1
|
Chen LS, Baker TB, Ramsey A, Amos CI, Bierut LJ. Genomic medicine to reduce tobacco and related disorders: Translation to precision prevention and treatment. ADDICTION NEUROSCIENCE 2023; 7:100083. [PMID: 37602286 PMCID: PMC10434839 DOI: 10.1016/j.addicn.2023.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Genomic medicine can enhance prevention and treatment. First, we propose that advances in genomics have the potential to enhance assessment of disease risk, improve prognostic predictions, and guide treatment development and application. Clinical implementation of polygenic risk scores (PRSs) has emerged as an area of active research. The pathway from genomic discovery to implementation is an iterative process. Second, we provide examples on how genomic medicine has the potential to solve problems in prevention and treatment using two examples: Lung cancer screening and evidence-based tobacco treatment are both under-utilized and great opportunities for genomic interventions. Third, we discuss the translational process for developing genomic interventions from evidence to implementation by presenting a model to evaluate genomic evidence for clinical implementation, mechanisms of genomic interventions, and patient desire for genomic interventions. Fourth, we present potential challenges in genomic interventions including a great need for evidence in all diverse populations, little evidence on treatment algorithms, challenges in accommodating a dynamic evidence base, and implementation challenges in real world clinical settings. Finally, we conclude that research to identify genomic markers that are associated with smoking cessation success and the efficacy of smoking cessation treatments is needed to empower people of all diverse ancestry. Importantly, genomic data can be used to help identify patients with elevated risk for nicotine addiction, difficulty quitting smoking, favorable response to specific pharmacotherapy, and tobacco-related health problems.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy B. Baker
- Center for Tobacco Research and Intervention, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Alex Ramsey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher I. Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX, United States
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Prom-Wormley EC, Wells JL, Landes L, Edmondson AN, Sankoh M, Jamieson B, Delk KJ, Surya S, Bhati S, Clifford J. A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations. Front Genet 2023; 14:1103966. [PMID: 37359362 PMCID: PMC10285878 DOI: 10.3389/fgene.2023.1103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Elizabeth C. Prom-Wormley
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Jonathan L. Wells
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Lori Landes
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy N. Edmondson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Mariam Sankoh
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Brendan Jamieson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Kayla J. Delk
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanya Surya
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Shambhavi Bhati
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - James Clifford
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, United States
| |
Collapse
|
3
|
Fang F, Andersen AM, Philibert R, Hancock DB. Epigenetic biomarkers for smoking cessation. ADDICTION NEUROSCIENCE 2023; 6:100079. [PMID: 37123087 PMCID: PMC10136056 DOI: 10.1016/j.addicn.2023.100079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cigarette smoking has been associated with epigenetic alterations that may be reversible upon cessation. As the most-studied epigenetic modification, DNA methylation is strongly associated with smoking exposure, providing a potential mechanism that links smoking to adverse health outcomes. Here, we reviewed the reversibility of DNA methylation in accessible peripheral tissues, mainly blood, in relation to cigarette smoking cessation and the utility of DNA methylation as a biomarker signature to differentiate current, former, and never smokers and to quantify time since cessation. We summarized thousands of differentially methylated Cytosine-Guanine (CpG) dinucleotides and regions associated with smoking cessation from candidate gene and epigenome-wide association studies, as well as the prediction accuracy of the multi-CpG predictors for smoking status. Overall, there is robust evidence for DNA methylation signature of cigarette smoking cessation. However, there are still gaps to fill, including (1) cell-type heterogeneity in measuring blood DNA methylation; (2) underrepresentation of non-European ancestry populations; (3) limited longitudinal data to quantitatively measure DNA methylation after smoking cessation over time; and (4) limited data to study the impact of smoking cessation on other epigenetic features, noncoding RNAs, and histone modifications. Epigenetic machinery provides promising biomarkers that can improve success in smoking cessation in the clinical setting. To achieve this goal, larger and more-diverse samples with longitudinal measures of a broader spectrum of epigenetic marks will be essential to developing a robust DNA methylation biomarker assay, followed by meeting validation requirements for the assay before being implemented as a clinically useful tool.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Allan M. Andersen
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Behavioral Diagnostics LLC, 2500 Crosspark Rd, Coralville, IA 52241, USA
- Department of Biomedical Engineering, 5601 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Siegel SD, Tindle HA, Bergen AW, Tyndale RF, Schnoll R. The Use of Biomarkers to Guide Precision Treatment for Tobacco Use. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37089247 PMCID: PMC10121195 DOI: 10.1016/j.addicn.2023.100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This review summarizes the evidence to date on the development of biomarkers for personalizing the pharmacological treatment of combustible tobacco use. First, the latest evidence on FDA-approved medications is considered, demonstrating that, while these medications offer real benefits, they do not contribute to smoking cessation in approximately two-thirds of cases. Second, the case for using biomarkers to guide tobacco treatment is made based on the potential to increase medication effectiveness and uptake and reduce side effects. Next, the FDA framework of biomarker development is presented along with the state of science on biomarkers for tobacco treatment, including a review of the nicotine metabolite ratio, electroencephalographic event-related potentials, and other biomarkers utilized for risk feedback. We conclude with a discussion of the challenges and opportunities for the translation of biomarkers to guide tobacco treatment and propose priorities for future research.
Collapse
|
5
|
Can nicotine replacement therapy be personalized? A statistical learning analysis. J Subst Abuse Treat 2022; 141:108847. [DOI: 10.1016/j.jsat.2022.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
|
6
|
Bucklin M. A 5-Factor Framework for Assessing Tobacco Use Disorder. Tob Use Insights 2021; 14:1179173X21998355. [PMID: 33716514 PMCID: PMC7922618 DOI: 10.1177/1179173x21998355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Cigarette use is the leading cause of preventable death in the United States. Despite the well documented dangers of smoking, nearly 20% of adults report regular use of tobacco. A majority desire to discontinue but the long-term cessation success rate remains near 4%. One challenge to reducing the prevalence of tobacco use is an incomplete understanding of the individual correlates that reinforce continued use. Evidence from research on nicotine and tobacco suggests that Tobacco Use Disorder is a complex, and multifactorial condition. Personality traits, comorbidities, habits and lifestyle, genetics, socioeconomic status, and mental and physical health all contribute to the risk for dependence and to the likelihood of quitting. This perspective review provides an overview of some common factors that contribute to liability risk for Tobacco Use Disorder and a framework for assessing individual tobacco users. The framework includes 5 areas that research suggests contribute to continued tobacco use: nicotine addiction, psychological influences, behavioral dependencies, neurobiological factors, and social reinforcement. Nicotine addiction includes drug-seeking behavior and the role of withdrawal avoidance. Psychological and emotional states contribute to a perceived reliance on tobacco. Behavioral dependence is reinforced by associative and non-associative learning mechanisms. Neurobiological factors include genetic variables, variations in neurotransmitters and receptors, pharmacogenetics, and interaction between psychiatric illnesses and nicotine use and dependence. Finally, social reinforcement of smoking behavior is explained by a network phenomenon and consistent visual cues to smoke. A comprehensive assessment of individual tobacco users will help better determine appropriate treatment options to achieve improved efficacy and outcomes.
Collapse
|
7
|
Higgins GA, Sellers EM. 5-HT 2A and 5-HT 2C receptors as potential targets for the treatment of nicotine use and dependence. PROGRESS IN BRAIN RESEARCH 2021; 259:229-263. [PMID: 33541678 DOI: 10.1016/bs.pbr.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine use and dependence, typically achieved through cigarette smoking, but increasingly through vape products, is the leading cause of preventable death today. Despite a recognition that many current smokers would like to quit, the success rate at doing so is low and indicative of the persistent nature of nicotine dependence and the high urge to relapse. There are currently three main forms of pharmacotherapy approved as aids to treat nicotine dependence: a variety of nicotine replacement products (NRT's), the mixed NA/DA reuptake inhibitor bupropion (Zyban®), and the preferential nicotinic α4β2 receptor agonist drug, varenicline (Chantix®); the latter being generally recognized to be the most effective. However, each of these approaches afford only limited efficacy, and various other pharmacological approaches are being explored. This chapter focusses on approaches targeted to the serotonin (5-HT) system, namely, selective serotonin reuptake inhibitors (SSRI's) which served a pioneer role in the investigation of serotoninergic modulators in human smoking cessation trials; and secondly drugs selectively interacting with the 5-HT2A and 5-HT2C receptor systems. From an efficacy perspective, measured as smoking abstinence, the 5-HT2A agonist psychedelics, namely psilocybin, seem to show the most promise; although as the article highlights, these findings are both preliminary and there are significant challenges to the route to approval, and therapeutic use of this class should they reach approval status. Additional avenues include 5-HT2C receptor agonists, which until recently was pioneered by lorcaserin, and 5-HT2A receptor antagonists represented by pimavanserin. Each of these approaches has distinct profiles across preclinical tests of nicotine dependence, and may have therapeutic potential. It is anticipated as diagnostic and predictive biomarkers emerge, they may provide opportunities for subject stratification and opportunities for personalizing smoking cessation treatment. The clinical assessment of SSRI, 5-HT2A and/or 5-HT2C receptor-based treatments may be best served by this process.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions Inc, Fergus, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Edward M Sellers
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine and Psychiatry, University of Toronto, Toronto, ON, Canada; DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
8
|
Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, Asl BB, Bishop JR, Burmeister M, Chaumette B, Chen LS, Cordner ZA, Deckert J, Degenhardt F, DeLisi LE, Folkersen L, Kennedy JL, Klein TE, McClay JL, McMahon FJ, Musil R, Saccone NL, Sangkuhl K, Stowe RM, Tan EC, Tiwari AK, Zai CC, Zai G, Zhang J, Gaedigk A, Müller DJ. Review and Consensus on Pharmacogenomic Testing in
Psychiatry. PHARMACOPSYCHIATRY 2020; 54:5-17. [DOI: 10.1055/a-1288-1061] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe implementation of pharmacogenomic (PGx) testing in psychiatry remains modest,
in part due to divergent perceptions of the quality and completeness of the
evidence base and diverse perspectives on the clinical utility of PGx testing
among psychiatrists and other healthcare providers. Recognizing the current lack
of consensus within the field, the International Society of Psychiatric Genetics
assembled a group of experts to conduct a narrative synthesis of the PGx
literature, prescribing guidelines, and product labels related to psychotropic
medications as well as the key considerations and limitations related to the use
of PGx testing in psychiatry. The group concluded that to inform medication
selection and dosing of several commonly-used antidepressant and antipsychotic
medications, current published evidence, prescribing guidelines, and product
labels support the use of PGx testing for 2 cytochrome P450 genes (CYP2D6,
CYP2C19). In addition, the evidence supports testing for human leukocyte
antigen genes when using the mood stabilizers carbamazepine (HLA-A and
HLA-B), oxcarbazepine (HLA-B), and phenytoin (CYP2C9, HLA-B). For
valproate, screening for variants in certain genes (POLG, OTC, CSP1) is
recommended when a mitochondrial disorder or a urea cycle disorder is suspected.
Although barriers to implementing PGx testing remain to be fully resolved, the
current trajectory of discovery and innovation in the field suggests these
barriers will be overcome and testing will become an important tool in
psychiatry.
Collapse
Affiliation(s)
- Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology &
Pharmacology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of
Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB,
Canada
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
| | - Susanne A. Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical
University of Graz, Austria
| | - Katherine J. Aitchison
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Azmeraw T. Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide,
Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI),
Adelaide, SA, Australia
| | - Harald Aschauer
- Biopsychosocial Corporation (BioPsyC), non-profit association, Vienna,
Austria
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of
Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of
Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University
of Melbourne, Parkville, VIC, Australia
| | - Bahareh Behroozi Asl
- Departments of Psychiatry, Medical Genetics and the Neuroscience and
Mental Health Institute, University of Alberta, Edmonton, AB,
Canada
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of
Minnesota College of Pharmacy and Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
| | - Margit Burmeister
- Michigan Neuroscience Institute and Departments of Computational
Medicine & Bioinformatics, Human Genetics and Psychiatry, The University
of Michigan, Ann Arbor MI, USA
| | - Boris Chaumette
- Institute of Psychiatry and Neuroscience of Paris, GHU Paris
Psychiatrie & Neurosciences, University of Paris, Paris,
France
- Department of Psychiatry, McGill University, Montreal,
Canada
| | - Li-Shiun Chen
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of
Mental Health, Würzburg, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine
& University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and
Psychotherapy, University Hospital Essen, University of Duisburg-Essen,
Duisburg, Germany
| | - Lynn E. DeLisi
- Department of Psychiatry, Harvard Medical School, Cambridge Health
Alliance, Cambridge, Massachusetts, USA
| | - Lasse Folkersen
- Institute of Biological Psychiatry, Capital Region Hospitals,
Copenhagen, Denmark
| | - James L. Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Joseph L. McClay
- Department of Pharmacotherapy and Outcome Science, Virginia
Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Francis J. McMahon
- Human Genetics Branch, National Institute of Mental Health, Bethesda,
MD, USA
| | - Richard Musil
- Department of Psychiatry and Psychotherapy,
Ludwig-Maximilians-University, Munich, Germany
| | - Nancy L. Saccone
- Departments of Psychiatry and Genetics, Washington University School of
Medicine in St. Louis, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford,
California, USA
| | - Robert M. Stowe
- Departments of Psychiatry and Neurology (Medicine), University of
British Columbia, USA
| | - Ene-Choo Tan
- KK Research Centre, KK Women’s and Children’s Hospital,
Singapore, Singapore
| | - Arun K. Tiwari
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Clement C. Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| | - Jianping Zhang
- Department of Psychiatry, Weill Cornell Medical College, New
York-Presbyterian Westchester Division, White Plains, NY, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic
Innovation, Children’s Mercy Kansas City, Kansas City and School of
Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, Ontario,
Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
9
|
Bourdon JL, Davies RA, Long EC. Four Actionable Bottlenecks and Potential Solutions to Translating Psychiatric Genetics Research: An Expert Review. Public Health Genomics 2020; 23:171-183. [PMID: 33147585 PMCID: PMC7854816 DOI: 10.1159/000510832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psychiatric genetics has had limited success in translational efforts. A thorough understanding of the present state of translation in this field will be useful in the facilitation and assessment of future translational progress. PURPOSE A narrative literature review was conducted. Combinations of 3 groups of terms were searched in EBSCOhost, Google Scholar, and PubMed. The review occurred in multiple steps, including abstract collection, inclusion/exclusion criteria review, coding, and analysis of included papers. RESULTS One hundred and fourteen articles were analyzed for the narrative review. Across those, 4 bottlenecks were noted that, if addressed, may provide insights and help improve and increase translation in the field of psychiatric genetics. These 4 bottlenecks are emphasizing linear translational frameworks, relying on molecular genomic findings, prioritizing certain psychiatric disorders, and publishing more reviews than experiments. CONCLUSIONS These entwined bottlenecks are examined with one another. Awareness of these bottlenecks can inform stakeholders who work to translate and/or utilize psychiatric genetic information. Potential solutions include utilizing nonlinear translational frameworks as well as a wider array of psychiatric genetic information (e.g., family history and gene-environment interplay) in this area of research, expanding which psychiatric disorders are considered for translation, and when possible, conducting original research. Researchers are urged to consider how their research is translational in the context of the frameworks, genetic information, and psychiatric disorders discussed in this review. At a broader level, these efforts should be supported with translational efforts in funding and policy shifts.
Collapse
Affiliation(s)
- Jessica L Bourdon
- Department of Psychiatry, Brown School of Social Work, Washington University in St. Louis, St. Louis, Missouri, USA,
| | - Rachel A Davies
- Yerkes National Primate Research Center, Division of Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia, USA
| | - Elizabeth C Long
- Edna Bennett Pierce Prevention Research Center, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Santos JR, Tomaz PRX, Scholz JR, Gaya PV, Abe TO, Krieger JE, Pereira AC, Santos PCJDL. Profile of the Nicotinic Cholinergic Receptor Alpha 7 Subunit Gene Expression is Associated with Response to Varenicline Treatment. Genes (Basel) 2020; 11:E746. [PMID: 32640505 PMCID: PMC7397196 DOI: 10.3390/genes11070746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Smoking is considered the leading cause of preventable morbidity and mortality worldwide. Studies have sought to identify predictors of response to smoking cessation treatments. The aim of this study was to analyze a possible association of target gene expression for smoking cessation with varenicline. METHODS We included 74 smokers starting treatment with varenicline. Gene expression analysis was performed through the custom RT² Profiler qPCR array assay, including 17 genes. Times for sample collection were before the start of therapy (T0) and two weeks (T2) and four weeks (T4) after the start of treatment. RESULTS For gene expression analysis, we selected 14 patients who had success and 13 patients resistant to varenicline treatment. Success was considered to be when a patient achieved tobacco abstinence until the fourth week of treatment and resistant was when a patient had not stopped smoking as of the fourth week of treatment. We observed a significant difference for CHRNA7 gene expression: in the resistant group, samples from T2 and T4 had lower expression compared with T0 (fold change: 0.38, P = 0.007; fold change: 0.67, P = 0.004; respectively). CONCLUSION This exploratory clinical study, searching for a possible predictor of effectiveness for varenicline, reaffirmed the association of the α7 nAChR subunit for nicotine dependence and smoking therapy effectiveness with varenicline.
Collapse
Affiliation(s)
- Juliana Rocha Santos
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Paulo Roberto Xavier Tomaz
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Jaqueline Ribeiro Scholz
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - Patrícia Viviane Gaya
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - Tânia Ogawa Abe
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | | |
Collapse
|
11
|
Panagiotou OA, Schuit E, Munafò MR, Bennett DA, Bergen AW, David SP. Smoking Cessation Pharmacotherapy Based on Genetically-Informed Biomarkers: What is the Evidence? Nicotine Tob Res 2020; 21:1289-1293. [PMID: 30690475 DOI: 10.1093/ntr/ntz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Pharmacogenomic studies have used genetic variants to identify smokers likely to respond to pharmacological treatments for smoking cessation. METHODS We performed a systematic review and meta-analysis of primary and secondary analyses of trials of smoking cessation pharmacotherapies. Eligible were trials with data on a priori selected single nucleotide polymorphisms, replicated non-single nucleotide polymorphisms, and/or the nicotine metabolite ratio. We estimated the genotype × treatment interaction as the ratio of risk ratios (RRR) for treatment effects across genotype groups. RESULTS We identified 18 trials (N = 9017 participants), including 40 active (bupropion, nicotine replacement therapy [NRT], varenicline, or combination therapies) versus placebo comparisons and 16 active versus active comparisons. There was statistical evidence of heterogeneity across rs16969968 genotypes in CHRNA5 with regard to both 6-month abstinence and end-of-treatment abstinence in non-Hispanic black smokers and end-of-treatment abstinence in non-Hispanic white smokers. There was also heterogeneity across rs1051730 genotypes in CHRNA3 with regard to end-of-treatment abstinence in non-Hispanic white smokers. There was no clear statistical evidence for other genotype-by-treatment combinations. Compared with placebo, NRT was more effective among non-Hispanic black smokers with rs16969968-GG with regard to both 6-month abstinence (RRR for GG vs. GA or AA, 3.51; 95% confidence interval [CI] = 1.19 to 10.30) and end-of-treatment abstinence (RRR for GG vs. GA or AA, 5.84; 95% CI = 1.89 to 18.10). Among non-Hispanic white smokers, NRT effectiveness relative to placebo was comparable across rs1051730 and rs169969960 genotypes. CONCLUSIONS We did not identify widespread differential effects of smoking cessation pharmacotherapies based on genotype. The quality of the evidence is generally moderate. IMPLICATIONS Although we identified some evidence of genotype × treatment interactions, the vast majority of analyses did not provide evidence of differential treatment response by genotype. Where we find some evidence, these results should be considered preliminary and interpreted with caution because of the small number of contributing trials per genotype comparison, the wide confidence intervals, and the moderate quality of evidence. Prospective trials and individual-patient data meta-analyses accounting for heterogeneity of treatment effects through modeling are needed to assess the clinical utility of genetically informed biomarkers to guide pharmacotherapy choice for smoking cessation.
Collapse
Affiliation(s)
- Orestis A Panagiotou
- Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI.,Center for Gerontology and Healthcare Research, Brown University School of Public Health, Providence, RI
| | - Ewoud Schuit
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Psychological Science, University of Bristol, Bristol, UK
| | - Derrick A Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andrew W Bergen
- Biorealm, LLC, Walnut, CA.,Oregon Research Institute, Eugene, OR
| | - Sean P David
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA.,Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Salloum NC, Buchalter ELF, Chanani S, Espejo G, Ismail MS, Laine RO, Nageeb M, Srivastava AB, Trapp N, Trillo L, Vance E, Wenzinger M, Hartz SM, David SP, Chen LS. From genes to treatments: a systematic review of the pharmacogenetics in smoking cessation. Pharmacogenomics 2018; 19:861-871. [PMID: 29914292 PMCID: PMC6219447 DOI: 10.2217/pgs-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Smoking cessation treatment outcomes may be heavily influenced by genetic variations among smokers. Therefore, identifying specific variants that affect response to different pharmacotherapies is of major interest to the field. In the current study, we systematically review all studies published in or after the year 1990 which examined one or more gene-drug interactions for smoking cessation treatment. Out of 644 citations, 46 articles met the inclusion criteria for the systematic review. We summarize evidence on several genetic polymorphisms (CHRNA5-A3-B4, CYP2A6, DBH, CHRNA4, COMT, DRD2, DRD4 and CYP2B6) and their potential moderating pharamacotherarpy effects on patient cessation efficacy rates. These findings are promising and call for further research to demonstrate the effectiveness of genetic testing in personalizing treatment decision-making and improving outcome.
Collapse
Affiliation(s)
- Naji C Salloum
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica LF Buchalter
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Swati Chanani
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gemma Espejo
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mahjabeen S Ismail
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Randy O Laine
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Maysaa Nageeb
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - A Benjamin Srivastava
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Nicholas Trapp
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ludwig Trillo
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica Vance
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael Wenzinger
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
13
|
Bergen AW. Biomarkers for Tobacco Exposures, Toxicology, Regulation, and Cessation. Nicotine Tob Res 2018; 20:401-402. [PMID: 29342303 PMCID: PMC7207064 DOI: 10.1093/ntr/nty004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew W Bergen
- BioRealm, LLC, Culver City, CA.,Oregon Research Institute, Eugene, OR
| |
Collapse
|
14
|
Schuit E, Panagiotou OA, Munafò MR, Bennett DA, Bergen AW, David SP. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers. Cochrane Database Syst Rev 2017; 9:CD011823. [PMID: 28884473 PMCID: PMC6483659 DOI: 10.1002/14651858.cd011823.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Smoking cessation therapies are not effective for all smokers, and researchers are interested in identifying those subgroups of individuals (e.g. based on genotype) who respond best to specific treatments. OBJECTIVES To assess whether quit rates vary by genetically informed biomarkers within pharmacotherapy treatment arms and as compared with placebo. To assess the effects of pharmacotherapies for smoking cessation in subgroups of smokers defined by genotype for identified genome-wide significant polymorphisms. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group specialised register, clinical trial registries, and genetics databases for trials of pharmacotherapies for smoking cessation from inception until 16 August 2016. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited adult smokers and reported pharmacogenomic analyses from trials of smoking cessation pharmacotherapies versus controls. Eligible trials included those with data on a priori genome-wide significant (P < 5 × 10-8) single-nucleotide polymorphisms (SNPs), replicated non-SNPs, and/or the nicotine metabolite ratio (NMR), hereafter collectively described as biomarkers. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome was smoking abstinence at six months after treatment. The secondary outcome was abstinence at end of treatment (EOT). We conducted two types of meta-analyses- one in which we assessed smoking cessation of active treatment versus placebo within genotype groups, and another in which we compared smoking cessation across genotype groups within treatment arms. We carried out analyses separately in non-Hispanic whites (NHWs) and non-Hispanic blacks (NHBs). We assessed heterogeneity between genotype groups using T², I², and Cochrane Q statistics. MAIN RESULTS Analyses included 18 trials including 9017 participants, of whom 6924 were NHW and 2093 NHB participants. Data were available for the following biomarkers: nine SNPs (rs1051730 (CHRNA3); rs16969968, rs588765, and rs2036527 (CHRNA5); rs3733829 and rs7937 (in EGLN2, near CYP2A6); rs1329650 and rs1028936 (LOC100188947); and rs215605 (PDE1C)), two variable number tandem repeats (VNTRs; DRD4 and SLC6A4), and the NMR. Included data produced a total of 40 active versus placebo comparisons, 16 active versus active comparisons, and 64 between-genotype comparisons within treatment arms.For those meta-analyses showing statistically significant heterogeneity between genotype groups, we found the quality of evidence (GRADE) to be generally moderate. We downgraded quality most often because of imprecision or risk of bias due to potential selection bias in genotyping trial participants. Comparisons of relative treatment effects by genotypeFor six-month abstinence, we found statistically significant heterogeneity between genotypes (rs16969968) for nicotine replacement therapy (NRT) versus placebo at six months for NHB participants (P = 0.03; n = 2 trials), but not for other biomarkers or treatment comparisons. Six-month abstinence was increased in the active NRT group as compared to placebo among participants with a GG genotype (risk ratio (RR) 1.47, 95% confidence interval (CI) 1.07 to 2.03), but not in the combined group of participants with a GA or AA genotype (RR 0.43, 95% CI 0.15 to 1.26; ratio of risk ratios (RRR) GG vs GA or AA of 3.51, 95% CI 1.19 to 10.3). Comparisons of treatment effects between genotype groups within pharmacotherapy randomisation armsFor those receiving active NRT, treatment was more effective in achieving six-month abstinence among individuals with a slow NMR than among those with a normal NMR among NHW and NHB combined participants (normal NMR vs slow NMR: RR 0.54, 95% CI 0.37 to 0.78; n = 2 trials). We found no such differences in treatment effects between genotypes at six months for any of the other biomarkers among individuals who received pharmacotherapy or placebo. AUTHORS' CONCLUSIONS We did not identify widespread differential treatment effects of pharmacotherapy based on genotype. Some genotype groups within certain ethnic groups may benefit more from NRT or may benefit less from the combination of bupropion with NRT. The reader should interpret these results with caution because none of the statistically significant meta-analyses included more than two trials per genotype comparison, many confidence intervals were wide, and the quality of this evidence (GRADE) was generally moderate. Although we found evidence of superior NRT efficacy for NMR slow versus normal metabolisers, because of the lack of heterogeneity between NMR groups, we cannot conclude that NRT is more effective for slow metabolisers. Access to additional data from multiple trials is needed, particularly for comparisons of different pharmacotherapies.
Collapse
Affiliation(s)
- Ewoud Schuit
- Stanford UniversityMeta‐Research Innovation Center at Stanford (METRICS)StanfordCAUSA
- University Medical Center UtrechtCochrane NetherlandsUtrechtNetherlands
- University Medical Center UtrechtJulius Center for Health Sciences and Primary CareUtrechtNetherlands
| | - Orestis A. Panagiotou
- School of Public Health, Brown UniversityDepartment of Health Services, Policy & Practice121 S. Main StreetProvidenceRIUSA02903
| | - Marcus R Munafò
- University of BristolSchool of Experimental Psychology and MRC Integrative Epidemiology Unit8 Woodland RoadBristolUKBS8 1TN
| | - Derrick A Bennett
- University of OxfordClinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthRichard Doll BuildingOld Road CampusOxfordUKOX3 7LF
| | | | - Sean P David
- Stanford UniversityDivision of Primary Care and Population Health, Department of MedicineStanfordCaliforniaUSA94304‐5559
| | | |
Collapse
|
15
|
Affiliation(s)
- Lina Radzeviciene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytas Ostrauskas
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|