1
|
Skalny AV, Aschner M, Gritsenko VA, Martins AC, Tizabi Y, Korobeinikova TV, Paoliello MM, Tinkov AA. Modulation of gut microbiota with probiotics as a strategy to counteract endogenous and exogenous neurotoxicity. ADVANCES IN NEUROTOXICOLOGY 2024; 11:133-176. [PMID: 38741946 PMCID: PMC11090489 DOI: 10.1016/bs.ant.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The existing data demonstrate that probiotic supplementation affords protective effects against neurotoxicity of exogenous (e.g., metals, ethanol, propionic acid, aflatoxin B1, organic pollutants) and endogenous (e.g., LPS, glucose, Aβ, phospho-tau, α-synuclein) agents. Although the protective mechanisms of probiotic treatments differ between various neurotoxic agents, several key mechanisms at both the intestinal and brain levels seem inherent to all of them. Specifically, probiotic-induced improvement in gut microbiota diversity and taxonomic characteristics results in modulation of gut-derived metabolite production with increased secretion of SFCA. Moreover, modulation of gut microbiota results in inhibition of intestinal absorption of neurotoxic agents and their deposition in brain. Probiotics also maintain gut wall integrity and inhibit intestinal inflammation, thus reducing systemic levels of LPS. Centrally, probiotics ameliorate neurotoxin-induced neuroinflammation by decreasing LPS-induced TLR4/MyD88/NF-κB signaling and prevention of microglia activation. Neuroprotective mechanisms of probiotics also include inhibition of apoptosis and oxidative stress, at least partially by up-regulation of SIRT1 signaling. Moreover, probiotics reduce inhibitory effect of neurotoxic agents on BDNF expression, on neurogenesis, and on synaptic function. They can also reverse altered neurotransmitter metabolism and exert an antiamyloidogenic effect. The latter may be due to up-regulation of ADAM10 activity and down-regulation of presenilin 1 expression. Therefore, in view of the multiple mechanisms invoked for the neuroprotective effect of probiotics, as well as their high tolerance and safety, the use of probiotics should be considered as a therapeutic strategy for ameliorating adverse brain effects of various endogenous and exogenous agents.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Tatiana V. Korobeinikova
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Monica M.B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
2
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
3
|
Sandhu AK, Naderi E, Wijninga MJ, Liemburg EJ, Cath D, Bruggeman R, Alizadeh BZ. Pharmacogenetics of Long-Term Outcomes of Schizophrenia Spectrum Disorders: The Functional Role of CYP2D6 and CYP2C19. J Pers Med 2023; 13:1354. [PMID: 37763122 PMCID: PMC10532576 DOI: 10.3390/jpm13091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Schizophrenia spectrum disorders (SSD) are complex mental disorders, and while treatment with antipsychotics is important, many patients do not respond or develop serious side effects. Genetic variation has been shown to play a considerable role in determining an individual's response to antipsychotic medication. However, previous pharmacogenetic (PGx) studies have been limited by small sample sizes, lack of consensus regarding relevant genetic variants, and cross-sectional designs. The current study aimed to investigate the association between PGx variants and long-term clinical outcomes in 691 patients of European ancestry with SSD. Using evidence from the literature on candidate genes involved in antipsychotic pharmacodynamics, we created a polygenic risk score (PRS) to investigate its association with clinical outcomes. We also created PRS using core variants of psychotropic drug metabolism enzymes CYP2D6 and CYP2C19. Furthermore, the CYP2D6 and CYP2C19 functional activity scores were calculated to determine the relationship between metabolism and clinical outcomes. We found no association for PGx PRSs and clinical outcomes; however, an association was found with CYP2D6 activity scores by the traditional method. Higher CYP2D6 metabolism was associated with high positive and high cognitive impairment groups relative to low symptom severity groups. These findings highlight the need to test PGx efficacy with different symptom domains. More evidence is needed before pharmacogenetic variation can contribute to personalized treatment plans.
Collapse
Affiliation(s)
- Amrit K. Sandhu
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Elnaz Naderi
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Centre for Statistical Genetics, Gertude H. Sergiesky Centre, Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Morenika J. Wijninga
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Edith J. Liemburg
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Danielle Cath
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- GGZ Drenthe, Department of Specialist Trainings, 9704 LA Assen, The Netherlands
| | - Richard Bruggeman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Charbonneau PF, Damier P. Nicotine in Parkinson's Disease - a Therapeutic Track Gone up in Smoke? NEJM EVIDENCE 2023; 2:EVIDe2300167. [PMID: 38320201 DOI: 10.1056/evide2300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In recent decades, numerous studies have found that smoking or the intake of any form of nicotine, such as smokeless tobacco, exposure to environmental tobacco smoke, or even dietary sources such as peppers, reduces the risk of developing Parkinson's disease.1 Such observations suggest a potential disease-modifying effect of nicotine in Parkinson's disease. Many experimental studies, some of them supported by grants from the tobacco industry, have lent support for such a hypothesis.
Collapse
Affiliation(s)
- Pierre-François Charbonneau
- Nantes University, Centre Hospitalier Universitaire Nantes, Institut National de la Santé et de la Recherche Médicale, centre d'investigation clinique 1413, neuroscience Parkinson/French Clinical Research Infrastructure Network, Nantes, France
| | - Philippe Damier
- Nantes University, Centre Hospitalier Universitaire Nantes, Institut National de la Santé et de la Recherche Médicale, centre d'investigation clinique 1413, neuroscience Parkinson/French Clinical Research Infrastructure Network, Nantes, France
| |
Collapse
|
5
|
Abstract
Tardive dyskinesia (TD) is a heterogeneous, hyperkinetic movement disorder induced by dopamine-receptor blocking agents that presents a unique challenge in the treatment of psychosis. Although acceptance of TD as a serious consequence of antipsychotic treatment was resisted initially, subsequent research by many investigators in psychopharmacology contributed to a rich store of knowledge on many aspects of the disorder. While basic neuroscience investigations continue to deepen our understanding of underlying motor circuitry, past trials of potential treatments of TD focusing on a range of theoretical targets were often inconclusive. Development of newer antipsychotics promised to reduce the risk of TD compared to older drugs, but their improved tolerability unexpectedly enabled an expanding market that paradoxically both increased the absolute number of patients at risk and diminished attention to TD which was relegated to legacy status. Fortunately, development and approval of novel vesicular monoamine transporter inhibitors offered evidence-based symptomatic treatment of TD for the first time and rekindled interest in the disorder. Despite recent progress, many questions remain for future research including the mechanisms underlying TD, genetic predisposition, phenomenological diversity, whether new cases are reversible, how to implement best practices to prevent and treat TD, and whether the development of novel antipsychotics free of the risk of TD is attainable. We owe our patients the aspirational goal of striving for zero prevalence of persistent symptoms of TD in anyone treated for psychosis.
Collapse
Affiliation(s)
- Stanley N Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center and the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
7
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
8
|
Schümann F, Schmitt O, Wree A, Hawlitschka A. Distribution of Cleaved SNAP-25 in the Rat Brain, following Unilateral Injection of Botulinum Neurotoxin-A into the Striatum. Int J Mol Sci 2023; 24:1685. [PMID: 36675200 PMCID: PMC9865012 DOI: 10.3390/ijms24021685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
In Parkinson's disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Collapse
Affiliation(s)
- Friederike Schümann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
- Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
9
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
10
|
Santis GD, Takeda N, Hirata K, Tsuruta K, Ishiuchi SI, Xantheas SS, Fujii M. Structure of Gas Phase Monohydrated Nicotine: Implications for Nicotine's Native Structure in the Acetylcholine Binding Protein. J Am Chem Soc 2022; 144:16698-16702. [PMID: 36043852 DOI: 10.1021/jacs.2c04064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a joint experimental-theoretical study of the never reported before structure and infrared spectra of gas phase monohydrated nicotine (NIC) and nornicotine (NOR) and use them to assign their protonation sites. NIC's biological activity is strongly affected by its protonation site, namely, the pyrrolidine (Pyrro-NICH+, anticipated active form) and pyridine (Pyri-NICH+) forms; however, these have yet to be directly experimentally determined in either the nicotinic acetylcholine receptor (nAChR, no water present) or the acetylcholine-binding protein (AChBP, a single water molecule is present) but can only be inferred to be Pyrro-NICH+ from the intermolecular distance to the neighboring residues (i.e., tryptophan). Our temperature-controlled double ion trap infrared spectroscopic experiments assisted by the collisional stripping method and high-level theoretical calculations yield the protonation ratio of Pyri:Pyrro = 8:2 at 240 K for the gas phase NICH+···(H2O) complex, which resembles the molecular cluster present in the AChBP. Therefore, a single water molecule in the gas phase enhances this ratio in NICH+ relative to the 3:2 for the nonhydrated gas phase NICH+ in a trend that contrasts with the almost exclusive presence of Pyrro-NICH+ in aqueous solution. In contrast, the Pyri-NORH+ protomer is exclusively observed, a fact that may correlate with its weaker biological activity.
Collapse
Affiliation(s)
- Garrett D Santis
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Naoya Takeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Kazuya Tsuruta
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,IIR Program for World Research (IPWR), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
11
|
Kapur S, Vaughan C, Hawkins J, Stebbins G, Hall D. Varenicline for the Treatment of Postural and Gait Dysfunction in Parkinson Disease. Neurol Clin Pract 2021; 11:457-461. [PMID: 34992953 DOI: 10.1212/cpj.0000000000000958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine whether varenicline is effective for the balance in Parkinson disease (PD). METHODS This was an investigator-initiated, double-blind, placebo-controlled study. Participants with a clinical diagnosis of PD were randomized to receive varenicline or placebo for 8 weeks. After dose escalation, participants took 1 mg of drug twice daily until the end of the study. Patients with severe tremor were excluded. Primary outcome was a change on the Berg Balance Scale (BBS) from baseline to 8 weeks. The BBS is a 14-item measure consisting of basic balance tasks. The study had a secondary, exploratory outcome of a change in cognition, measured with the Frontal Assessment Battery (FAB) and the Mini-Mental State Exam (MMSE) from baseline to 8 weeks. The FAB is a 6-item measure of executive functioning. RESULTS Thirty-six participants were randomized (82% men, 100% White). Average age was 71.0 years (± 8.1). Average baseline motor Movement Disorder Society Unified Parkinson's Disease Rating Scale was 34.7 (± 11.6). There were no differences between treatment groups on the BBS (F[1,28] = 2.85, p = 0.10) or FAB (d = 0.16, 95% confidence interval [CI] = [-1.39 to 1.53]) or MMSE (d = 0.81, 95% CI = [-0.40 to 1.40]). CONCLUSION The results did not suggest that varenicline had an effect on balance in patients with PD. Furthermore, varenicline did not seem to affect cognition. Perhaps, if an objective measure of balance had been used in place of the BBS, the analysis would show a difference between the groups. However, the authors do not recommend further study. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in patients with PD with Hoehn and Yahr stages 2, 3, or 4, varenicline does not improve balance as assessed by the BBS.
Collapse
Affiliation(s)
- Sachin Kapur
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Christina Vaughan
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Jacob Hawkins
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| |
Collapse
|
12
|
Caroff SN, Gutman AR, Northrop J, Leong SH, Berkowitz RM, Campbell EC. Effect of Varenicline on Tardive Dyskinesia: A Pilot Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:355-360. [PMID: 33888664 PMCID: PMC8077061 DOI: 10.9758/cpn.2021.19.2.355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Objective Although evidence implicates striatal cholinergic impairment as a mechanism underlying tardive dyskinesia, trials of nonspecific cholinergic agents have been inconclusive. As a partial agonist at specific nicotinic receptor subtypes, varenicline reduces drug-induced dyskinesias in animal models suggesting promise as a treatment for tardive dyskinesia. Methods Three schizophrenia patients with tardive dyskinesia who were smokers underwent an open trial of varenicline. After a 2-week baseline, subjects received varenicline 1 mg twice daily. Changes from baseline on the Abnormal Involuntary Movement Scale were measured after a 4-week varenicline stabilization period, and 6 weeks after the smoking quit date in one patient. Results Varenicline had no effect on mean Abnormal Involuntary Movement Scale scores after 4 weeks. Although smoking decreased after 4 weeks on varenicline and diminished further in one patient after 10 weeks, this also appeared to have no effect on ratings of tardive dyskinesia. Conclusion In contrast to animal models, no significant change in tardive dyskinesia occurred in response to varenicline replacement in three schizophrenia patients. Further investigations of cholinergic mechanisms in tardive dyskinesia are worthwhile as agents for specific cholinergic targets become available for treatment. In addition, treatment trials of tardive dyskinesia should control for smoking status, while patients on antipsychotics receiving nicotine replacement therapies for smoking should be studied further for changes in movement.
Collapse
Affiliation(s)
- Stanley N Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alisa R Gutman
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - John Northrop
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Shirley H Leong
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Rosalind M Berkowitz
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - E Cabrina Campbell
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Albin RL, Müller MLTM, Bohnen NI, Spino C, Sarter M, Koeppe RA, Szpara A, Kim K, Lustig C, Dauer WT. α4β2 * Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait-Balance Disorders. Ann Neurol 2021; 90:130-142. [PMID: 33977560 DOI: 10.1002/ana.26102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4β2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4β2* nAChR partial agonist varenicline. METHODS Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4β2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION Varenicline occupied α4β2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4β2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI
| | - Martijn L T M Müller
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Nicolaas I Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Cathie Spino
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Martin Sarter
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Ashley Szpara
- Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Cindy Lustig
- University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX.,Peter J. O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
14
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
15
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
16
|
Weltzin MM, George AA, Lukas RJ, Whiteaker P. Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures. PLoS One 2021; 16:e0247825. [PMID: 33657187 PMCID: PMC7928491 DOI: 10.1371/journal.pone.0247825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of seizure disorders prominently associated with mutations in nicotinic acetylcholine receptors (nAChR). The most prevalent central nervous system nAChR subtype contains α4 and β2 subunits, in two ratios. (α4β2)2β2-nAChR have high agonist sensitivity (HS-isoform), whereas (α4β2)2α4-nAChR agonist responses exhibit a small high-sensitivity, and a predominant low-sensitivity, phase of function (LS-isoform). Multiple non-synonymous mutations in the second and third transmembrane domains of α4 and β2 subunits are associated with SHE. We recently demonstrated that two additional, SHE-associated, missense mutations in the major cytoplasmic loops of these subunits [α4(R336H) and β2(V337G)] cause increased macroscopic function-per receptor. Here, we use single-channel patch-clamp electrophysiology to show that these mutations influence single-channel amplitudes and open- and closed-state kinetics. Pure populations of HS- or LS-isoform α4β2-nAChR were expressed by injecting either 1:10 or 30:1 α4:β2 cRNA ratios, respectively, into Xenopus laevis oocytes. Functional properties of the resulting mutant α4β2-nAChR isoforms were compared to their wildtype counterparts. α4(R336H) subunit incorporation minimally affected single-channel amplitudes, whereas β2(V337G) subunit incorporation reduced them significantly in both isoforms. However, for both mutant subunits, increased function-per-receptor was predominantly caused by altered single channel kinetics. The α4(R336H) mutation primarily destabilizes desensitized states between openings. By contrast, the β2(V337G) mutation principally stabilizes receptor open states. The use of naturally-occurring and physiologically-impactful mutations has allowed us to define valuable new insights regarding the functional roles of nAChR intracellular domains. Further mechanistic context is provided by intracellular-domain structures recently published for other members of the Cys-loop receptor superfamily (α3β4-nAChR and 5-HT3AR).
Collapse
Affiliation(s)
- Maegan M. Weltzin
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Andrew A. George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
17
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
18
|
Caroff SN. Recent Advances in the Pharmacology of Tardive Dyskinesia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2020; 18:493-506. [PMID: 33124584 PMCID: PMC7609206 DOI: 10.9758/cpn.2020.18.4.493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome of abnormal involuntary movements that follows treatment with dopamine D2-receptor antagonists. Recent approval of vesicular monoamine transporter-2 (VMAT2) inhibitors offers hope for reducing the impact of TD. Although these drugs represent a significant advance in patient care and a practical step forward in providing relief for patients with TD, understanding of the pharmacology of TD that could inform future research to prevent and reverse TD remains incomplete. This review surveys evidence for the effectiveness of VMAT2 inhibitors and other agents in the context of theories of pathogenesis of TD. In patients for whom VMAT2 inhibitors are ineffective or intolerable, as well as for extending therapeutic options and insights regarding underlying mechanisms, a review of clinical trial results examined as experimental tests of etiologic hypotheses is worthwhile. There are still compelling reasons for further investigations of the pharmacology of TD, which could generate alternative preventive and potentially curative treatments. Finally, benefits from novel drugs are best realized within an overall treatment strategy addressing the condition and needs of individual patients.
Collapse
Affiliation(s)
- Stanley N. Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center and the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Liu F, Tao X, Pang G, Wu D, Hu Y, Xue S, Liu J, Li B, Zhou L, Liu Q, Zhang YM. Maternal Nicotine Exposure During Gestation and Lactation Period Affects Behavior and Hippocampal Neurogenesis in Mouse Offspring. Front Pharmacol 2020; 10:1569. [PMID: 32038246 PMCID: PMC6987079 DOI: 10.3389/fphar.2019.01569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/04/2019] [Indexed: 12/04/2022] Open
Abstract
Cigarette smoking or nicotine exposure during pregnancy is associated with numerous obstetrical, fetal, and developmental complications, as well as an increased risk of adverse health consequences in the adult offspring. In this study, we examined the effects of maternal nicotine exposure during perinatal and lactation stages on behavioral performance and hippocampal neurogenesis in the adolescent stage of offspring mice. Female C57BL/mice received nicotine in drinking water (200 μg/ml nicotine) or vehicle (1% saccharin) starting from 2 weeks premating until the offspring were weaned on postnatal day 20. Experiments started on postnatal day 35. Female offspring with maternal nicotine exposure presented an increase in anxiety-like behavior in an open-field test. BrdU assay revealed that nicotine offspring presented an increase in cell proliferation in hippocampal dentate gyrus, but the number of BrdU+ cells was decreased in one week and further decreased in three weeks. The occurrence of disarray of DCX+ cells increased in both male and female nicotine offspring. The density of microglial marker protein Iba1 was significantly increased in the nicotine offspring. Furthermore, the expression of microglia marker Iba1, the CX3CL1, CX3CR1, and downstream molecules PKA and p-ErK were significantly increased in the nicotine group. In summary, maternal nicotine exposure affects both hippocampal neurogenesis and microglial activity in the adolescent offspring.
Collapse
Affiliation(s)
- Fei Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Xinrong Tao
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Purification and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Gang Pang
- College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Diqing Wu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Yuting Hu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Song Xue
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, China
| | - Jing Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Bing Li
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Li Zhou
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Qiang Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Liu H, Kotova TI, Timko MP. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco ( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E930. [PMID: 31739571 PMCID: PMC6896058 DOI: 10.3390/genes10110930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.
Collapse
Affiliation(s)
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (H.L.); (T.I.K.)
| |
Collapse
|
21
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
22
|
Newhouse PA. Therapeutic Applications of Nicotinic Stimulation: Successes, Failures, and Future Prospects. Nicotine Tob Res 2019; 21:345-348. [PMID: 30203054 DOI: 10.1093/ntr/nty189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN.,US Department of Veterans Affairs, Tennessee Valley Health Systems, Geriatric Research Education and Clinical Center, Nashville, TN
| |
Collapse
|