1
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Heaton AR, Rehani PR, Hoefges A, Lopez AF, Erbe AK, Sondel PM, Skala MC. Single cell metabolic imaging of tumor and immune cells in vivo in melanoma bearing mice. Front Oncol 2023; 13:1110503. [PMID: 37020875 PMCID: PMC10067577 DOI: 10.3389/fonc.2023.1110503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Introduction Metabolic reprogramming of cancer and immune cells occurs during tumorigenesis and has a significant impact on cancer progression. Unfortunately, current techniques to measure tumor and immune cell metabolism require sample destruction and/or cell isolations that remove the spatial context. Two-photon fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent metabolic coenzymes nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) provides in vivo images of cell metabolism at a single cell level. Methods Here, we report an immunocompetent mCherry reporter mouse model for immune cells that express CD4 either during differentiation or CD4 and/or CD8 in their mature state and perform in vivo imaging of immune and cancer cells within a syngeneic B78 melanoma model. We also report an algorithm for single cell segmentation of mCherry-expressing immune cells within in vivo images. Results We found that immune cells within B78 tumors exhibited decreased FAD mean lifetime and an increased proportion of bound FAD compared to immune cells within spleens. Tumor infiltrating immune cell size also increased compared to immune cells from spleens. These changes are consistent with a shift towards increased activation and proliferation in tumor infiltrating immune cells compared to immune cells from spleens. Tumor infiltrating immune cells exhibited increased FAD mean lifetime and increased protein-bound FAD lifetime compared to B78 tumor cells within the same tumor. Single cell metabolic heterogeneity was observed in both immune and tumor cells in vivo. Discussion This approach can be used to monitor single cell metabolic heterogeneity in tumor cells and immune cells to study promising treatments for cancer in the native in vivo context.
Collapse
Affiliation(s)
- Alexa R. Heaton
- Morgridge Institute for Research, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Peter R. Rehani
- Morgridge Institute for Research, Madison, WI, United States
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Angelica F. Lopez
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Hinsdale TA, Malik BH, Cheng S, Benavides OR, Giger ML, Wright JM, Patel PB, Jo JA, Maitland KC. Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy. Sci Rep 2021; 11:4984. [PMID: 33654229 PMCID: PMC7925521 DOI: 10.1038/s41598-021-84552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63).
Collapse
Affiliation(s)
- Taylor A Hinsdale
- Department of Biomedical Engineering, Texas A&M University, College Station, USA
- Delft University of Technology, Delft, The Netherlands
| | - Bilal H Malik
- Department of Biomedical Engineering, Texas A&M University, College Station, USA
- QT Imaging, Inc, 3 Hamilton Landing, Suite 160, Novato, CA, 94949, USA
| | - Shuna Cheng
- Department of Biomedical Engineering, Texas A&M University, College Station, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, College Station, USA
| | | | - John M Wright
- Department of Diagnostic Science, Texas A&M College of Dentistry, Dallas, USA
| | - Paras B Patel
- Department of Diagnostic Science, Texas A&M College of Dentistry, Dallas, USA
| | - Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, College Station, USA
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, USA
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, USA.
| |
Collapse
|
4
|
Awasthi K, Chang FL, Hsieh PY, Hsu HY, Ohta N. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960210. [PMID: 32067342 DOI: 10.1002/jbio.201960210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Monitoring fluorescence properties of endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in normal and cancerous cells provide substantial information noninvasively on biochemical and biophysical aspects of metabolic dysfunction of cancerous cells. Time-resolved spectral profiles and fluorescence lifetime images of NADH and FAD were obtained in human lung nonsmall carcinomas (H661 and A549) and normal lung cells (MRC-5). Both fluorophores show the fast and slowly decaying emission components upon pulsed excitation, and fluorescence spectra of NADH and FAD show blue- and red-shifts, respectively, during their decay. All identified lifetime components of NADH and FAD were found to be shorter in cancerous cells than in normal cells, no matter how they were measured under different extra-cellular conditions (cells suspended in cuvette and cells attached on glass substrate), indicating that the changes in metabolism likely altered the subcellular milieu and potentially also affected the interaction of NADH and FAD with enzymes to which these cofactors were bound. The intensity ratio of NADH and FAD of cancerous cells was also shown to be larger than that of normal cells.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Feng-Lin Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Hsieh
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Zhou H, Nguyen L, Arnesano C, Ando Y, Raval M, Rodgers JT, Fraser S, Lu R, Shen K. Non-invasive Optical Biomarkers Distinguish and Track the Metabolic Status of Single Hematopoietic Stem Cells. iScience 2020; 23:100831. [PMID: 31982780 PMCID: PMC6994633 DOI: 10.1016/j.isci.2020.100831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
Metabolism is a key regulator of hematopoietic stem cell (HSC) functions. There is a lack of real-time, non-invasive approaches to evaluate metabolism in single HSCs. Using fluorescence lifetime imaging microscopy, we developed a set of metabolic optical biomarkers (MOBs) from the auto-fluorescent properties of metabolic coenzymes NAD(P)H and FAD. The MOBs revealed the enhanced glycolysis, low oxidative metabolism, and distinct mitochondrial localization of HSCs. Importantly, the fluorescence lifetime of enzyme-bound NAD(P)H (τbound) can non-invasively monitor the glycolytic/lactate dehydrogenase activity in single HSCs. As a proof of concept for metabolism-based cell sorting, we further identified HSCs within the Lineage-cKit+Sca1+ (KLS) hematopoietic stem/progenitor population using MOBs and a machine-learning algorithm. Moreover, we revealed the dynamic changes of MOBs, and the association of longer τbound with enhanced glycolysis under HSC stemness-maintaining conditions during HSC culture. Our work thus provides a new paradigm to identify and track the metabolism of single HSCs non-invasively and in real time. Metabolic optical biomarkers non-invasively distinguish HSCs from early progenitors NAD(P)H τbound reflects lactate dehydrogenase activity in single fresh/cultured HSCs pHi correlates with τbound in hematopoietic populations, with HSCs being the highest Optical biomarkers track metabolic changes and response to drugs in cultured HSCs
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Lisa Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cosimo Arnesano
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Manmeet Raval
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joseph T Rodgers
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Scott Fraser
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; USC Stem Cell, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
6
|
Hinsdale T, Olsovsky C, Rico-Jimenez JJ, Maitland KC, Jo JA, Malik BH. Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination. BIOMEDICAL OPTICS EXPRESS 2017; 8:1455-1465. [PMID: 28663841 PMCID: PMC5480556 DOI: 10.1364/boe.8.001455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 05/04/2023]
Abstract
In this paper, we demonstrate the ability of structured illumination microscopy to enhance the ability of fluorescence lifetime imaging to resolve fluorescence lifetimes in relatively thick samples that possess distinct but spectrally overlapping fluorescent layers. Structured illumination fluorescent lifetime imaging microscopy (SI-FLIM) is shown to be able to accurately reconstruct lifetime values in homogenous fluorophore samples (POPOP, NADH, and FAD) as well as accurately measure fluorescent lifetime in two layer models that are layered with NADH/FAD over POPOP, where NADH/FAD and POPOP have spectral overlap. Finally, the ability of SI-FLIM was demonstrated in a hamster cheek pouch ex vivo to show that more accurate lifetimes could be measured for each layer of interest in the oral mucosa (epithelium and submucosa).
Collapse
Affiliation(s)
- Taylor Hinsdale
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
| | - Cory Olsovsky
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
| | - Jose J. Rico-Jimenez
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
| | - Kristen C. Maitland
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
| | - Bilal H. Malik
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA
- QT Ultrasound Labs, 3 Hamilton Landing, Suite 160, Novato, CA 94949, USA
| |
Collapse
|
7
|
Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy. Sci Rep 2016; 6:19145. [PMID: 26758390 PMCID: PMC4725947 DOI: 10.1038/srep19145] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson's disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime imaging microscopy (2P-FLIM) to noninvasively measure the fluorescence lifetime components of NADH and FAD, and their relative contributions in MPP(+) (1-methyl-4-phenylpyridinium) treated neuronal cells, derived from PC12 cells treated with nerve growth factor (NGF), to mimic PD conditions. A systematic FLIM data analysis showed a statistically significant (p < 0.001) decrease in the fluorescence lifetime of both free and protein-bound NADH, as well as free and protein-bound FAD in MPP(+) treated cells. On the relative contributions of the free and protein-bound NADH and FAD to the life time, however, both the free NADH contribution and the corresponding protein-bound FAD contribution increase significantly (p < 0.001) in MPP(+) treated cells, compared to control cells. These results, which indicate a shift in energy production in the MPP(+) treated cells from oxidative phosphorylation towards anaerobic glycolysis, can potentially be used as cellular metabolic metrics to assess the condition of PD at the cellular level.
Collapse
|
8
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
9
|
Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, Skala MC. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 2014; 73:6164-74. [PMID: 24130112 DOI: 10.1158/0008-5472.can-13-0527] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, high-resolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin adenine dinucleotide. We confirm that OMI correlates with cellular glycolytic levels across a panel of human breast cell lines using standard assays of cellular rates of glucose uptake and lactate secretion (P < 0.05, r = 0.89). In addition, OMI resolves differences in the basal metabolic activity of untransformed from malignant breast cells (P < 0.05) and between breast cancer subtypes (P < 0.05), defined by estrogen receptor and/or HER2 expression or absence. In vivo OMI is sensitive to metabolic changes induced by inhibition of HER2 with the antibody trastuzumab (herceptin) in HER2-overexpressing human breast cancer xenografts in mice. This response was confirmed with tumor growth curves and stains for Ki67 and cleaved caspase-3. OMI resolved trastuzumab-induced changes in cellular metabolism in vivo as early as 48 hours posttreatment (P < 0.05), whereas fluorodeoxyglucose-positron emission tomography did not resolve any changes with trastuzumab up to 12 days posttreatment (P > 0.05). In addition, OMI resolved cellular subpopulations of differing response in vivo that are critical for investigating drug resistance mechanisms. Importantly, OMI endpoints remained unchanged with trastuzumab treatment in trastuzumab-resistant xenografts (P > 0.05). OMI has significant implications for rapid cellular-level assessment of metabolic response to molecular expression and drug action, which would greatly accelerate drug development studies.
Collapse
Affiliation(s)
- Alex J Walsh
- Authors' Affiliations: Departments of Biomedical Engineering, Cancer Biology, Medicine, Vanderbilt University Institute of Imaging Science, and Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Nashville, Tennessee
| | | | | | | | | | | | | |
Collapse
|
10
|
Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Almeida DB, Andrade LALA, Bottcher-Luiz F, Carvalho HF, Cesar CL. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 2012; 7:e47007. [PMID: 23056557 PMCID: PMC3466244 DOI: 10.1371/journal.pone.0047007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression. METHODOLOGY/PRINCIPAL FINDINGS We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. CONCLUSIONS/SIGNIFICANCE NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Female
- Humans
- Microscopy
- Microscopy, Fluorescence, Multiphoton
- Middle Aged
- Neoplasms, Glandular and Epithelial/diagnosis
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Serum/metabolism
Collapse
Affiliation(s)
- Javier Adur
- Biophotonic Group, Optics and Photonics Research Center (CEPOF), Institute of Physics Gleb Wataghin, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cicchi R, Pavone FS. Non-linear fluorescence lifetime imaging of biological tissues. Anal Bioanal Chem 2011; 400:2687-97. [PMID: 21455652 DOI: 10.1007/s00216-011-4896-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
In recent years fluorescence microscopy has become a widely used tool for tissue imaging and spectroscopy. Optical techniques, based on both linear and non-linear excitation, have been broadly applied to imaging and characterization of biological tissues. Among fluorescence techniques used in tissue imaging applications, in recent years two and three-photon excited fluorescence have gained increased importance because of their high-resolution deep tissue imaging capability inside optically turbid samples. The main limitation of steady-state fluorescence imaging techniques consists in providing only morphological information; functional information is not detectable without technical improvements. A spectroscopic approach, based on lifetime measurement of tissue fluorescence, can provide functional information about tissue conditions, including its environment, red-ox state, and pH, and hence physiological characterization of the tissue under investigation. Measurement of the fluorescence lifetime is a very important issue for characterizing a biological tissue. Deviation of this property from a control value can be taken as an indicator of disorder and/or malignancy in diseased tissues. Even if much work on this topic has still to be done, including the interpretation of fluorescence lifetime data, we believe that this methodology will gain increasing importance in the field of biophotonics. In this paper, we review methodologies, potentials and results obtained by using fluorescence lifetime imaging microscopy for the investigation of biological tissues.
Collapse
Affiliation(s)
- Riccardo Cicchi
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.
| | | |
Collapse
|
12
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
13
|
Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008; 6:11. [PMID: 18442412 PMCID: PMC2386807 DOI: 10.1186/1741-7015-6-11] [Citation(s) in RCA: 1028] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/28/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood. METHODS To study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen. RESULTS Herein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (p < 0.00001) and results in a significantly more invasive phenotype with approximately three times more lung metastasis (p < 0.05). Furthermore, the increased invasive phenotype of tumor cells that arose within collagen-dense mammary tissues remains after tumor explants are cultured within reconstituted three-dimensional collagen gels. To better understand this behavior we imaged live tumors using nonlinear optical imaging approaches to demonstrate that local invasion is facilitated by stromal collagen re-organization and that this behavior is significantly increased in collagen-dense tissues. In addition, using multiphoton fluorescence and spectral lifetime imaging we identify a metabolic signature for flavin adenine dinucleotide, with increased fluorescent intensity and lifetime, in invading metastatic cells. CONCLUSION This study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 2007; 104:19494-9. [PMID: 18042710 DOI: 10.1073/pnas.0708425104] [Citation(s) in RCA: 672] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabolic imaging of the relative amounts of reduced NADH and FAD and the microenvironment of these metabolic electron carriers can be used to noninvasively monitor changes in metabolism, which is one of the hallmarks of carcinogenesis. This study combines cellular redox ratio, NADH and FAD lifetime, and subcellular morphology imaging in three dimensions to identify intrinsic sources of metabolic and structural contrast in vivo at the earliest stages of cancer development. There was a significant (P < 0.05) increase in the nuclear to cytoplasmic ratio (NCR) with depth within the epithelium in normal tissues; however, there was no significant change in NCR with depth in precancerous tissues. The redox ratio significantly decreased in the less differentiated basal epithelial cells compared with the more mature cells in the superficial layer of the normal stratified squamous epithelium, indicating an increase in metabolic activity in cells with increased NCR. However, the redox ratio was not significantly different between the superficial and basal cells in precancerous tissues. A significant decrease was observed in the contribution and lifetime of protein-bound NADH (averaged over the entire epithelium) in both low- and high-grade epithelial precancers compared with normal epithelial tissues. In addition, a significant increase in the protein-bound FAD lifetime and a decrease in the contribution of protein-bound FAD are observed in high-grade precancers only. Increased intracellular variability in the redox ratio, NADH, and FAD fluorescence lifetimes were observed in precancerous cells compared with normal cells.
Collapse
|
15
|
Murataliev MB, Feyereisen R, Walker FA. Electron transfer by diflavin reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:1-26. [PMID: 15063311 DOI: 10.1016/j.bbapap.2003.10.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 08/20/2003] [Accepted: 10/14/2003] [Indexed: 11/25/2022]
Abstract
Diflavin reductases are enzymes which emerged as a gene fusion of ferredoxin (flavodoxin) reductase and flavodoxin. The enzymes of this family tightly bind two flavin cofactors, FAD and FMN, and catalyze transfer of the reducing equivalents from the two-electron donor NADPH to a variety of one-electron acceptors. Cytochrome P450 reductase (P450R), a flavoprotein subunit of sulfite reductase (SiR), and flavoprotein domains of naturally occurring flavocytochrome fusion enzymes like nitric oxide synthases (NOS) and the fatty acid hydroxylase from Bacillus megaterium are some of the enzymes of this family. In this review the results of the last decade of research are summarized, and some earlier results are reevaluated as well. The kinetic mechanism of cytochrome c reduction is analyzed in light of other results on flavoprotein interactions with nucleotides and cytochromes. The roles of the binding sites of the isoalloxazine rings of the flavin cofactors and conformational changes of the protein in electron transfer are discussed. It is proposed that minor conformational changes during catalysis can potentiate properties of the redox centers during the catalytic turnover. A function of the aromatic residue that shields the isoalloxazine ring of the FAD is also proposed.
Collapse
Affiliation(s)
- Marat B Murataliev
- Department of Chemistry, University of Arizona, P.O. Box 210041, Tucson, AZ 85721-0041, USA
| | | | | |
Collapse
|
16
|
Rocheleau JV, Head WS, Piston DW. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 2004; 279:31780-7. [PMID: 15148320 DOI: 10.1074/jbc.m314005200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.
Collapse
Affiliation(s)
- Jonathan V Rocheleau
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
17
|
Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 2002; 82:2811-25. [PMID: 11964266 PMCID: PMC1302068 DOI: 10.1016/s0006-3495(02)75621-x] [Citation(s) in RCA: 525] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Two-photon (2P) ratiometric redox fluorometry and microscopy of pyridine nucleotide (NAD(P)H) and flavoprotein (FP) fluorescence, at 800-nm excitation, has been demonstrated as a function of mitochondrial metabolic states in isolated adult dog cardiomyocytes. We have measured the 2P-excitation spectra of NAD(P)H, flavin adenine dinucleotide (FAD), and lipoamide dehydrogenase (LipDH) over the wavelength range of 720-1000 nm. The 2P-excitation action cross sections (sigma2P) increase rapidly at wavelengths below 800 nm, and the maximum sigma2P of LipDH is approximately 5 and 12 times larger than those of FAD and NAD(P)H, respectively. Only FAD and LipDH can be efficiently excited at wavelengths above 800 nm with a broad 2P-excitation band around 900 nm. Two autofluorescence spectral regions (i.e., approximately 410-490 nm and approximately 510-650 nm) of isolated cardiomyocytes were imaged using 2P-laser scanning microscopy. At 750-nm excitation, fluorescence of both regions is dominated by NAD(P)H emission, as indicated by fluorescence intensity changes induced by mitochondrial inhibitor NaCN and mitochondria uncoupler carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP). In contrast, 2P-FP fluorescence dominates at 900-nm excitation, which is in agreement with the sigma2P measurements. Finally, 2P-autofluorescence emission spectra of single cardiac cells have been obtained, with results suggesting potential for substantial improvement of the proposed 2P-ratiometric technique.
Collapse
Affiliation(s)
- Shaohui Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
18
|
Kunz D, Luley C, Winkler K, Lins H, Kunz WS. Flow cytometric detection of mitochondrial dysfunction in subpopulations of human mononuclear cells. Anal Biochem 1997; 246:218-24. [PMID: 9073359 DOI: 10.1006/abio.1997.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At 488 nm argon-ion laser excitation human mononuclear cells emit flavoprotein-related autofluorescence signals. Approximately 60% of these are caused by the mitochondrial flavoproteins alpha-lipoamide dehydrogenase and electron transfer flavoprotein, having differences in their fluorescence emission spectra. At the emission wavelength of 530 nm the redox changes of alpha-lipoamide dehydrogenase fluorescence in human mononuclear cells can be monitored by flow cytometry. This allows the estimation of the steady-state reduction level of this flavoprotein being in redox equilibrium with the mitochondrial NAD-system. We applied this method to elucidate the possible impairment of mitochondrial function in subpopulations of mononuclear cells of patients harboring deletions of the mitochondrial DNA in skeletal muscle. In the monocyte fraction of three patients and in the lymphocyte fraction of one patient we observed in the presence of the mitochondrial substrate octanoate elevated steady-state reduction levels of alpha-lipoamide dehydrogenase. This is an indication for the presence of respiratory chain-inhibited mitochondria in mononuclear cell subpopulations of the described patients. These data were confirmed by conventional determinations of maximal oxygen consumption rates of digitonin-permeabilized cells. Therefore, the flow cytometric determination of flavoprotein-caused autofluorescence changes is a useful and sensitive method for the detection of an impairment of mitochondrial respiratory chain in subpopulations of heterogeneous cell suspensions.
Collapse
Affiliation(s)
- D Kunz
- Neurobiochemisches Labor der Klinik für Neurologie, Universität Magdeburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Benen J, van Berkel W, Dieteren N, Arscott D, Williams C, Veeger C, de Kok A. Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Kinetics of wild-type and mutated enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:487-97. [PMID: 1633804 DOI: 10.1111/j.1432-1033.1992.tb17075.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three amino acid residues in the active site of lipoamide dehydrogenase from Azotobacter vinelandii were replaced with other residues. His450, the active-site base, was replaced with Ser, Tyr or Phe. Pro451, from X-ray analysis found to be in cis conformation positioning the backbone carbonyl of His450 close to N3 of the flavin, was changed to Ala. Glu455, from X-ray analysis expected to be involved in modulating the pKa of the base (His450), was replaced with Asp and Gln. The general conclusion is that mutation of the His-Glu diad impairs intramolecular electron transfer between the disulfide/dithiol and the FADH-/FAD. The wild-type enzyme functions according to a ping-pong mechanism in the physiological reaction in which the formation of NADH is rate-limiting. Above pH 8.0 the enzyme is strongly inhibited by the product NADH. The pH dependence of the steady-state kinetics using the NAD+ analog 3-acetylpyridine adenine dinucleotide (AcPyAde+) reveals a pKa of 8.1 in the pKm AcPyAde+ plot indicating that this pKa is related to the deprotonation of His450 [Benen, J., Berkel van, W., Zak, Z., Visser, T., Veeger, C. & Kok de, A. (1991) Eur. J. Biochem. 202, 863-872] and to the inhibition by NADH. The mutations considerably affect turnover. Enzymes with the mutations Pro451----Ala, His450----Phe and His450----Tyr appear to be almost inactive in both directions. Enzyme His450----Ser is minimally active, V at the pH optimum being 0.5% of wild-type activity in the physiological reaction. Rapid reaction kinetics show that for the His450-mutated enzymes the reductive half reaction using reduced 6,8-thioctic acid amide [Lip(SH)2] is rate-limiting and extremely slow when compared using reduced 6,8-thioctic acid amide [Lip(SH)2] is rate-limiting and extremely slow when compared to the wild-type enzyme. For enzyme Pro451----Ala it is concluded that the loss of activity is due to over-reduction by Lip(SH)2 and NADH. The Glu455-mutated enzymes are catalytically competent but show strong inhibition by the product NADH (enzyme Glu455----Asp more than Glu455----Gln). The inhibition can largely be overcome by using AcPyAde+ instead of NAD+ in the physiological reaction. The rapid reaction kinetics obtained for enzymes Glu455----Asp and Glu455----Gln deviate from the wild-type enzyme. It is concluded that this difference is due to cooperativity between the active sites in this dimeric enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Benen
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Kunz WS. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 932:8-16. [PMID: 3337800 DOI: 10.1016/0005-2728(88)90134-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new method permitting the simultaneous evaluation of the redox states of alpha-lipoamide dehydrogenase and electron-transfer flavoprotein in intact rat liver mitochondria by two-channel fluorimetry is described. It is shown that correction for the partial overlap of emission spectra can readily be introduced after a calibration procedure is performed. This method was applied to the investigation into regulation of palmitoylcarnitine oxidation. It was found that in the presence of rotenone, malonate and a redox buffer for the mitochondrial NAD-system, the beta-oxidation flux was sensitive to variations in redox state of respiratory chain electron carriers at low states of NAD reduction. Therefore, the concept of beta-oxidation control caused solely by the NAD redox state can no longer be sustained.
Collapse
Affiliation(s)
- W S Kunz
- Institut für Biochemie, Medizinischen Akademie Magdeburg, G.D.R
| |
Collapse
|
21
|
Abstract
The different flavoproteins contributing to flavin fluorescence of isolated rat liver mitochondria have distinct excitation and emission spectra. The NAD-linked flavin component was identified as alpha-lipoamide dehydrogenase, while the non-NAD-linked component was found to be electron transfer flavoprotein. The differences in excitation and emission properties of the mitochondrial flavoproteins permit selective recording of their redox state changes in isolated mitochondria.
Collapse
|