rosenberg AE. Mesenchymal Neoplasms of Salivary Glands: A Clinicopathologic Study of 68 Cases. Head Neck Pathol 2021; 16:353-365. [PMID: 34251596 PMCID: PMC9187808 DOI: 10.1007/s12105-021-01360-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Salivary gland neoplasms are uncommon, and most exhibit epithelial differentiation. Mesenchymal neoplasms of the salivary gland are rare, and the incidence ranges from 1.9% to 5%. The aim of this study is to identify the types and clinical-pathological features of mesenchymal salivary neoplasm and review their differential diagnosis. A retrospective search for mesenchymal neoplasms of salivary glands from our institution's pathology archives from the 2004-2021 period and consultation files of one of the authors (AER) was performed. The clinical data were obtained from available medical records, and the histological slides and ancillary studies were retrieved and reviewed. We identified a total of 68 cases that form the study cohort. Thirty-five patients were male, and thirty-three patients were female, with a mean age of 48 years (range, 7 months-79 years), and the male to female ratio was 1:.94. Sixty-three (92.6%) of sixty-eight tumors were benign and included: 38 (56%) lipomas, 9 (13%) hemangiomas, 7 (10.3%) schwannomas, 3 (4.4%) neurofibromas, 3 (4.4%) lymphangioma, 2 (3%) solitary fibrous tumors, 1 (1.5%) myofibroma. Five of sixty-eight (7.4%) were malignant and included: 3 (4.4%) Adamantinoma-like Ewing sarcomas, 1 (1.5%) malignant peripheral nerve sheath tumor (MPNST), and 1 (1.5%) malignant solitary fibrous tumor. The involved sites included: parotid (55), submandibular gland (5), parapharyngeal space (5), buccal mucosa minor salivary gland (2), and sublingual gland (1). Sixty-seven patients underwent surgical resection. One patient with lymphangioma manifested a recurrence/persistence a week post-surgery. One patient with a parotid hemangioma developed post-operative numbness, and another patient developed chronic postauricular pain after surgery. Two patients with MPNST and one patient with adamantinoma-like Ewing sarcoma underwent neoadjuvant chemoradiation and were disease-free after treatment. The remaining 37 patients with available follow-up ranging from 7 days to 96 months (mean, 18 months) had a favorable outcome and were disease-free after treatment. Mesenchymal neoplasms of salivary gland are rare; most are benign and demonstrate adipocytic, endothelial, and schwannian differentiation; awareness of their development is important for adequate diagnosis. The mainstay of treatment is surgical excision, with the extent determined by tumor type. Adjuvant therapy is reserved for high-grade sarcomas and may be given in a neoadjuvant or adjuvant setting.
Collapse
Affiliation(s)
- Jaylou M. Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Miami, FL 33136 USA
| | | | - Julio A. Diaz-Perez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Miami, FL 33136 USA
| | - Jason Leibowitz
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Donald T. Weed
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Giovanna Thomas
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Zoukaa Sargi
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Francisco J. Civantos
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - David J. Arnold
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Carmen Gomez-Fernandez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Miami, FL 33136 USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Miami, FL 33136 USA
| | - Andrew E. Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Miami, FL 33136 USA
| |
Collapse
|
30
|
Lyskjær I, De Noon S, Tirabosco R, Rocha AM, Lindsay D, Amary F, Ye H, Schrimpf D, Stichel D, Sill M, Koelsche C, Pillay N, Von Deimling A, Beck S, Flanagan AM. DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'. J Pathol Clin Res 2021; 7:350-360. [PMID: 33949149 PMCID: PMC8185366 DOI: 10.1002/cjp2.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.
Collapse
Affiliation(s)
- Iben Lyskjær
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Solange De Noon
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Ana Maia Rocha
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Lindsay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Fernanda Amary
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Hongtao Ye
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Schrimpf
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Martin Sill
- Hopp‐Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Christian Koelsche
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of General PathologyUniversity of HeidelbergHeidelbergGermany
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | - Andreas Von Deimling
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stephan Beck
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| |
Collapse
|
31
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
32
|
Malignant Glandular Triton Tumor Arising in the Radial Nerve with Prolonged Survival: A Case Report and Review of the Literature. Case Rep Pathol 2021; 2021:4614185. [PMID: 33791136 PMCID: PMC7997754 DOI: 10.1155/2021/4614185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Abstract
Divergent differentiation is a well-known phenomenon in malignant peripheral nerve sheath tumors (MPNST) which occurs approximately in 15% of these tumors, usually towards mesenchymal elements. Differentiation towards epithelial components, however, is quite uncommon, and even exceptionally rare is concomitant mesenchymal and glandular differentiation. To our knowledge, only 14 cases of MPNST with both mesenchymal (rhabdomyoblastic) and glandular differentiation had been reported, and only two of these tumors had frankly malignant glandular components. Herein, we report the third such case. A 26-year-old male, without any of the stigmata of NF1, presented with a 2-year history of pain in his left shoulder and an elbow swelling of six-month duration. The tumor was initially diagnosed clinically as a neurofibroma at a local hospital. The patient underwent excision of the mass there, and pathological examination at that hospital showed the tumor to be MPNST. Six months later, the patient was referred to our hospital, a tertiary care medical center, with recurrent swelling at the same location. Histopathological material from the referral hospital was reviewed, and the tumor was diagnosed as MPNST with rhabdomyoblastic differentiation or malignant triton tumor (MTT) that contained in addition foci of malignant glandular epithelium. The patient refused any surgical intervention. He received three cycles of chemotherapy followed by radiotherapy with excellent response and marked reduction in the size of the tumor. The patient had prolonged survival for 10 years following the initial resection of the tumor.
Collapse
|
33
|
Longo JF, Brosius SN, Znoyko I, Alers VA, Jenkins DP, Wilson RC, Carroll AJ, Wolff DJ, Roth KA, Carroll SL. Establishment and genomic characterization of a sporadic malignant peripheral nerve sheath tumor cell line. Sci Rep 2021; 11:5690. [PMID: 33707600 PMCID: PMC7952412 DOI: 10.1038/s41598-021-85055-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofibromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodeficient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identified in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identified mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Stephanie N Brosius
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Victoria A Alers
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, 29425-9080, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Kevin A Roth
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, 29425-9080, USA.
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|
34
|
Inoue A, Janke LJ, Gudenas BL, Jin H, Fan Y, Paré J, Clay MR, Northcott PA, Hirbe AC, Cao X. A genetic mouse model with postnatal Nf1 and p53 loss recapitulates the histology and transcriptome of human malignant peripheral nerve sheath tumor. Neurooncol Adv 2021; 3:vdab129. [PMID: 34647023 PMCID: PMC8500687 DOI: 10.1093/noajnl/vdab129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas. Somatic inactivation of NF1 and cooperating tumor suppressors, including CDKN2A/B, PRC2, and p53, is found in most MPNST. Inactivation of LATS1/2 of the Hippo pathway was recently shown to cause tumors resembling MPNST histologically, although Hippo pathway mutations are rarely found in MPNST. Because existing genetically engineered mouse (GEM) models of MPNST do not recapitulate some of the key genetic features of human MPNST, we aimed to establish a GEM-MPNST model that recapitulated the human disease genetically, histologically, and molecularly. METHODS We combined 2 genetically modified alleles, an Nf1;Trp53 cis-conditional allele and an inducible Plp-CreER allele (NP-Plp), to model the somatic, possibly postnatal, mutational events in human MPNST. We also generated conditional Lats1;Lats2 knockout mice. We performed histopathologic analyses of mouse MPNST models and transcriptomic comparison of mouse models and human nerve sheath tumors. RESULTS Postnatal Nf1;Trp53 cis-deletion resulted in GEM-MPNST that were histologically more similar to human MPNST than the widely used germline Nf1;Trp53 cis-heterozygous (NPcis) model and showed partial loss of H3K27me3. At the transcriptome level, Nf1;p53-driven GEM-MPNST were distinct from Lats-driven GEM-MPNST and resembled human MPNST more closely than do Lats-driven tumors. CONCLUSIONS The NP-Plp model recapitulates human MPNST genetically, histologically, and molecularly.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Angela C Hirbe
- Division of Medical Oncology, Washington University, St. Louis, Missouri, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
35
|
Miller DT, Cortés-Ciriano I, Pillay N, Hirbe AC, Snuderl M, Bui MM, Piculell K, Al-Ibraheemi A, Dickson BC, Hart J, Jones K, Jordan JT, Kim RH, Lindsay D, Nishida Y, Ullrich NJ, Wang X, Park PJ, Flanagan AM. Genomics of MPNST (GeM) Consortium: Rationale and Study Design for Multi-Omic Characterization of NF1-Associated and Sporadic MPNSTs. Genes (Basel) 2020; 11:E387. [PMID: 32252413 PMCID: PMC7231181 DOI: 10.3390/genes11040387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
The Genomics of Malignant Peripheral Nerve Sheath Tumor (GeM) Consortium is an international collaboration focusing on multi-omic analysis of malignant peripheral nerve sheath tumors (MPNSTs), the most aggressive tumor associated with neurofibromatosis type 1 (NF1). Here we present a summary of current knowledge gaps, a description of our consortium and the cohort we have assembled, and an overview of our plans for multi-omic analysis of these tumors. We propose that our analysis will lead to a better understanding of the order and timing of genetic events related to MPNST initiation and progression. Our ten institutions have assembled 96 fresh frozen NF1-related (63%) and sporadic MPNST specimens from 86 subjects with corresponding clinical and pathological data. Clinical data have been collected as part of the International MPNST Registry. We will characterize these tumors with bulk whole genome sequencing, RNAseq, and DNA methylation profiling. In addition, we will perform multiregional analysis and temporal sampling, with the same methodologies, on a subset of nine subjects with NF1-related MPNSTs to assess tumor heterogeneity and cancer evolution. Subsequent multi-omic analyses of additional archival specimens will include deep exome sequencing (500×) and high density copy number arrays for both validation of results based on fresh frozen tumors, and to assess further tumor heterogeneity and evolution. Digital pathology images are being collected in a cloud-based platform for consensus review. The result of these efforts will be the largest MPNST multi-omic dataset with correlated clinical and pathological information ever assembled.
Collapse
Affiliation(s)
- David T. Miller
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK;
| | - Nischalan Pillay
- Department of Pathology, University College London Cancer Institute, Bloomsbury, London WC1E 6BT, UK; (N.P.); (A.M.F.)
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK;
| | - Angela C. Hirbe
- Oncology Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY 10016, USA;
| | - Marilyn M. Bui
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Katherine Piculell
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, ON M5G 1XF, Canada;
| | - Jesse Hart
- Department of Pathology, Lifespan Laboratories, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Kevin Jones
- Departments of Orthopaedics and Oncological Sciences; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Justin T. Jordan
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raymond H. Kim
- Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Daniel Lindsay
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK;
| | - Yoshihiro Nishida
- Department of Rehabilitation, Nagoya University Hospital, Nagoya 466-8550, Aichi, Japan;
| | - Nicole J. Ullrich
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Xia Wang
- GeneHome, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Adrienne M. Flanagan
- Department of Pathology, University College London Cancer Institute, Bloomsbury, London WC1E 6BT, UK; (N.P.); (A.M.F.)
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK;
| |
Collapse
|