1
|
Bulut O, Topaloglu SC, Bulut N, Hocaoglu M, Arslanoglu S. Impact of breast milk on cortical pain response in newborns during the heel prick procedure: a randomized controlled trial. J Perinatol 2024; 44:1675-1681. [PMID: 39134667 PMCID: PMC11518980 DOI: 10.1038/s41372-024-02081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE To investigate the effects of breast milk on cortical pain response and behavioral response in newborns during heel-prick procedure. STUDY DESIGN A prospective, randomized controlled trial was conducted on healty-term newborns, undergoing heel blood sampling. Infants were randomly assigned to study group with receive orally 2 ml breast milk (n = 45) or a control group with no intervention (n = 45). A near-infrared spectroscopy device was used to monitor regional cerebral oxygen saturation (rScO2), while neonatal pain expression was assessed by Neonatal Pain, Agitation, and Sedation Scale (N-PASS). RESULTS The N-PASS score (p = 0.001) and the crying time (p = 0.017) were significantly lower in the study group compared to the control group. Although the mean rScO2 values decreased in both groups during the procedure, the percent change in rScO2 was not significant difference between two groups. CONCLUSION Breast milk administration decreases behavioral responses to a noxious stimulus without reducing the cortical response to pain. CLINICAL TRIAL REGISTRATION This trial was registered under ClinicalTrials.gov identifier no. NCT05961904.
Collapse
Affiliation(s)
- Ozgul Bulut
- Department of Pediatrics, Division of Neonatology, Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman Yalcın City Hospital, Istanbul, Turkey.
| | - Seyma Cagla Topaloglu
- Department of Pediatrics, Division of Neonatology, Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman Yalcın City Hospital, Istanbul, Turkey
| | - Nurgul Bulut
- Department of Biostatistics and Medical Informatics, Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman Yalcın City Hospital, Istanbul, Turkey
| | - Meryem Hocaoglu
- Department of Obstetrics and Gynecology, Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman Yalcın City Hospital, Istanbul, Turkey
| | - Sertac Arslanoglu
- Department of Pediatrics, Division of Neonatology, Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman Yalcın City Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Nixarlidou E, Margioula-Siarkou C, Almperis A, Vavoulidis E, Laganà AS, Dinas K, Petousis S. Clinical significance and main parameters promoting the breast‑feeding strategy (Review). MEDICINE INTERNATIONAL 2024; 4:14. [PMID: 38410759 PMCID: PMC10895466 DOI: 10.3892/mi.2024.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Breastfeeding provides numerous nutritional and immunological benefits, promotes neurological and cognitive development, and protects against chronic and infectious diseases, rendering it beneficial to the survival and well-being of infants. According to international recommendations, infants should be exclusively breastfed for the first 6 months. However, despite global health recommendations and funding initiatives, exclusive breastfeeding rates remain low worldwide. A number of studies attribute the low rates to factors that can be grouped into demographic, psychosocial, economic and midwifery factors, and outline the profile of each mother who opts to exclusively breastfeed her infant. In addition, the number of previous pregnancies, induced labor, the use of epidurals at birth or the possibility of the newborn being delivered prematurely, and the need for admission to an intensive care unit are the factors that reduce the likelihood of exclusive breastfeeding. Further research is required to understand the factors influencing the initiation and maintenance of exclusive breastfeeding, as international interventions have been ineffective. The aim of the present review was to provide an up-to-date summary of these various factors in an aim to assist health care professionals and policy makers in developing effective interventions with which to promote and support exclusive breastfeeding.
Collapse
Affiliation(s)
- Eleni Nixarlidou
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| | - Chrysoula Margioula-Siarkou
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| | - Aristarchos Almperis
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS 'Civico-Di Cristina-Benfratelli', Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, I-90127 Palermo, Italy
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54624 Thessaloniki, Greece
| |
Collapse
|
3
|
Monaco MH, Wang M, Hauser J, Yan J, Dilger RN, Donovan SM. Formula supplementation with human and bovine milk oligosaccharides modulates blood IgG and T-helper cell populations, and ex vivo LPS-stimulated cytokine production in a neonatal preclinical model. Front Immunol 2023; 14:1327853. [PMID: 38179055 PMCID: PMC10765566 DOI: 10.3389/fimmu.2023.1327853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Human milk contains structurally diverse oligosaccharides (HMO), which are multifunctional modulators of neonatal immune development. Our objective was to investigate formula supplemented with fucosylated (2'FL) + neutral (lacto-N-neotetraose, LNnt) oligosaccharides and/or sialylated bovine milk oligosaccharides (BMOS) on immunological outcomes. Methods Pigs (n=46) were randomized at 48h of age to four diets: sow milk replacer formula (CON), BMOS (CON + 6.5 g/L BMOS), HMO (CON + 1.0 g/L 2'FL + 0.5 g/L LNnT), or BMOS+HMO (CON + 6.5 g/L BMOS + 1.0 g/L 2'FL + 0.5 g/L LNnT). Blood and tissues were collected on postnatal day 33 for measurement of cytokines and IgG, phenotypic identification of immune cells, and ex vivo lipopolysaccharide (LPS)-stimulation of immune cells. Results Serum IgG was significantly lower in the HMO group than BMOS+HMO but did not differ from CON or BMOS. The percentage of PBMC T-helper cells was lower in BMOS+HMO than the other groups. Splenocytes from the BMOS group secreted more IL-1β when stimulated ex vivo with LPS compared to CON or HMO groups. For PBMCs, a statistical interaction of BMOS*HMO was observed for IL-10 secretion (p=0.037), with BMOS+HMO and HMO groups differing at p=0.1. Discussion The addition of a mix of fucosylated and sialylated oligosaccharides to infant formula provides specific activities in the immune system that differ from formulations supplemented with one oligosaccharide structure.
Collapse
Affiliation(s)
- Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Xue S, Abdullahi R, Wu N, Zheng J, Su M, Xu M. Gut microecological regulation on bronchiolitis and asthma in children: A review. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:975-985. [PMID: 37105551 PMCID: PMC10542989 DOI: 10.1111/crj.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/22/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Asthma and bronchiolitis in children are considered common clinical problems associated with gut microbiota. However, the exact relationship between gut microbiota and the above-mentioned diseases remains unclear. Here, we discussed recent advances in understanding the potential mechanism underlying immune regulation of gut microbiota on asthma and bronchiolitis in children as well as the role of the gut-lung axis. METHODS We retrieved and assessed all relevant original articles related to gut microbiota, airway inflammation-induced wheezing in children, and gut-lung axis studies from databases that have been published so far, including PubMed/MEDLINE, Scopus, Google Scholar, China National Knowledge Infrastructure (CNKI) and the Wanfang Database. RESULTS The infant period is critical for the development of gut microbiota, which can be influenced by gestational age, delivery mode, antibiotic exposure and feeding mode. The gut microbiota in children with asthma and bronchiolitis is significantly distinct from those in healthy subjects. Gut microbiota dysbiosis is implicated in asthma and bronchiolitis in children. The presence of intestinal disturbances in lung diseases highlights the importance of the gut-lung axis. CONCLUSION Gut microbiota dysbiosis potentially increases the risk of asthma and bronchiolitis in children. Moreover, a deeper understanding of the gut-lung axis with regard to the gut microbiota of children with respiratory diseases could contribute to clinical practice for pulmonary diseases.
Collapse
Affiliation(s)
- Sichen Xue
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Rukkaiya Abdullahi
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Naisheng Wu
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jishan Zheng
- Department of PediatricsThe Ningbo Women and Children's HospitalNingboChina
| | - Miaoshang Su
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Manhuan Xu
- College of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
5
|
Marousez L, Ichou F, Lesnik P, Tran LC, De Lamballerie M, Gottrand F, Ley D, Lesage J. Short-chain fatty acids levels in human milk are not affected by holder pasteurization and high hydrostatic pressure processing. Front Pediatr 2023; 11:1120008. [PMID: 37842027 PMCID: PMC10570738 DOI: 10.3389/fped.2023.1120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Sterilized donor milk (DM) is frequently used for feeding preterm infants. To date, the effect of different modes of DM sterilization on short-chain fatty acids (SCFAs) remains unknown. We aimed to quantify SCFAs in DM samples after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. Eight pooled DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). Raw DM was used as control. Six SCFAs were quantified by gas chromatography/mass spectrometry. Compared to raw milk, both HoP and HP treatment did not significantly modulate the concentration of acetate, butyrate, propionate and isovalerate in DM. Valerate and isobutyrate were undetectable in DM samples. In conclusion, both HoP and HP processing preserved milk SCFAs at their initial levels in raw human milk.
Collapse
Affiliation(s)
- Lucie Marousez
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | - Farid Ichou
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Léa Chantal Tran
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | | | - Frédéric Gottrand
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Delphine Ley
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Jean Lesage
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| |
Collapse
|
6
|
Douglas P. Does the Academy of Breastfeeding Medicine's Clinical Protocol #36 'The Mastitis Spectrum' promote overtreatment and risk worsened outcomes for breastfeeding families? Commentary. Int Breastfeed J 2023; 18:51. [PMID: 37670315 PMCID: PMC10481477 DOI: 10.1186/s13006-023-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND In 2022 the Academy of Breastfeeding Medicine (ABM) published Clinical Protocol #36: The Mastitis Spectrum, which aims to update clinical approaches to management of benign lactation-related breast inflammation. The protocol has been timely because of the exponential increase in knowledge about the human milk microbiome over the past decade. This Commentary aims to continue respectful debate amongst clinicians and researchers within the Academy of Breastfeeding Medicine and more broadly, confident that we share a fundamental commitment to promote breastfeeding and support the well-being of lactating women, their infants and their families. ANALYSIS Although Clinical Protocol #36 offers advances, it does not fulfil the principles of best practice implementation science for translation of evidence into clinical guidelines. Clinical Protocol #36 inaccurately represents studies; misrepresents theoretical models as proven aetiologies; does not consistently attribute sources; does not reliably apply the SORT taxonomy; and relies upon single case reports. As a result, various recommendations in Clinical Protocol #36 lack an evidence-base or credible underlying theoretical model. This includes recommendations to use 'lymphatic drainage' massage, therapeutic ultrasound, and oral lecithin. Similarly, based on a contestable theoretical model which is presented as fact, Clinical Protocol #36 makes the recommendation to either reduce frequency of milk removal or to maintain current frequency of milk removal during an episode of breast inflammation. Although Clinical Protocol #36 limits this advice to cases of 'hyperlactation', the diagnosis 'hyperlactation' itself is undefinable. As a result, this recommendation may put breastfeeding women who present with breast inflammation at risk of worsened inflammation and decreased breast milk production. CONCLUSION Clinical Protocol #36 offers some advances in the management of breast inflammation. However, Clinical Protocol #36 also exposes clinicians to two international trends in healthcare which undermine health system sustainability: overdiagnosis, including by over-definition, which increases risk of overtreatment; and antibiotic over-use, which worsens the crisis of global antimicrobial resistance. Clinical Protocol #36 also recommends unnecessary or ineffective interventions which may be accessed by affluent patients within advanced economies but are difficult to access for the global majority. The Academy of Breastfeeding Medicine may benefit from a review of processes for development of Clinical Protocols.
Collapse
Affiliation(s)
- Pamela Douglas
- The School of Nursing and Midwifery, Griffith University, Brisbane, Australia.
- General Practice Clinical Unit, The University of Queensland, Brisbane, Australia.
- Medical Director, The NDC Institute, ndcinstitute.com.au, Brisbane, Australia.
| |
Collapse
|
7
|
Tomaszewska A, Jeleniewska A, Porębska K, Królikowska K, Rustecka A, Lipińska-Opałka A, Będzichowska A, Zdanowski R, Aleksandrowicz K, Kloc M, Kalicki B. Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk. Nutrients 2023; 15:3844. [PMID: 37686876 PMCID: PMC10490220 DOI: 10.3390/nu15173844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Recent studies suggest that the content of immune components in milk is influenced by the mother's health and also by the infant she feeds. We aimed to evaluate the effect of a child's respiratory tract infection on the cellular composition of breast milk (neutrophils, monocytes, eosinophils, lymphocytes, and their subpopulations). Twenty-six breastfeeding mothers whose children were hospitalized for respiratory tract infections were enrolled in the study. The control group consisted of 23 mothers of healthy children. Regarding the children, baseline laboratory blood tests were performed, and nasal swabs were taken for the presence of RS virus. In the next step, milk samples were collected from the mothers to assess the cellular composition of the milk, including neutrophils, monocytes, eosinophils, lymphocytes, and their subpopulations. Significantly higher percentages of T lymphocytes (helper and cytotoxic lymphocytes) were observed in the milk of the studied mothers. There was a significantly higher percentage of milk lymphocytes in the group of affected children with confirmed RSV etiology than in children with excluded RSV etiology. A significant positive correlation was observed between the duration of infection and the percentage of milk NK cells and between milk CD19 lymphocytes and the child's serum leukocytosis. This study may provide evidence of a link between cells in breast milk and disease in the breastfed infant. The severity of the infection, its duration, and the etiological agent of the infection may affect the cellular composition of milk.
Collapse
Affiliation(s)
- Agata Tomaszewska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Alicja Jeleniewska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Klaudia Porębska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Katarzyna Królikowska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agnieszka Rustecka
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agnieszka Lipińska-Opałka
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agata Będzichowska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Karolina Aleksandrowicz
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Małgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bolesław Kalicki
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| |
Collapse
|
8
|
Trabulsi JC, Lessen R, Siemienski K, Delahanty MT, Rickman R, Papas MA, Rovner A. Relationship Between Human Milk Feeding Patterns and Growth in the First Year of Life in Infants with Congenital Heart Defects. Pediatr Cardiol 2023; 44:882-891. [PMID: 36282285 DOI: 10.1007/s00246-022-03023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to determine the relationship between patterning of human milk feeding and growth of infants with congenital heart defects in the first year of life. Inclusion criteria for this prospective cohort study included infants 0-21 days, who had undergone or had planned neonatal corrective or palliative surgery prior to hospital discharge, and whose mothers planned to feed human milk. Data on anthropometric measures (weight, length, head circumference) and infant milk type (human milk, formula, other) were collected at nine time points (0.5, 1, 2, 3, 4, 6, 8, 10, 12 months). Anthropometric data were converted to weight-for-age, length-for-age, head circumference-for-age, and weight-for-length Z-scores using World Health Organization growth reference data. Cluster analysis identified three milk type feeding patterns in the first year: Infants fed human milk only with no formula supplementation, infants fed human milk who then transitioned to a mix of human milk and formula, and infants who fed human milk and transitioned to formula only. General linear models assessed the effect of milk type feeding patterns on growth parameters over time. No effect of milk type pattern × time was found on longitudinal changes in weight-for-age (p for interaction = 0.228), length-for-age (p for interaction = 0.173), weight-for-length (p for interaction = 0.507), or head circumference-for-age (p for interaction = 0.311) Z-scores. In this cohort study, human milk alone or combined with infant formula supported age-appropriate growth in infants with congenital heart defects in the first year.
Collapse
Affiliation(s)
- Jillian C Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, 318 STAR Tower, 100 Discovery Blvd., Newark, DE, 19713, USA.
| | - Rachelle Lessen
- Lactation Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Siemienski
- Clinical Nutrition, Christiana Care, Avenue North, 4000 Nexus Drive, Wilmington, DE, 19803, USA
| | - Michelle T Delahanty
- Department of Behavioral Health and Nutrition, University of Delaware, 318 STAR Tower, 100 Discovery Blvd., Newark, DE, 19713, USA
| | - Rachel Rickman
- Department of Nutritional Sciences, University of Texas - Austin, Austin, TX, 78705, USA
| | - Mia A Papas
- Institute for Research on Equity and Community Health, Christiana Care, 4755 Ogletown-Stanton Road, Newark, DE, 19718, USA
| | - Alisha Rovner
- Department of Behavioral Health and Nutrition, University of Delaware, 318 STAR Tower, 100 Discovery Blvd., Newark, DE, 19713, USA
| |
Collapse
|
9
|
Pieri M, Nicolaidou V, Papaneophytou C. Special Issue: The Impact of Early Life Nutrition on Gut Maturation and Later Life Gut Health. Nutrients 2023; 15:nu15061498. [PMID: 36986228 PMCID: PMC10058133 DOI: 10.3390/nu15061498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Nutrition during early life plays a crucial role in determining a child's long-term health [...].
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
10
|
Cheung KY, Petrou L, Helfer B, Porubayeva E, Dolgikh E, Ali S, Ali I, Archibald-Durham L, Brockway MM, Bugaeva P, Chooniedass R, Comberiati P, Cortés-Macías E, D'Elios S, Feketea G, Hsu P, Kana MA, Kriulina T, Kunii Y, Madaki C, Omer R, Peroni D, Prokofiev J, Simpson MR, Shimojo N, Siziba LP, Genuneit J, Thakor S, Waris M, Yuan Q, Zaman S, Young BE, Bugos B, Greenhawt M, Levin ME, Zheng J, Boyle RJ, Munblit D. Health and nutrition claims for infant formula: international cross sectional survey. BMJ 2023; 380:e071075. [PMID: 36792145 PMCID: PMC9930154 DOI: 10.1136/bmj-2022-071075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVES To review available health and nutrition claims for infant formula products in multiple countries and to evaluate the validity of the evidence used for substantiation of claims. DESIGN International cross sectional survey. SETTING Public facing and healthcare professional facing company owned or company managed formula industry websites providing information about products marketed for healthy infants delivered at full term in 15 countries: Australia, Canada, Germany, India, Italy, Japan, Nigeria, Norway, Pakistan, Russia, Saudi Arabia, South Africa, Spain, the United Kingdom, and the United States in 2020-22. MAIN OUTCOME MEASURES Number and type of claims made for each product and ingredient. References cited were reviewed and risk of bias was assessed for registered clinical trials using the Cochrane risk of bias tool, and for systematic reviews using the Risk Of Bias in Systematic reviews tool. RESULTS 757 infant formula products were identified, each with a median of two claims (range from 1 (Australia) to 4 (US)), and 31 types of claims across all products. Of 608 products with ≥1 claims, the most common claim types were "helps/supports development of brain and/or eyes and/or nervous system" (323 (53%) products, 13 ingredients), "strengthens/supports a healthy immune system" (239 (39%) products, 12 ingredients), and "helps/supports growth and development" (224 (37%) products, 20 ingredients). 41 groups of ingredients were associated with ≥1claims, but many claims were made without reference to a specific ingredient (307 (50%) products). The most common groups of ingredients cited in claims were long chain polyunsaturated fatty acids (278 (46%) products, 9 different claims); prebiotics, probiotics, or synbiotics (225 (37%) products, 19 claims); and hydrolysed protein (120 (20%) products, 9 claims). 161/608 (26%) products with ≥1 claims provided a scientific reference to support the claim-266 unique references were cited for 24 different claim types for 161 products. The reference types most frequently cited were clinical trials (50%, 134/266) and reviews (20%, 52/266). 28% (38/134) of referenced clinical trials were registered, 14% (19/134) prospectively. 58 claims referred to 32 registered clinical trials, of which 51 claims (27 trials) related to a randomised comparison. 46 of 51 claims (90%) referenced registered clinical trial outcomes at high risk of bias, and all cited systematic reviews and pooled analyses, carried a high risk of bias. CONCLUSIONS Most infant formula products had at least one health and nutrition claim. Multiple ingredients were claimed to achieve similar health or nutrition effects, multiple claims were made for the same ingredient type, most products did not provide scientific references to support claims, and referenced claims were not supported by robust clinical trial evidence.
Collapse
Affiliation(s)
- Ka Yan Cheung
- Faculty of Medicine, Imperial College London, London, UK
| | - Loukia Petrou
- Faculty of Medicine, Imperial College London, London, UK
| | - Bartosz Helfer
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Meta Research Centre, University of Wroclaw, Wroclaw, Poland
| | - Erika Porubayeva
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Elena Dolgikh
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Sana Ali
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Insaf Ali
- College of Medicine, King Faisal University, Kingdom Saudi Arabia
| | - Lindsay Archibald-Durham
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Polina Bugaeva
- Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rishma Chooniedass
- School of Nursing, Faculty of Health and Social Development, University of British Columbia, Kelowna, Winnipeg, BC, Canada
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Erika Cortés-Macías
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain
| | - Sofia D'Elios
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Gavriela Feketea
- Department of Pediatrics, Pediatric Allergy Outpatient Clinic, "Karamandaneio," Children Hospital, Patras, Greece
- Department of Pharmacology, "luliu Hatieganu" University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Peter Hsu
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Musa Abubakar Kana
- Department of Community Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
| | - Tatiana Kriulina
- Department of Paediatrics and Paediatric Rheumatology, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yuzuka Kunii
- Centre for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Comfort Madaki
- Kaduna Infant Development (KID) Birth Cohort Study Project, Kaduna, Nigeria
| | - Rihab Omer
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | | | - Melanie Rae Simpson
- Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
| | - Naoki Shimojo
- Centre for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Linda P Siziba
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sohini Thakor
- Faculty of Medicine, Imperial College London, London, UK
| | - Marium Waris
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Quan Yuan
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sadia Zaman
- Faculty of Medicine, Imperial College London, London, UK
| | - Bridget E Young
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brighid Bugos
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew Greenhawt
- Department of Pediatrics, Section of Allergy/Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael E Levin
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Jonathan Zheng
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Daniel Munblit
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| |
Collapse
|
11
|
Chen YY, Tun HM, Field CJ, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. Impact of Cesarean Delivery and Breastfeeding on Secretory Immunoglobulin A in the Infant Gut Is Mediated by Gut Microbiota and Metabolites. Metabolites 2023; 13:metabo13020148. [PMID: 36837767 PMCID: PMC9959734 DOI: 10.3390/metabo13020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
How gut immunity in early life is shaped by birth in relation to delivery mode, intrapartum antibiotic prophylaxis (IAP) and labor remains undetermined. We aimed to address this gap with a study of secretory Immunoglobulin A (SIgA) in the infant gut that also tested SIgA-stimulating pathways mediated by gut microbiota and metabolites. Among 1017 Canadian full-term infants, gut microbiota of fecal samples collected at 3 and 12 months were profiled using 16S rRNA sequencing; C. difficile was quantified by qPCR; fecal metabolites and SIgA levels were measured by NMR and SIgA enzyme-linked immunosorbent assay, respectively. We assessed the putative causal relationships from birth events to gut microbiota and metabolites, and ultimately to SIgA, in statistical sequential mediation models, adjusted for maternal gravida status in 551 infants. As birth mode influences the ability to breastfeed, the statistical mediating role of breastfeeding status and milk metabolites was also evaluated. Relative to vaginal birth without maternal IAP, cesarean section (CS) after labor was associated with reduced infant gut SIgA levels at 3 months (6.27 vs. 4.85 mg/g feces, p < 0.05); this association was sequentially mediated through gut microbiota and metabolites of microbial or milk origin. Mediating gut microbiota included Enterobacteriaceae, C. difficile, and Streptococcus. The milk or microbial metabolites in CS-SIgA mediating pathways were galactose, fucose, GABA, choline, lactate, pyruvate and 1,2-propanediol. This cohort study documented the impact of birth on infant gut mucosal SIgA. It is the first to characterize gut microbe-metabolite mediated pathways for early-life SIgA maturation, pathways that require experimental verification.
Collapse
Affiliation(s)
- Yuan Yao Chen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hein M. Tun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Piushkumar J. Mandhane
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Theo J. Moraes
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Padmaja Subbarao
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: ; Tel.: +1-780-248-5508
| |
Collapse
|
12
|
Feketea G, Lakoumentas J, Konstantinou GN, Douladiris N, Papadopoulos NG, Petrodimopoulou M, Tasios I, Valianatou M, Vourga V, Vassilopoulou E. Dietary Factors May Delay Tolerance Acquisition in Food Protein-Induced Allergic Proctocolitis. Nutrients 2023; 15:425. [PMID: 36678296 PMCID: PMC9862452 DOI: 10.3390/nu15020425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Dietary and environmental factors may influence tolerance acquisition in food protein-induced allergic proctocolitis (FPIAP). This retrospective observational study explored the role of maternal diet during pregnancy and breastfeeding in tolerance acquisition in infantile FPIAP. METHODS Breastfed infants with FPIAP from six diverse regions in Greece were divided into two groups, based on development of tolerance to the trigger food: Group A (n = 43), before, and Group B (n = 53), after, the 6th month of age. Maternal diet during pregnancy and breastfeeding was elicited using the Mediterranean Diet Score Questionnaire and the Mediterranean Oriented Culture Specific Semi-Quantitative Food Frequency Questionnaire. RESULTS Mean age at diagnosis of FPIAP (1.5 months) and weaning (5.5 months) were the same in both groups. The main trigger was cow's milk. Group A received infant milk formula earlier than Group B. Group B had a higher incidence of asthma/wheeze, siblings with milk allergy, maternal smoking and rural residence. On multivariate analysis, earlier resolution of FPIAP was associated with higher maternal education and with salt intake and consumption of goat/sheep cheese during pregnancy and olive oil during breastfeeding. Consumption of multivitamins during pregnancy and meat, winter fruits, green vegetables, butter, salt, "ready-to-eat" meals and pastries during breastfeeding were correlated with longer duration of symptoms. CONCLUSIONS Mothers of children with FPIAP to cow's milk protein can be advised to eat more yogurt, cheese and olive oil during subsequent pregnancies, and avoid multivitamins, grilled food, "ready-to-eat" meals, pastries, meat and alcohol during breastfeeding, to reduce the duration of FPIAP presenting in future infants.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, “luliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- “Karamandaneio” Children’s Hospital of Patra, 26331 Patra, Greece
| | - John Lakoumentas
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George N. Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | - Nikolaos Douladiris
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Petrodimopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Ioannis Tasios
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Mina Valianatou
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Vourga
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
13
|
Fibbiani M, Ghelli Luserna DI Rorà L, Novelli T, Peroni DG. The impact of human milk oligosaccharides on health from infancy to childhood. Minerva Pediatr (Torino) 2022; 74:724-732. [PMID: 36178339 DOI: 10.23736/s2724-5276.22.07037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human milk oligosaccharides (HMOs) act as prebiotics in the infant's gut and contribute to the relationship among the host and the gut microbiota. HMO are greatly present in the human milk and their benefit may include: reinforcement of the immune system with a better immune response to infective agents, improved resistance to infections of the gut, immunomodulation against food allergies, asthma, and atopic dermatitis and finally decreased the risk of chronic diseases. In this narrative review will discuss evidence present in literature regarding HMOs in human milk and their supplementation in infant formula.
Collapse
Affiliation(s)
- Martina Fibbiani
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Tommaso Novelli
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy -
| |
Collapse
|
14
|
Zielinska-Pukos MA, Bryś J, Kucharz N, Chrobak A, Wesolowska A, Grabowicz-Chądrzyńska I, Hamulka J. Factors Influencing Cortisol Concentrations in Breastmilk and Its Associations with Breastmilk Composition and Infant Development in the First Six Months of Lactation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214809. [PMID: 36429527 PMCID: PMC9690377 DOI: 10.3390/ijerph192214809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/14/2023]
Abstract
Previous studies provided contradictory results regarding the influence of maternal, seasonal, and infant factors on breastmilk cortisol, and its associations with breastmilk composition and infant development. This study aimed to assess breastmilk cortisol levels at the first, third, and sixth months of lactation and evaluate the associations with maternal psychosocial, seasonal, and infant factors, breastmilk composition, and infant anthropometric and psychomotor development and temperament. Cortisol concentrations were assessed by ELISA in 24 h breastmilk samples obtained from 38 healthy mothers. Maternal psychological status was assessed by EPDS and PSS-10 and infant psychomotor development was assessed using the Children's Development Scale (DSR). Breastmilk cortisol was 11.2 ± 6.2, 11.2 ± 4.3, and 12.7 ± 6.2 ng/mL at the first, third, and sixth months of lactation (p > 0.05), respectively. In the spring-summer season, we observed lower and higher levels of cortisol in the first and sixth months of lactation (p ≤ 0.05), respectively, but no other associations were detected regarding maternal or infant characteristics. In the third month of lactation, cortisol was related to breastmilk crude protein (β = 0.318, 0.007-0.630) and infant BMI z-score before adjustment for infant birthweight and sex (Model 2: β = 0.359, 0.021-0.697), but no other associations with breastmilk composition, infant development, or temperament were confirmed. Our results indicated that breastmilk cortisol is unrelated to maternal and infant factors and has limited influence on breastmilk crude protein, but not on infant anthropometric and psychomotor development.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Natalia Kucharz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Agnieszka Chrobak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Aleksandra Wesolowska
- Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Department of Neonatology, Faculty of Life Sciences, Medical University of Warsaw, Litewska 14/16 Str., 00-575 Warsaw, Poland
| | | | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| |
Collapse
|
15
|
Rey-Mariño A, Francino MP. Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutrients 2022; 14:nu14204316. [PMID: 36297000 PMCID: PMC9609088 DOI: 10.3390/nu14204316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The process of gut microbiota development in infants is currently being challenged by numerous factors associated with the contemporary lifestyle, including diet. A thorough understanding of all aspects of microbiota development will be necessary for engineering strategies that can modulate it in a beneficial direction. The long-term consequences for human development and health of alterations in the succession pattern that forms the gut microbiota are just beginning to be explored and require much further investigation. Nevertheless, it is clear that gut microbiota development in infancy bears strong associations with the risk for allergic disease. A useful understanding of microbial succession in the gut of infants needs to reveal not only changes in taxonomic composition but also the development of functional capacities through time and how these are related to diet and various environmental factors. Metagenomic and metatranscriptomic studies have started to produce insights into the trends of functional repertoire and gene expression change within the first year after birth. This understanding is critical as during this period the most substantial development of the gut microbiota takes place and the relations between gut microbes and host immunity are established. However, further research needs to focus on the impact of diet on these changes and on how diet can be used to counteract the challenges posed by modern lifestyles to microbiota development and reduce the risk of allergic disease.
Collapse
Affiliation(s)
- Alejandra Rey-Mariño
- Genomics and Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 València, Spain
| | - M. Pilar Francino
- Genomics and Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
MilkyBase, a database of human milk composition as a function of maternal-, infant- and measurement conditions. Sci Data 2022; 9:557. [PMID: 36085296 PMCID: PMC9463137 DOI: 10.1038/s41597-022-01663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/24/2022] [Indexed: 01/15/2023] Open
Abstract
This study describes the development of a database, called MilkyBase, of the biochemical composition of human milk. The data were selected, digitized and curated partly by machine-learning, partly manually from publications. The database can be used to find patterns in the milk composition as a function of maternal-, infant- and measurement conditions and as a platform for users to put their own data in the format shown here. The database is an Excel workbook of linked sheets, making it easy to input data by non-computationally minded nutritionists. The hierarchical organisation of the fields makes sure that statistical inference methods can be programmed to analyse the data. Uncertainty quantification and recording dynamic (time-dependent) compositions offer predictive potentials. Measurement(s) | Concentration of biochemical compounds in human milk or/and derived quantities, like their sums or ratios. | Technology Type(s) | Data mining, by means of Machine Learning and targeted manual literature search within available scientific publications in the internet. | Factor Type(s) | Georgaphical region • Cohort size • Measurement Method • Various characteristics (including history) of mother, child, breast milk and measurement | Sample Characteristic - Organism | Human milk | Sample Characteristic - Environment | Standard birth environment | Sample Characteristic - Location | Various regions of the world |
Collapse
|
17
|
Li S, Li N, Wang C, Zhao Y, Cao J, Li X, Zhang Z, Li Y, Yang X, Wang X, Che C, Zhao Y, Wang L, Zhao L, Shen J. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains. Front Nutr 2022; 9:798403. [PMID: 35273986 PMCID: PMC8901577 DOI: 10.3389/fnut.2022.798403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Human breast milk Streptococcus spp. are transferred to infant guts via breast feeding, but their effects on the gut microbiota and immunity remain unclear. In this study, we characterized gut microbiota and immune modulatory properties of human breast milk S. salivarius F286 and S. parasanguinis F278 that had been shown to be able to colonize gut. The two Streptococcus strains were orally administered to mouse pups individually at 1 × 107 cells/day from postnatal Days 1 to 21. At postnatal week 3 (the weaning period), S. salivarius F286 reduced the colonic microbiota α-diversity, increased 21 amplicon sequence variants (ASVs), including bacteria from Akkermansia, Intestinimonas, and Lachnospiraceae, and decreased 52 ASVs, including bacteria from Eubacterium, Bifidobacterium, Escherichia-Shigella, and Turicibacter; however, S. parasanguinis F278 didn't change the colonic microbiota. Both Streptococcus strains reduced the ileal mRNA expression of cytokine/transcription factor representatives of T helper (Th) cells, including IFN-γ (Th1), Gata3 (Th2), and TGF-β (Treg) in 2-week-old suckling mice, and promoted the ileal expression of Foxp3 and TGF-β, which are representatives of anti-inflammatory Treg cells, in 3-week-old weaning mice. The two Streptococcus strains exhibited anti-inflammatory potential when incubated in vitro with human peripheral blood mononuclear cells and TNF-α-treated gut epithelial HT29 cells. In C. elegans, both strains activated immune response genes, which was associated with their lifespan-prolonging effects. Our results suggest that S. salivarius F286 and S. parasanguinis F278 may exert regulatory (anti-inflammatory) roles in gut immunity and S. salivarius F286 can modulate gut microbiota, and highlight the probiotic potential of milk S. salivarius and S. parasanguinis strains.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenwei Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejing Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxin Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyan Che
- Department of Animal Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Yufeng Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Callahan EA, Chatila T, Deckelbaum RJ, Field CJ, Greer FR, Hernell O, Järvinen KM, Kleinman RE, Milner J, Neu J, Smolen KK, Wallingford JC. Assessing the safety of bioactive ingredients in infant formula that affect the immune system: recommendations from an expert panel. Am J Clin Nutr 2022; 115:570-587. [PMID: 34634105 DOI: 10.1093/ajcn/nqab346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive ingredients for infant formula have been sought to reduce disparities in health outcomes between breastfed and formula-fed infants. Traditional food safety methodologies have limited ability to assess some bioactive ingredients. It is difficult to assess the effects of nutrition on the infant immune system because of coincident developmental adaptations to birth, establishment of the microbiome and introduction to solid foods, and perinatal environmental factors. An expert panel was convened to review information on immune system development published since the 2004 Institute of Medicine report on evaluating the safety of new infant formula ingredients and to recommend measurements that demonstrate the safety of bioactive ingredients intended for that use. Panel members participated in a 2-d virtual symposium in November 2020 and in follow-up discussions throughout early 2021. Key topics included identification of immune system endpoints from nutritional intervention studies, effects of human milk feeding and human milk substances on infant health outcomes, ontologic development of the infant immune system, and microbial influences on tolerance. The panel explored how "nonnormal" conditions such as preterm birth, allergy, and genetic disorders could help define developmental immune markers for healthy term infants. With consideration of breastfed infants as a reference, ensuring proper control groups, and attention to numerous potential confounders, the panel recommended a set of standard clinical endpoints including growth, response to vaccination, infection and other adverse effects related to inflammation, and allergy and atopic diseases. It compiled a set of candidate markers to characterize stereotypical patterns of immune system development during infancy, but absence of reference ranges, variability in methods and populations, and unreliability of individual markers to predict disease prevented the panel from including many markers as safety endpoints. The panel's findings and recommendations are applicable for industry, regulatory, and academic settings, and will inform safety assessments for immunomodulatory ingredients in foods besides infant formula.
Collapse
Affiliation(s)
| | - Talal Chatila
- Boston Children's Hospital, MA, USA.,Harvard Medical School, MA, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, NY, USA
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Alberta, Canada
| | - Frank R Greer
- Department of Pediatrics (Emeritus), University of Wisconsin, WI, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kirsi M Järvinen
- Department of Pediatrics, University of Rochester Medical Center, NY, USA
| | - Ronald E Kleinman
- Harvard Medical School, MA, USA.,MassGeneral Hospital for Children, MA, USA.,Massachusetts General Hospital, MA, USA
| | - Joshua Milner
- Department of Pediatrics, Columbia University Irving Medical Center, NY, USA
| | - Josef Neu
- Department of Pediatrics, University of Florida, FL, USA
| | - Kinga K Smolen
- Boston Children's Hospital, MA, USA.,Harvard Medical School, MA, USA
| | | |
Collapse
|
19
|
Lin CH, Liaw JJ, Chen YT, Yin T, Yang L, Lan HY. Efficacy of Breast Milk Olfactory and Gustatory Interventions on Neonates’ Biobehavioral Responses to Pain during Heel Prick Procedures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031240. [PMID: 35162263 PMCID: PMC8834920 DOI: 10.3390/ijerph19031240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to evaluate the efficacy of breast milk odor either alone or in combination with breast milk taste (via syringe-feeding) to alleviate neonates’ biobehavioral responses to pain during heel-prick procedures. This prospective randomized controlled trial recruited 114 neonates by convenience sampling from a newborn unit of a medical center in Taiwan. Neonates were randomly assigned to three groups: control (gentle touch + human voice), control + breast milk odor, and control + breast milk odor + breast milk taste. Heart rate, oxygen saturation, and voice recordings of crying were measured across heel-prick procedures: baseline, no stimuli (stage 0); during heel prick (Stages 1–4); and recovery (Stages 5–10). Generalized estimating equations and Kaplan–Meier survival analysis compared differences in changes between groups for heart rate, oxygen saturation, and time to crying cessation. Changes in mean heart rate and oxygen saturation in neonates receiving breast milk odor or breast milk odor + breast milk taste were significantly less than those at the corresponding stage for the control group. Among neonates receiving breast milk odor or breast milk odor + breast milk taste, hazard rate ratios for crying cessation were 3.016 and 6.466, respectively. Mother’s breast milk olfactory and gustatory interventions could stabilize the biobehavioral responses to pain during heel prick procedures in neonates.
Collapse
Affiliation(s)
- Chiao-Hsuan Lin
- Department of Nursing, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-H.L.); (T.Y.)
| | - Jen-Jiuan Liaw
- School of Nursing, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Ting Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Ti Yin
- Department of Nursing, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-H.L.); (T.Y.)
- School of Nursing, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Luke Yang
- Department of Social Work, Hsuan Chuang University, Taipei 30092, Taiwan;
| | - Hsiang-Yun Lan
- School of Nursing, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence:
| |
Collapse
|
20
|
Maleki M, Mardani A, Harding C, Basirinezhad MH, Vaismoradi M. Nurses’ strategies to provide emotional and practical support to the mothers of preterm infants in the neonatal intensive care unit: A systematic review and meta-analysis. WOMEN'S HEALTH 2022; 18:17455057221104674. [PMID: 35735784 PMCID: PMC9234836 DOI: 10.1177/17455057221104674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: To synthesize and integrate current international knowledge regarding nursing strategies for the provision of emotional and practical support to the mothers of preterm infants in the neonatal intensive care unit. Methods: A systematic review and meta-analysis was undertaken. Four English-language databases including EMBASE, PubMed (including MEDLINE), Scopus, and Web of Science were searched from January 2010 to October 2021. Original quantitative studies that were written in English and focused on nursing strategies for the provision of emotional and practical support to the mothers of preterm infants in the neonatal intensive care unit were included. Eligibility assessment, data extraction, and methodological quality appraisal were conducted independently by the review authors. A narrative synthesis of the review results and a meta-analysis were performed. Results: Twenty studies that were published from 2010 to 2021 were included in the review. Three categories concerning the review aims were identified: ‘nursing strategies related to mothers’ emotions and infant-mother attachment’, ‘nursing strategies related to mothers’ empowerment’, and ‘nursing strategies related to mothers’ participation in care process and support’. Eight interventional studies that reported mothers’ stress as the study outcome were entered into the meta-analysis. Interventions consisted of the educational programme, spiritual care, telenursing, parent support programme, skin-to-skin care, and guided family centred care. Significantly lower maternal stress was found in the intervention group compared with that of the control group (g: −1.06; 95% confidence interval: −1.64, −0.49; Z = 3.62, p < 0.001). Conclusion: This review identified and highlighted key nursing strategies used to provide emotional and practical support to the mothers of preterm infants in the neonatal intensive care unit. They included family centred care, skin-to-skin care, parent support and education programmes, interpersonal psychotherapy, spiritual care, newborn individualized developmental care and assessment programme, and telenursing.
Collapse
Affiliation(s)
- Maryam Maleki
- Pediatric and Neonatal Intensive Care Nursing Education Department, School of Nursing & Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mardani
- Nursing Care Research Center, Department of Medical Surgical Nursing, School of Nursing & Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Celia Harding
- Department of Language and Communication Science, City, University of London, London, UK
| | - Mohammad Hasan Basirinezhad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Vaismoradi
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway; Faculty of Science and Health, Charles Sturt University, Orange NSW, Australia
| |
Collapse
|
21
|
Douglas P. Re-thinking benign inflammation of the lactating breast: A mechanobiological model. WOMEN'S HEALTH (LONDON, ENGLAND) 2022; 18:17455065221075907. [PMID: 35156466 PMCID: PMC8848036 DOI: 10.1177/17455065221075907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Despite the known benefits of breastfeeding for both infant and mother, clinical support for problems such as inflammation of the lactating breast remains a research frontier. Breast pain associated with inflammation is a common reason for premature weaning. Multiple diagnoses are used for inflammatory conditions of the lactating breast, such as engorgement, blocked ducts, phlegmon, mammary candidiasis, subacute mastitis, mastitis and white spots, which lack agreed or evidence-based aetiology, definitions and treatment. This is the first in a series of three articles which review the research literature concerning benign lactation-related breast inflammation. This article investigates aetiological models. A complex systems perspective is applied to analyse heterogeneous and interdisciplinary evidence elucidating the functional anatomy and physiology of the lactating breast; the mammary immune system, including the human milk microbiome and cellular composition; the effects of mechanical forces during lactation; and the interactions between these. This analysis gives rise to a mechanobiological model of breast inflammation, in which very high intra-alveolar and intra-ductal pressures are hypothesized to strain or rupture the tight junctions between lactocytes and ductal epithelial cells, triggering inflammatory cascades and capillary dilation. Resultant elevation of stromal tension exerts pressure on lactiferous ducts, worsening intraluminal backpressure. Rising leucocyte and epithelial cell counts in the milk and alterations in the milk microbiome are signs that the mammary immune system is recruiting mechanisms to downregulate inflammatory feedback loops. From a complex systems perspective, the key mechanism for the prevention or treatment of breast inflammation is avoidance of excessively high intra-alveolar and intra-ductal pressures, which prevents a critical mass of mechanical strain and rupture of the tight junctions between lactocytes and ductal epithelial cells.
Collapse
Affiliation(s)
- Pamela Douglas
- School of Nursing and Midwifery, Griffith University, Brisbane, QLD, Australia
- General Practice Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Possums & Co., Brisbane, QLD, Australia
| |
Collapse
|
22
|
Sabogal IMU, Nariño CCD, Monsalve MAM. Lactation counseling for maintaining exclusive breastfeeding in adolescent mothers: a trial protocol. Pilot Feasibility Stud 2021; 7:219. [PMID: 34915924 PMCID: PMC8674858 DOI: 10.1186/s40814-021-00950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background Adolescent mothers have lower rates of initiation, continuation, and exclusivity of breastfeeding, and even more so in the first pregnancy. Current interventions target adult women, and little evidence is available for breastfeeding promotion among adolescents. Methods This is a pilot study protocol with a parallel, single-blind, randomized, and controlled trial design, to evaluate the feasibility of the intervention “Lactation Counseling” in first-time adolescent mothers to maintain exclusive breastfeeding in the first 6 months of life. The control group will receive routine education in prenatal care and prenatal and childbirth classes, the experimental group will receive additionally the intervention “Lactation Counseling”, for 4 weeks, both conducted by trained nurses. Feasibility outcome includes recruitment and dropout rates, and, pilot outcomes will be the exclusive breastfeeding rate and the breastfeeding knowledge. Measurements will be taken at baseline, post-intervention, and 2, 4, and 6 months after childbirth. Discussion Exclusive breastfeeding rates could be increased in adolescent mothers through nursing counseling interventions that are previously structured and evaluated from their feasibility. This study will allow the evaluation of the feasibility of an intervention in low-income, Latin American population adolescents. Trial registration ClinicalTrials.gov NCT04655846, Registered 7 December 2020.
Collapse
|
23
|
Siziba LP, Mank M, Stahl B, Kurz D, Gonsalves J, Blijenberg B, Rothenbacher D, Genuneit J. Associations of Human Milk Oligosaccharides With Otitis Media and Lower and Upper Respiratory Tract Infections up to 2 Years: The Ulm SPATZ Health Study. Front Nutr 2021; 8:761129. [PMID: 34760912 PMCID: PMC8572796 DOI: 10.3389/fnut.2021.761129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Human milk oligosaccharides (HMOs) support and concurrently shape the neonatal immune system through various mechanisms. Thereby, they may contribute to lower incidence of infections in infants. However, there is limited evidence on the role of individual HMOs in the risk of otitis media (OM), as well as lower and upper respiratory tract infections (LRTI and URTI, respectively) in children up to 2 years. Objective: To investigate whether individual HMO concentrations measured at 6 weeks of lactation were associated with risk of OM, LRTI or URTI up to 2 years in breastfed infants. Associations with OM, LRTI and URTI were determined for the most prominent human milk oligosaccharides including 13 neutral, partly isomeric structures (trioses up to hexaoses), two acidic trioses, and lactose. Design: HMO measurements and physician reported data on infections were available from human milk samples collected at 6 weeks postpartum (n = 667). Associations of HMOs with infections were assessed in crude and adjusted models using modified Poisson regression. Results: Absolute concentrations (median [min, max], in g/L) of 2′-fucosyllactose (2′-FL) tended (p = 0.04) to be lower, while lacto-N-tetraose (LNT) was higher in the milk for infants with OM in the 1st year of life (p = 0.0046). In the milk of secretor mothers, LNT was significantly higher in the milk for infants with OM (RR [95% CI]: 0.98 [0.15, 2.60]) compared to infants without OM (RR [95% CI]: 0.76 [0.14, 2.90]) at 1 year (p = 0.0019). No statistically significant milk group differences and associations were observed for OM, LRTI, and URTI (p > 0.0031). Conclusion: Our findings suggest that neither prominent neutral individual HMOs (ranging from 2′-FL to LNDFHs) nor acidic human milk sialyllactoses or lactose are significantly associated with a reduced or increased risk of infections in infants up to 2 years of age. Further research is needed to determine whether specific HMOs could potentially reduce the incidence or alleviate the course of distinct infections in early life.
Collapse
Affiliation(s)
- Linda P Siziba
- Department of Pediatrics, Pediatric Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marko Mank
- Danone Nutricia Research, Utrecht, Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Utrecht, Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Deborah Kurz
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | | | | | - Jon Genuneit
- Department of Pediatrics, Pediatric Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany.,Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
24
|
Mourtzi N, Siahanidou T, Tsifintaris M, Karamichali E, Tasiopoulou A, Sertedaki A, Pesmatzoglou M, Kapetanaki A, Liosis G, Baltatzis G, Vlachakis D, Chrousos GP, Giannakakis A. lncRNA NORAD is consistently detected in breastmilk exosomes and its expression is downregulated in mothers of preterm infants. Int J Mol Med 2021; 48:216. [PMID: 34651660 PMCID: PMC8559700 DOI: 10.3892/ijmm.2021.5049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Breast milk is the ideal food for infants and undoubtedly has immediate and long-term benefits. Breast milk contains extracellular vesicles (EVs) i.e., exosomes secreted by maternal breast cells. Exosomes carry genetic material, such as long non-coding RNAs (lncRNAs), which possibly participate in cell-to-cell communications, as they are known to regulate critical gene pathways. The aim of the present study was to screen human breastmilk exosomes for their lncRNA cargo and to examine exosomal lncRNA levels associated with milk obtained from mothers that gave birth at term or prematurely (<37 weeks of gestation). Samples were collected at 3 weeks postpartum from 20 healthy, breastfeeding mothers; 10 mothers had given birth at full-term and 10 mothers preterm. Exosomal RNA was extracted from all samples and the expression of 88 distinct lncRNAs was determined using reverse transcription-quantitative PCR. A total of 13 lncRNAs were detected in ≥85% of the samples, while 31 were detected in ≥50% of the samples. Differential expression analysis of the lncRNAs between the two groups revealed ≥2-fold differences, with generally higher lncRNA concentrations found in the milk of the mothers that gave birth at term compared with those that gave birth preterm. Among these, the non-coding RNA activated at DNA damage (NORAD) was prominently detected in both groups, and its expression was significantly downregulated in the breast milk exosomes of mothers who delivered preterm. On the whole, the present study demonstrates that breast milk lncRNAs may be important factors of normal early human development. Collectively, the presence of lncRNAs in human breast milk may explain the consistent inability of researchers to fully 'humanize' animal milk.
Collapse
Affiliation(s)
- Niki Mourtzi
- Laboratory of Molecular Endocrinology, Choremeio Research Center, First Department of Pediatrics, Children's Hospital 'Aghia Sophia', School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Tania Siahanidou
- First Department of Pediatrics, 'Aghia Sophia' Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Margaritis Tsifintaris
- Laboratory of Gene Expression, Molecular Diagnostics and Modern Therapeutics, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Androniki Tasiopoulou
- Laboratory of Gene Expression, Molecular Diagnostics and Modern Therapeutics, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia Sertedaki
- Laboratory of Molecular Endocrinology, Choremeio Research Center, First Department of Pediatrics, Children's Hospital 'Aghia Sophia', School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Margarita Pesmatzoglou
- First Department of Pediatrics, 'Aghia Sophia' Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - George Liosis
- General and Maternity Hospital 'Helena Venizelou', 11521 Athens, Greece
| | - George Baltatzis
- First Department of Pathology, School of Health Sciences, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonis Giannakakis
- Laboratory of Gene Expression, Molecular Diagnostics and Modern Therapeutics, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
25
|
Childs CE, Munblit D, Ulfman L, Gómez-Gallego C, Lehtoranta L, Recker T, Salminen S, Tiemessen M, Collado MC. Potential Biomarkers, Risk Factors and their Associations with IgE-mediated Food Allergy in Early Life: A Narrative Review. Adv Nutr 2021; 13:S2161-8313(22)00081-3. [PMID: 34596662 PMCID: PMC8970818 DOI: 10.1093/advances/nmab122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for food allergy include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers which predict the risk of developing food allergy in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy and synthesizes the currently available data indicating potential biomarkers. While there is a large body of research evidence available within each field of potential risk factors, there are very limited number of studies which span multiple methodological fields, for example including immunology, microbiome, genetic/epigenetic factors and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge confirmed food allergy in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high quality, reliable and reproducible research findings. STATEMENT OF SIGNIFICANCE Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. Identifying reliable biomarkers which predict the risk of developing food allergy would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. This review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy. This helps in identifying reliable biomarkers to predict the risk of developing food allergy, which could be valuable in both preventing morbidity and mortality and by making interventions available at the earliest opportunity.
Collapse
Affiliation(s)
- Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Daniel Munblit
- Imperial College London, London, United Kingdom,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Lazar K, Kussmann T, Pawelec G, Pöschel S, Goelz R, Hamprecht K, Wistuba-Hamprecht K. Immunomonitoring of Human Breast Milk Cells During HCMV-Reactivation. Front Immunol 2021; 12:723010. [PMID: 34566980 PMCID: PMC8462275 DOI: 10.3389/fimmu.2021.723010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Breast milk leukocytes may play a role in protecting the infant from pathogens. The dynamics and the role of lymphocytes in human cytomegalovirus (HCMV)-seropositive mothers shedding HCMV into breast milk during the first months postpartum (p.p.) are mostly unclear. Methods Breast milk cells were analyzed by Pappenheim panoptic and alpha-naphthyl acetate esterase staining as well as by imaging and polychromatic flow cytometry to simultaneously establish their morphological and phenotypic properties. The latter were characterized in HCMV-seropositive and seronegative mothers´ breast milk cells at different time points p.p. Results Panoptic staining of breast milk cells revealed the presence of monocytes/macrophages, granulocytes and lymphocytes. Imaging flow cytometry data combining phenotypic and morphological analysis identified NKT-like cells, NK cells, epithelial cells, T cells and monocytes/macrophages. HCMV-seropositive but not -seronegative mothers had significantly higher T cell frequencies in mature milk. Conclusions The presence of lymphocyte subsets in breast milk may be more influenced by the HCMV-seropositivity of the mother than previously recognized.
Collapse
Affiliation(s)
- Katrin Lazar
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Thorsten Kussmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Simone Pöschel
- Flow Cytometry Core Facility, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Rangmar Goelz
- Department of Neonatology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Section of Dermatooncology, Department of Dermatology, University Medical Center, Tübingen, Germany.,Section for Clinical Bioinformatics, Internal Medicine I, University Medical Center, Tübingen, Germany
| |
Collapse
|
27
|
Tonon KM, Tomé TM, Mosquera EMB, Perina NP, Lazarini T. The Effect of Infant Formulas With 4 or 8 g/L GOS/FOS on Growth, Gastrointestinal Symptoms, and Behavioral Patterns: A Prospective Cohort Study. Glob Pediatr Health 2021; 8:2333794X211044115. [PMID: 34527766 PMCID: PMC8436285 DOI: 10.1177/2333794x211044115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
There is a lack of studies investigating the clinical benefits of prebiotic-supplemented infant formula. In this study, healthy infants that started, on medical recommendation, artificial feeding with one of 2 infant formulas containing 4 g/L of GOS/FOS (9:1) (IF4 group; n = 60) or 8 g/L of GOS/FOS (9:1) (IF8 group; n = 60) were followed for 30 days to the evaluation of growth and gastrointestinal symptoms. Exclusively breastfed infants (EBF; n = 60) were followed up as a reference. Both infant formulas supported adequate weight gain, however, IF4 formula promotes growth more similar to breastfed infants. There was no additional benefit of a dose higher than 4 g/L of GOS/FOS on gastrointestinal symptoms.
Collapse
|
28
|
Malcangi G, Inchingolo AD, Inchingolo AM, Santacroce L, Marinelli G, Mancini A, Vimercati L, Maggiore ME, D’Oria MT, Hazballa D, Bordea IR, Xhajanka E, Scarano A, Farronato M, Tartaglia GM, Giovanniello D, Nucci L, Serpico R, Sammartino G, Capozzi L, Parisi A, Di Domenico M, Lorusso F, Contaldo M, Inchingolo F, Dipalma G. COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms 2021; 9:1964. [PMID: 34576859 PMCID: PMC8469368 DOI: 10.3390/microorganisms9091964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic has involved a severe increase of cases worldwide in a wide range of populations. The aim of the present investigation was to evaluate recent insights about COVID-19 infection in children, infants and pregnant subjects. METHODS a literature overview was performed including clinical trials, in vitro studies, reviews and published guidelines regarding the present paper topic. A descriptive synthesis was performed to evaluate recent insights and the effectiveness of therapies for SARS-CoV-2 infection in children, infants and pregnant subjects. RESULTS Insufficient data are available regarding the relationship between COVID-19 and the clinical risk of spontaneous abortion and premature foetus death. A decrease in the incidence of COVID-19 could be correlated to a minor expression of ACE2 in childrens' lungs. At present, a modulation of the dose-effect posology for children and infants is necessary. CONCLUSIONS Pregnant vertical transmission has been hypothesised for SARS-CoV-2 infection. Vaccines are necessary to achieve mass immunity for children and also pregnant subjects.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Edit Xhajanka
- Department of Dental Prosthesis, Medical University of Tirana, Rruga e Dibrës, U.M.T., 1001 Tirana, Albania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | | | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Gilberto Sammartino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy;
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, 71121 Foggia, Italy; (L.C.); (A.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, 71121 Foggia, Italy; (L.C.); (A.P.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| |
Collapse
|
29
|
Eckart EK, Peck JD, Kharbanda EO, Nagel EM, Fields DA, Demerath EW. Infant sex differences in human milk intake and composition from 1- to 3-month post-delivery in a healthy United States cohort. Ann Hum Biol 2021; 48:455-465. [PMID: 35105200 PMCID: PMC8881046 DOI: 10.1080/03014460.2021.1998620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Macronutrient composition of human milk differs by infant sex, but few studies have examined sex differences in other milk components, or their potential modification by maternal body mass index (BMI). AIM We compared milk intake and human milk hormone and cytokine concentrations at 1- and 3-month post-delivery and tested infant sex by maternal BMI (OW/OB vs. NW) interactions. SUBJECTS AND METHOD Data were analysed for 346 mother-infant dyads in the Mothers and Infants Linked for Healthy Growth (MILk) Study at 1- and 3-month post-delivery. Infant milk intake was estimated by the change in infant weight after test feedings. Concentrations of glucose, insulin, leptin, adiponectin, interleukin-6 (IL-6), and C-reactive protein (CRP) were measured using ELISA. Multivariable linear regression and linear mixed models were used to estimate sex main effects and their interaction with maternal BMI. RESULTS Mean glucose concentration at 1 month was 2.62 mg/dl higher for male infants, but no difference at 3 months was observed. Milk intake and concentrations for the other milk components were similar for males and females at both time points. Associations with infant sex did not differ significantly by maternal BMI. CONCLUSIONS Among healthy United States mother-infant dyads, appetite, and growth-regulating factors in human milk did not differ significantly by infant sex.
Collapse
Affiliation(s)
- Erin K. Eckart
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer D. Peck
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Emily M. Nagel
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ellen W. Demerath
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Ding Y, Hu P, Yang Y, Xu F, Li F, Lu X, Xie Z, Wang Z. Impact of Maternal Daily Oral Low-Dose Vitamin A Supplementation on the Mother-Infant Pair: A Randomised Placebo-Controlled Trial in China. Nutrients 2021; 13:2370. [PMID: 34371880 PMCID: PMC8308679 DOI: 10.3390/nu13072370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The nutritional status of vitamin A in lactating mothers and infants is still not optimistic. Due to the dietary habits and dietary restrictions of postpartum customs in China, vitamin A supplementation has been advocated as a potential strategy to improve vitamin A status of lactating mothers with inadequate dietary vitamin A intake. Existing clinical trials are limited to single or double high-dose maternal administrations. However, in China, vitamin A supplements are readily available in the form of daily oral low-dose supplements, and the effect of these is unknown. This study aimed to evaluate the effects of daily oral low-dose vitamin A supplementation on the retinol levels in the serum and breast milk of lactating mothers and the health status of infants in China. METHODS Lactating mothers who met the inclusion criteria and planned to continue exclusive breastfeeding were randomly assigned to receive either daily oral vitamin A and D drops (one soft capsule of 1800 IU vitamin A and 600 IU vitamin D2), or a matching placebo for 2 months. Before and after the intervention, dietary intake was investigated by instant photography, and the retinol concentration in maternal serum and breast milk was determined by ultra-high performance liquid chromatography-tandem mass spectrometry. During the trial, the health status of infants was diagnosed by a paediatrician or reported by lactating mothers. A total of 245 participants completed the study, with 117 in the supplementation group and 128 in the control group. RESULTS After the 2-month intervention, maternal serum retinol concentrations increased in the supplementation group with no change in the control group. Although breast milk retinol concentrations decreased significantly in both groups, the decrease in the supplementation group was significantly lower than that in the control group. However, maternal vitamin A supplementation was not associated with a lower risk of infant febrile illness, respiratory tract infection, diarrhoea, and eczema. CONCLUSIONS Daily oral low-dose vitamin A supplementation is helpful in improving maternal vitamin A status, despite having no effect on infant health status through breast milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.D.); (P.H.); (Y.Y.); (F.X.); (F.L.); (X.L.); (Z.X.)
| |
Collapse
|
31
|
Host-microbiome intestinal interactions during early life: considerations for atopy and asthma development. Curr Opin Allergy Clin Immunol 2021; 20:138-148. [PMID: 32004178 DOI: 10.1097/aci.0000000000000629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The body's largest microbial community, the gut microbiome, is in contact with mucosal surfaces populated with epithelial, immune, endocrine and nerve cells, all of which sense and respond to microbial signals. These mutual interactions have led to a functional coevolution between the microbes and human physiology. Examples of coadaptation are anaerobes Bifidobacteria and Bacteroides, which have adjusted their metabolism to dietary components of human milk, and infant immune development, which has evolved to become reliant on the presence of beneficial microbes. Current research suggests that specific composition of the early-life gut microbiome aligns with the maturation of host immunity. Disruptions of natural microbial succession patterns during gut colonization are a consistent feature of immune-mediated diseases, including atopy and asthma. RECENT FINDINGS Here, we catalog recent birth cohorts documenting associations between immune dysregulation and microbial alterations, and summarize the evidence supporting the role of the gut microbiome as an etiological determinant of immune-mediated allergic diseases. SUMMARY Ecological concepts that describe microbial dynamics in the context of the host environment, and a portray of immune and neuroendocrine signaling induced by host-microbiome interactions, have become indispensable in describing the molecular role of early-life microbiome in atopy and asthma susceptibility.
Collapse
|
32
|
Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Dietary Patterns of Breastfeeding Mothers and Human Milk Composition: Data from the Italian MEDIDIET Study. Nutrients 2021; 13:nu13051722. [PMID: 34069630 PMCID: PMC8160768 DOI: 10.3390/nu13051722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Several studies have reported associations between maternal diet in terms of single foods or nutrients and human milk compounds, while the overall role of maternal diet and related dietary patterns has rarely been investigated. (2) Methods: Between 2012 and 2014, we enrolled 300 healthy Italian mothers, who exclusively breastfed their infant. During a hospital visit at 6 weeks postpartum, a sample of freshly expressed foremilk was collected and information on maternal dietary habits in the postpartum period was obtained through an interviewer-administered food frequency questionnaire. We applied principal component factor analysis to selected nutrients in order to identify maternal dietary patterns, and assessed correlations in human milk macronutrients and fatty acids across levels of dietary patterns. (3) Results: Five dietary patterns were identified, named “Vitamins, minerals and fibre”, “Proteins and fatty acids with legs”, “Fatty acids with fins”, “Fatty acids with leaves”, “Starch and vegetable proteins”. These dietary patterns were correlated with some milk components, namely fatty acids, and in particular ω-3 and its subcomponents. (4) Conclusions: This study showed that overall maternal dietary habits during breastfeeding may influence human milk composition, suggesting the importance of adequate maternal nutrition during lactation not only for the mother herself but also to provide the infant with milk containing adequate amount and quality of nutrients for a balanced nutrition.
Collapse
|
34
|
Affiliation(s)
- Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| |
Collapse
|
35
|
Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr (Torino) 2021; 73:111-114. [PMID: 33880902 DOI: 10.23736/s2724-5276.21.06223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From an evolutionary and nutritional standpoint, exclusive human milk feeding for the first 6 months of life, with continued breastfeeding for 1 to 2 years of life, is recognized as the gold standard nourishment for the infant: it is a species-specific food, with a composition designed by nature to better respond to the biological and psychological needs of the newborn/infant. Human milk contains many hundreds of bioactive molecules that protect newborn against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Compared with formula feeding, breastfeeding has been associated with decreased morbidity and mortality in infants and to lower incidence of gastrointestinal infections and inflammatory, respiratory and allergic disease. Here, we briefly review the nutritional and functional composition of human milk and provide an overview of its varied bioactive factors.
Collapse
Affiliation(s)
- Giulia Nuzzi
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Irene Trambusti
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria E DI Cicco
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy -
| |
Collapse
|
36
|
Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel) 2021; 11:life11020148. [PMID: 33669262 PMCID: PMC7920069 DOI: 10.3390/life11020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy;
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
- Correspondence:
| | - Elisa Caboni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy;
| |
Collapse
|
37
|
Vasques da Costa A, Purcell Goes C, Gama P. Breastfeeding importance and its therapeutic potential against SARS-CoV-2. Physiol Rep 2021; 9:e14744. [PMID: 33580917 PMCID: PMC7881802 DOI: 10.14814/phy2.14744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
During postnatal development, colostrum and breastmilk are sequentially the first sources of nutrition with protein components and bioactive molecules that confer protection and immunostimulatory function to the gut. Caseins, whey proteins, secretory immunoglobulin A (sIgA), mucins, tryptophan, and growth factors are among milk-borne elements that are directly important in the control of mucosa development and protection. Consequently, breastfeeding is associated with the low incidence of gastrointestinal inflammation and with the decrease in respiratory diseases during postnatal period. The novel coronavirus (SARS-CoV-2) binds to angiotensin II-converting enzyme (ACE2) on the cell membrane, allowing virus entrance, replication, and host commitment. ACE2 is expressed by different cell types, which include ciliated cells in the lungs and enterocytes in the intestine. Such cells are highly active in metabolism, as they internalize molecules to be processed and used by the organism. The disruption of ACE2 impairs leads to intestinal inflammation and decreased synthesis of serotonin, affecting motility. By reviewing the effects of SARS-CoV-2 in the gastrointestinal and respiratory tracts in infants, and gut responses to breastfeeding interruption, we suggest that it is important to maintain breastfeeding during SARS-CoV-2 infection, as it might be essential to protect newborns from gastrointestinal-associated disorders and relieve disease symptoms.
Collapse
Affiliation(s)
- Aline Vasques da Costa
- Department of Cell and Developmental BiologyInstitute of Biomedical SciencesUniversity of São Paulo (USP) – São PauloSão PauloBrazil
| | - Carolina Purcell Goes
- Department of Cell and Developmental BiologyInstitute of Biomedical SciencesUniversity of São Paulo (USP) – São PauloSão PauloBrazil
| | - Patrícia Gama
- Department of Cell and Developmental BiologyInstitute of Biomedical SciencesUniversity of São Paulo (USP) – São PauloSão PauloBrazil
| |
Collapse
|
38
|
Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021; 22:1429. [PMID: 33572657 PMCID: PMC7866973 DOI: 10.3390/ijms22031429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.
Collapse
Affiliation(s)
- Phillip W Askenase
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
39
|
Nadimpalli ML, Bourke CD, Robertson RC, Delarocque-Astagneau E, Manges AR, Pickering AJ. Can breastfeeding protect against antimicrobial resistance? BMC Med 2020; 18:392. [PMID: 33317529 PMCID: PMC7737306 DOI: 10.1186/s12916-020-01862-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The proportion of infections among young children that are antimicrobial-resistant is increasing across the globe. Newborns may be colonized with enteric antimicrobial-resistant pathogens early in life, which is a risk factor for infection-related morbidity and mortality. Breastfeeding is actively promoted worldwide for its beneficial impacts on newborn health and gut health. However, the role of breastfeeding and human milk components in mitigating young children's carriage of antimicrobial-resistant pathogens and antibiotic resistance genes has not been comprehensively explored. MAIN BODY Here, we review how the act of breastfeeding, early breastfeeding, and/or human milk components, such as the milk microbiota, secretory IgA, human milk oligosaccharides, antimicrobial peptides, and microRNA -bearing extracellular vesicles, could play a role in preventing the establishment of antimicrobial-resistant pathogens in young children's developing gut microbiomes. We describe findings from recent human studies that support this concept. CONCLUSION Given the projected rise in global morbidity and mortality that will stem from antimicrobial-resistant infections, identifying behavioral or nutritional interventions that could decrease children's susceptibility to colonization with antimicrobial-resistant pathogens may be one strategy for protecting their health. We suggest that breastfeeding and human milk supplements deserve greater attention as potential preventive measures in the global effort to combat antimicrobial resistance, particularly in low- and middle-income settings.
Collapse
Affiliation(s)
- Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Science & Engineering Complex, Anderson Hall, Room 204, 200 College Avenue, Medford, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA.
| | - Claire D Bourke
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ruairi C Robertson
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Elisabeth Delarocque-Astagneau
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team Anti-infective Evasion and Pharmacoepidemiology, 78180 Montigny, France.,AP-HP, GHU Paris Saclay University, Raymond Poincaré Hospital, Epidemiology and Public Health Department, 92380 Garches, France
| | - Amee R Manges
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Science & Engineering Complex, Anderson Hall, Room 204, 200 College Avenue, Medford, MA, USA.,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA
| |
Collapse
|
40
|
Azad MB, Nickel NC, Bode L, Brockway M, Brown A, Chambers C, Goldhammer C, Hinde K, McGuire M, Munblit D, Patel AL, Pérez-Escamilla R, Rasmussen KM, Shenker N, Young BE, Zuccolo L. Breastfeeding and the origins of health: Interdisciplinary perspectives and priorities. MATERNAL AND CHILD NUTRITION 2020; 17:e13109. [PMID: 33210456 PMCID: PMC7988860 DOI: 10.1111/mcn.13109] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Breastfeeding and human milk (HM) are critically important to maternal, infant and population health. This paper summarizes the proceedings of a workshop that convened a multidisciplinary panel of researchers to identify key priorities and anticipated breakthroughs in breastfeeding and HM research, discuss perceived barriers and challenges to achieving these breakthroughs and propose a constructive action plan to maximize the impact of future research in this field. Priority research areas identified were as follows: (1) addressing low breastfeeding rates and inequities using mixed methods, community partnerships and implementation science approaches; (2) improving awareness of evidence-based benefits, challenges and complexities of breastfeeding and HM among health practitioners and the public; (3) identifying differential impacts of alternative modes of HM feeding including expressed/pumped milk, donor milk and shared milk; and (4) developing a mechanistic understanding of the health effects of breastfeeding and the contributors to HM composition and variability. Key barriers and challenges included (1) overcoming methodological limitations of epidemiological breastfeeding research and mechanistic HM research; (2) counteracting 'breastfeeding denialism' arising from negative personal breastfeeding experiences; (3) distinguishing and aligning research and advocacy efforts; and (4) managing real and perceived conflicts of interest. To advance research on breastfeeding and HM and maximize the reach and impact of this research, larger investments are needed, interdisciplinary collaboration is essential, and the scientific community must engage families and other stakeholders in research planning and knowledge translation.
Collapse
Affiliation(s)
- Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.,Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Manitoba, Canada.,Human Capital & Economic Opportunity Global Working Group, Center for the Economics of Human Development, University of Chicago, Chicago, Illinois, USA
| | - Nathan C Nickel
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Manitoba, Canada.,Department of Community Health Sciences and Manitoba Centre for Health Policy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California, USA
| | - Meredith Brockway
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Manitoba, Canada
| | - Amy Brown
- Department of Public Health, Policy and Social Sciences and Centre for Lactation, Infant Feeding and Translation, Swansea University, Swansea, UK
| | - Christina Chambers
- Mommy's Milk Human Milk Research Biorepository, Center for Better Beginnings, University of California San Diego, San Diego, California, USA
| | | | - Katie Hinde
- Center of Evolution and Medicine and School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Michelle McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University, Moscow, Russia.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK.,inVIVO Planetary Health, Worldwide Universities Network (WUN), West New York, New Jersey, USA
| | - Aloka L Patel
- Department of Pediatrics, Section of Neonatology, Rush University Children's Hospital, Chicago, Illinois, USA
| | - Rafael Pérez-Escamilla
- Department of Social and Behavioral Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | | | - Natalie Shenker
- Department of Surgery and Cancer, Imperial College London, London, UK.,Human Milk Foundation, Harpenden, UK
| | - Bridget E Young
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit and Department of Population Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
42
|
Peroni DG, Fanos V. Lactoferrin is an important factor when breastfeeding and COVID-19 are considered. Acta Paediatr 2020; 109:2139-2140. [PMID: 32557901 PMCID: PMC7323098 DOI: 10.1111/apa.15417] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Diego G. Peroni
- Department of Clinical and Experimental Medicine Section of Paediatrics University of Pisa Pisa Italy
| | - Vassilios Fanos
- Department of Surgical Sciences University of Cagliari and Neonatal Intensive Care UnitAOU Cagliari Cagliari Italy
| |
Collapse
|
43
|
Stinson LF, Gay MCL, Koleva PT, Eggesbø M, Johnson CC, Wegienka G, du Toit E, Shimojo N, Munblit D, Campbell DE, Prescott SL, Geddes DT, Kozyrskyj AL. Human Milk From Atopic Mothers Has Lower Levels of Short Chain Fatty Acids. Front Immunol 2020; 11:1427. [PMID: 32903327 PMCID: PMC7396598 DOI: 10.3389/fimmu.2020.01427] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SFCAs) are microbial metabolites produced in the gut upon fermentation of dietary fiber. These metabolites interact with the host immune system and can elicit epigenetic effects. There is evidence to suggest that SCFAs may play a role in the developmental programming of immune disorders and obesity, though evidence in humans remains sparse. Here we have quantified human milk (HM) SCFA levels in an international cohort of atopic and non-atopic mothers (n = 109). Our results demonstrate that human milk contains detectable levels of the SCFAs acetate, butyrate, and formate. Samples from atopic mothers had significantly lower concentrations of acetate and butyrate than those of non-atopic mothers. HM SCFA levels in atopic and non-atopic women also varied based on maternal country of residence (Australia, Japan, Norway, South Africa, USA). Reduced exposure to HM SCFA in early life may program atopy or overweight risk in breastfed infants.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Melvin C L Gay
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Petya T Koleva
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Merete Eggesbø
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine C Johnson
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Ganesa Wegienka
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Elloise du Toit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Naoki Shimojo
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, Chiba University, Chiba, Japan
| | - Daniel Munblit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Dianne E Campbell
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Allergy and Immunology, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Susan L Prescott
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Donna T Geddes
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Anita L Kozyrskyj
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Dietary patterns and their association with breast milk macronutrient composition among lactating women. Int Breastfeed J 2020; 15:52. [PMID: 32503555 PMCID: PMC7273657 DOI: 10.1186/s13006-020-00293-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUD Breast milk is the optimal food for infant growth and development. The purpose of this study was to evaluate the association between breast milk macronutrient composition with dietary pattern among lactating women. METHODS A total of 220 lactating women from 2011 to 2012 in Changsha, a city of south-central China, was recruited using a multi-stage sampling method. Breast milk was collected, and the protein, fat, lactose, total dry matter, and energy contents of breast milk were measured. A 24 h recall method on three consecutive days was used to collect the dietary information of lactating women and an exploratory factor analysis was performed was to identify dietary patterns. The association between the concentration of a breast milk component and dietary pattern was assessed using a multivariable linear regression model. RESULTS Three major dietary patterns were classified. Lactating women with dietary pattern 1 mainly ate fresh vegetables and fresh legumes. Those with dietary pattern 2 mainly ate red meat, cereals and eggs, and those with dietary pattern 3 mainly ate fungi and algae, dries legumes and soy milk. Pattern 2 was positively associated with the concentration of protein (B = 0.07, 95% CI 0.00, 0.15), total dry matter (B = 0.20, 95% CI 0.02, 0.38) and energy (B = 1.66, 95% CI 0.03, 3.30) in breast milk. Morever, lactation period was negatively associated with the protein and total dry matter concentrations and positively associated with lactose. CONCLUSIONS The results show the lactation period was an important factor affecting milk composition and a dietary pattern with high intake of red meat, cereals, and eggs was associated with higher protein, total dry matter, and energy contents in breast milk. These findings show that the dietary patterns of lactating women can affect breast milk macronutrient composition and provide a foundation for improving child health.
Collapse
|
45
|
Lazar K, Rabe T, Goelz R, Hamprecht K. Human Cytomegalovirus Reactivation During Lactation: Impact of Antibody Kinetics and Neutralization in Blood and Breast Milk. Nutrients 2020; 12:E338. [PMID: 32012818 PMCID: PMC7071316 DOI: 10.3390/nu12020338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) is shed into breast milk in nearly every seropositive woman during lactation. This reactivation shows mostly a self-limited, unimodal course. The dynamics and functional role of HCMV-specific-IgG in breast milk and in plasma during reactivation are unknown. Milk whey viral loads were monitored with real-time PCR in 18 HCMV-seropositive mothers over two months postpartum. HCMV-antibody binding assays (ECLIA) and antigen-specific immunoblotting were performed from plasma and corresponding milk samples. Epithelial-cell-specific neutralization was used to analyze functional antibodies in plasma- and whey-pools. Viral loads in milk whey showed unimodal courses in 15 of 18 mothers with peak viral loads around one month postpartum. HCMV-specific-IgG-antibodies increased significantly in plasma and milk whey during reactivation. The mean levels of plasma IgG were about 275-fold higher than in whey. Only antibodies against tegument protein p150 were continuously expressed in both compartments. Anti-glycoprotein-B1 IgG-antibodies were variably expressed in whey, but continuously in plasma. Neutralization assays showed 40-fold higher NT-50 values in plasma compared to whey at two months postpartum. During reactivation, HCMV-specific-IgG reactivities and neutralizing capacities are much lower in whey than in plasma. Therefore, their specific role in the decrease and discontinuation of virus-shedding in milk remains unclear.
Collapse
Affiliation(s)
- Katrin Lazar
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany, (T.R.)
| | - Tabea Rabe
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany, (T.R.)
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany, (T.R.)
| |
Collapse
|
46
|
Lee MK, Binns C. Breastfeeding and the Risk of Infant Illness in Asia: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E186. [PMID: 31888064 PMCID: PMC6981475 DOI: 10.3390/ijerph17010186] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Infancy remains the most vulnerable period of human life for death, illness, and establishing a lifetime trajectory of growth and health. It is estimated that there are 5.3 million deaths under five years of age worldwide and approximately 800,000 lives could be saved by improving breastfeeding rates and duration. In Asia, an estimated 300,000-350,000 child deaths could be prevented with optimal breastfeeding and the majority would be under 12 months of age. We present a systematic review of studies of infection and breastfeeding in infants in Asia and further review interactions of selected infectious diseases and breastfeeding. Initially, 2459 records of possible interest were identified, 153 full text papers were reviewed in detail, and 13 papers describing diarrhoeal disease and/or acute respiratory tract infection were selected for inclusion in the review. Additional papers were selected to discuss specific diseases and their relationship to breastfeeding. The review found that a variety of methods were used with differing definitions of breastfeeding and diseases. Overall, breastfeeding when compared to the use of infant formula, is associated with significantly lower rates of diarrhoeal disease and lower respiratory tract infection, with a reduction of 50% or more to be expected, especially in infants under six months of age. The relationship between breastfeeding and specific diseases including measles and HTLV1 were reviewed. Breastfeeding reduces some disease rates, but there remain a few conditions where breastfeeding may be contra-indicated.
Collapse
Affiliation(s)
- Mi Kyung Lee
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Colin Binns
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
47
|
Zielinska MA, Hamulka J. Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4181. [PMID: 31671856 PMCID: PMC6862650 DOI: 10.3390/ijerph16214181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
Air pollution is a major social, economic, and health problem around the world. Children are particularly susceptible to the negative effects of air pollution due to their immaturity and excessive growth and development. The aims of this narrative review were to: (1) summarize evidence about the protective effects of breastfeeding on the adverse health effects of air pollution exposure, (2) define and describe the potential mechanisms underlying the protective effects of breastfeeding, and (3) examine the potential effects of air pollution on breastmilk composition and lactation. A literature search was conducted using electronic databases. Existing evidence suggests that breastfeeding has a protective effect on adverse outcomes of indoor and outdoor air pollution exposure in respiratory (infections, lung function, asthma symptoms) and immune (allergic, nervous and cardiovascular) systems, as well as under-five mortality in both developing and developed countries. However, some studies reported no protective effect of breastfeeding or even negative effects of breastfeeding for under-five mortality. Several possible mechanisms of the breastfeeding protective effect were proposed, including the beneficial influence of breastfeeding on immune, respiratory, and nervous systems, which are related to the immunomodulatory, anti-inflammatory, anti-oxidant, and neuroprotective properties of breastmilk. Breastmilk components responsible for its protective effect against air pollutants exposure may be long chain polyunsaturated fatty acids (LC PUFA), antioxidant vitamins, carotenoids, flavonoids, immunoglobins, and cytokines, some of which have concentrations that are diet-dependent. However, maternal exposure to air pollution is related to increased breastmilk concentrations of pollutants (e.g., Polycyclic aromatic hydrocarbons (PAHs) or heavy metals in particulate matter (PM)). Nonetheless, environmental studies have confirmed that breastmilk's protective effects outweigh its potential health risk to the infant. Mothers should be encouraged and supported to breastfeed their infants due to its unique health benefits, as well as its limited ecological footprint, which is associated with decreased waste production and the emission of pollutants.
Collapse
Affiliation(s)
- Monika A Zielinska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| |
Collapse
|
48
|
Blyuss O, Cheung KY, Chen J, Parr C, Petrou L, Komarova A, Kokina M, Luzan P, Pasko E, Eremeeva A, Peshko D, Eliseev VI, Pedersen SA, Azad MB, Jarvinen KM, Peroni DG, Verhasselt V, Boyle RJ, Warner JO, Simpson MR, Munblit D. Statistical Approaches in the Studies Assessing Associations between Human Milk Immune Composition and Allergic Diseases: A Scoping Review. Nutrients 2019; 11:E2416. [PMID: 31658692 PMCID: PMC6836171 DOI: 10.3390/nu11102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
A growing number of studies are focusing on the associations between human milk (HM) immunological composition and allergic diseases. This scoping review aims to identify statistical methods applied in the field and highlight pitfalls and unmet needs. A comprehensive literature search in MEDLINE and Embase retrieved 13,607 unique records. Following title/abstract screening, 29 studies met the selection criteria and were included in this review. We found that definitions of colostrum and mature milk varied across the studies. A total of 17 out of 29 (59%) studies collected samples longitudinally, but only 12% of these used serial (longitudinal) analyses. Multivariable analysis was used in 45% of the studies, but statistical approaches to modelling varied largely across the studies. Types of variables included as potential confounding factors differed considerably between models. Discrimination analysis was absent from all studies and only a single study reported classification measures. Outcomes of this scoping review highlight lack of standardization, both in data collection and handling, which remains one of the main challenges in the field. Improved standardization could be obtained by a consensus group of researchers and clinicians that could recommend appropriate methods to be applied in future prospective studies, as well as already existing datasets.
Collapse
Affiliation(s)
- Oleg Blyuss
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Ka Yan Cheung
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
| | - Jessica Chen
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
| | - Callum Parr
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
| | - Loukia Petrou
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
| | - Alina Komarova
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Maria Kokina
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Polina Luzan
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Egor Pasko
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Alina Eremeeva
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Dmitrii Peshko
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
| | - Vladimir I Eliseev
- N. Polyakov Institute of Geotechnical Mechanics on the NAS of Ukraine, 49005 Dnipro, Ukraine.
| | - Sindre Andre Pedersen
- Library Section for Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, 7030 Trondheim, Norway.
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Kirsi M Jarvinen
- Division of Pediatric Allergy and Immunology & Center for Food Allergy, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA.
| | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, 56126 Pisa, Italy.
| | - Valerie Verhasselt
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA.
| | - Robert J Boyle
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
| | - John O Warner
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
- National Institute for Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, London SW10 9NH, UK.
| | - Melanie R Simpson
- Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, 7030 Trondheim, Norway.
- Clinic of Laboratory Medicine, St Olavs Hospital, 7030 Trondheim, Norway.
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), 123337 Moscow, Russia.
- Department of Paediatrics, Imperial College London, London W2 1PG, UK.
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA.
- Solov'ev Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia.
| |
Collapse
|
49
|
Transporters in the Mammary Gland-Contribution to Presence of Nutrients and Drugs into Milk. Nutrients 2019; 11:nu11102372. [PMID: 31590349 PMCID: PMC6836069 DOI: 10.3390/nu11102372] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.
Collapse
|
50
|
Munblit D, Verhasselt V, Warner JO. Editorial: Human Milk Composition and Health Outcomes in Children. Front Pediatr 2019; 7:319. [PMID: 31417888 PMCID: PMC6682588 DOI: 10.3389/fped.2019.00319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/15/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Paediatrics, Imperial College London, London, United Kingdom.,The In-VIVO Global Network, An Affiliate of the World Universities Network (WUN), New York, NY, United States.,Solov'ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Valerie Verhasselt
- The In-VIVO Global Network, An Affiliate of the World Universities Network (WUN), New York, NY, United States.,School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - John O Warner
- Department of Paediatrics, Imperial College London, London, United Kingdom.,The In-VIVO Global Network, An Affiliate of the World Universities Network (WUN), New York, NY, United States.,National Institute for Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, London, United Kingdom
| |
Collapse
|