1
|
Gerwin J, Torres-Dowdall J, Brown TF, Meyer A. Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. J Mol Evol 2024; 92:432-448. [PMID: 38861038 PMCID: PMC11291592 DOI: 10.1007/s00239-024-10181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
Collapse
Affiliation(s)
- Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Thomas F Brown
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
2
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Chau KD, Hauser FE, Van Nynatten A, Daane JM, Harris MP, Chang BSW, Lovejoy NR. Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes. J Mol Evol 2024; 92:93-103. [PMID: 38416218 DOI: 10.1007/s00239-024-10156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
Collapse
Affiliation(s)
- Katherine D Chau
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, York University, Toronto, ON, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Irazábal-González L, Wright DS, Maan ME. Developmental and environmental plasticity in opsin gene expression in Lake Victoria cichlid fish. Evol Dev 2024; 26:e12465. [PMID: 38041513 DOI: 10.1111/ede.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
In many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging, and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity; visual system variation is generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We focused on the four opsins that are expressed in Pundamilia adults (using real-time quantitative polymerase chain reaction (RT-qPCR)) (SWS2B, SWS2A, RH2A, and LWS) at 17 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.
Collapse
Affiliation(s)
- Lucia Irazábal-González
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Daniel S Wright
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Pauers MJ, Hoffmann J, Ackley LJB. Differences among reciprocal hybrids of Labeotropheus. HYDROBIOLOGIA 2022; 850:2149-2164. [PMID: 36466299 PMCID: PMC9684848 DOI: 10.1007/s10750-022-05092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 06/14/2023]
Abstract
Current evidence suggests that hybridization played a crucial role in the early evolution and diversification of the species flocks of cichlid fishes in the African Great Lakes. Nonetheless, evidence for hybridization in the extant cichlid fauna is scant, suggesting that hybridization is rare in the modern era, perhaps enforced by natural or sexual selection acting against F1 hybrids. Additionally, most experimental studies of hybridization perform a hybrid cross in one direction, ignoring the reciprocal hybrid. In this study, we perform reciprocal crosses between sympatric congeners from Lake Malaŵi, Labeotropheus fuelleborni and L. trewavasae, in order to compare the body shape and coloration of males of both of these hybrids, as well as to examine how these hybrids fare during both inter- and intrasexual interactions. We found that L. trewavasae-sired hybrid males are intermediate to the parental species both morphologically and chromatically, while the reciprocal L. fuelleborni-sired hybrids are likely transgressive hybrids. Males of these transgressive hybrids also fare poorly during our mate choice experiments. While female L. trewavasae reject them as possible mates, male L. trewavasae do not make a distinction between them and conspecific males. Selection against transgressive F1 hybrids as observed in our crossing experiments may help explain why contemporary hybridization in Lake Malaŵi cichlids appears to be rare. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05092-4.
Collapse
Affiliation(s)
- Michael J. Pauers
- Section of Vertebrate Zoology, Milwaukee Public Museum, 800 W. Wells Street, Milwaukee, WI USA
- Department of Mathematics and Natural Science, University of Wisconsin-Milwaukee at Waukesha, 1500 N. University Drive, Waukesha, WI USA
- School of Freshwater Science, University of Wisconsin-Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI USA
| | - Jacob Hoffmann
- Department of Mathematics and Natural Science, University of Wisconsin-Milwaukee at Waukesha, 1500 N. University Drive, Waukesha, WI USA
| | - Leah Jiang-Bo Ackley
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 2900 N. Maryland Avenue, Milwaukee, WI USA
| |
Collapse
|
6
|
Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Proc Biol Sci 2022; 289:20221855. [DOI: 10.1098/rspb.2022.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (
RH1
) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within
RH2
) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Monika Kłodawska
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Veronika Truhlářová
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Prokop Košátko
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Vojtěch Kašpar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Arnold Roger Bitja Nyom
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O. Box 7236, Cameroon
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
7
|
Wilwert E, Etienne RS, van de Zande L, Maan ME. Contribution of opsins and chromophores to cone pigment variation across populations of Lake Victoria cichlids. JOURNAL OF FISH BIOLOGY 2022; 101:365-377. [PMID: 34860424 PMCID: PMC9543281 DOI: 10.1111/jfb.14969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Adaptation to heterogeneous sensory environments has been implicated as a key parameter in speciation. Cichlid fish are a textbook example of divergent visual adaptation, mediated by variation in the sequences and expression levels of cone opsin genes (encoding the protein component of visual pigments). In some vertebrates including fish, visual sensitivity is also tuned by the ratio of vitamin A1 /A2 -derived chromophores (i.e., the light-sensitive component of the visual pigment bound to the opsin protein), where higher proportions of A2 cause a more red-shifted wavelength absorbance. This study explores the variation in chromophore ratios across multiple cichlid populations in Lake Victoria, using as a proxy the expression of the gene Cyp27c1, which has been shown to regulate the conversion of vitamin A1 into vitamin A2 in several vertebrates. This study focuses on sympatric Pundamilia cichlids, where species with blue or red male coloration co-occur at multiple islands but occupy different depths and consequently different visual habitats. In the red species, we found higher cyp27c1 expression in populations from turbid waters than from clear waters, but there was no such pattern in the blue species. Across populations, differences between the sympatric species in cyp27c1 expression had a consistent relationship with species differences in opsin expression patterns, but the red/blue identity reversed between clear and turbid waters. To assess the contribution of heritable vs. environmental causes of variation, we tested whether light manipulations induce a change in cyp27c1 expression in the laboratory. We found that cyp27c1 expression was not influenced by experimental light conditions, suggesting that the observed variation in the wild is due to genetic differences. Nonetheless, compared to other cichlid species, cyp27c1 is expressed at very low levels in Pundamilia, suggesting that it may not be relevant for visual adaptation in this species. Conclusively, establishing the biological importance of this variation requires testing of actual A1 /A2 ratios in the eye, as well as its consequences for visual performance.
Collapse
Affiliation(s)
- Elodie Wilwert
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenThe Netherlands
| |
Collapse
|
8
|
Gills Just Want to Have Fun: Can Fish Play Games, Just like Us? Animals (Basel) 2022; 12:ani12131684. [PMID: 35804583 PMCID: PMC9265024 DOI: 10.3390/ani12131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary A pending question in animal biology is whether fish are capable of complex behaviors, such as play. We investigated this by shining laser pointers of various colors into home fish tank aquariums. We tested 66 different species and found that over 80% of fish showed an inquisitive response to the moving light stimuli, with the greatest interest in red laser spots. We review the literature on fish play and discuss whether the fish responses we observed can be considered play. Abstract It is common to observe play in dogs, cats, and birds, but have we been ignoring play in one of the most common house pets of all… fish? Aquarium fish are often used as meditative decoration in family households, but it could be that fish have similarly diverse behavioral repertoires as mammals and birds. To examine this theory, we conducted field tests at local pet stores where a range of aquarium fish species was tested for responsiveness to laser pointer stimuli. Out of 66 species of fish tested, over 80% showed a tendency to be interested in the moving laser spots, particularly red ones. Whether this behavior constitutes play is an active topic of investigation that we examine in this work.
Collapse
|
9
|
Pavlova NS, Gizatulina AR, Neretina TV, Smirnova OV. Expression of Opsin Genes in the Retina of Female and Male Three-Spined Sticklebacks Gasterosteus aculeatus L.: Effect of Freshwater Adaptation and Prolactin Administration. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:215-224. [PMID: 35526850 DOI: 10.1134/s0006297922030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Color vision sensitivity is crucial for fish adaptation during migration and reproduction. Prolactin and prolactin-like hormone are important regulators in both these processes. We hypothesized that prolactin influences the color vision sensitivity during freshwater migrations in fish. We studied the effects of prolactin and freshwater adaptation during the spawning period on the expression of opsin genes (SWS1, SWS2, RH2, LWS) in the retina of female and male three-spined sticklebacks Gasterosteus aculeatus L. Expression of the prolactin gene increased in the brain of females, but not males, while expression of the prolactin-like hormone decreased in the brain of both male and female sticklebacks during freshwater adaptation. Expression of the SWS2 gene decreased in the retina of females and males during freshwater adaptation and after prolactin administration. Expression of the SWS1 gene decreased in the retina of male sticklebacks after prolactin administration, but not during freshwater adaptation. Expression of the RH2 and LWS genes did not depend on prolactin administration in male and female sticklebacks. We conclude that expression of some opsin genes in the retina of sticklebacks is regulated by prolactin and depends on sex and freshwater adaptation. This expands our knowledge of the adaptive effects of prolactin on fish during freshwater migrations.
Collapse
Affiliation(s)
- Nadezhda S Pavlova
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Albina R Gizatulina
- Department of Physiology and General Pathology, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana V Neretina
- Pertsov White Sea Biological Station, Moscow State University, 186671 Loukhsky District, Republic of Karelia, Russia
| | - Olga V Smirnova
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
10
|
Tosetto L, Williamson JE, White TE, Hart NS. Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics? BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:103-123. [PMID: 34856558 DOI: 10.1159/000519894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
Collapse
Affiliation(s)
- Louise Tosetto
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Preising GA, Faber-Hammond JJ, Renn SCP. Correspondence of aCGH and long-read genome assembly for detection of copy number differences: A proof-of-concept with cichlid genomes. PLoS One 2021; 16:e0258193. [PMID: 34618847 PMCID: PMC8496808 DOI: 10.1371/journal.pone.0258193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Copy number variation is an important source of genetic variation, yet data are often lacking due to technical limitations for detection given the current genome assemblies. Our goal is to demonstrate the extent to which an array-based platform (aCGH) can identify genomic loci that are collapsed in genome assemblies that were built with short-read technology. Taking advantage of two cichlid species for which genome assemblies based on Illumina and PacBio are available, we show that inter-species aCGH log2 hybridization ratios correlate more strongly with inferred copy number differences based on PacBio-built genome assemblies than based on Illumina-built genome assemblies. With regard to inter-species copy number differences of specific genes identified by each platform, the set identified by aCGH intersects to a greater extent with the set identified by PacBio than with the set identified by Illumina. Gene function, according to Gene Ontology analysis, did not substantially differ among platforms, and platforms converged on functions associated with adaptive phenotypes. The results of the current study further demonstrate that aCGH is an effective platform for identifying copy number variable sequences, particularly those collapsed in short read genome assemblies.
Collapse
Affiliation(s)
| | | | - Suzy C. P. Renn
- Department of Biology, Reed College, Portland, OR, United States of America
| |
Collapse
|
12
|
Butler JM, Maruska KP. Opsin Expression Varies with Reproductive State in the Cichlid Fish Astatotilapia burtoni. Integr Comp Biol 2021; 61:240-248. [PMID: 33972997 DOI: 10.1093/icb/icab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Animals use visual communication to convey crucial information about their identity, reproductive status, and sex. Plasticity in the auditory and olfactory systems has been well-documented, however, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice are largely dependent on visual signals across taxa. We previously found reproductive state-dependent plasticity in the eye of the highly social cichlid fish Astatotilapia burtoni. Male A. burtoni increase their courtship, including multicomponent visual displays, when around ovulated females, and ovulated females are more responsive to male visual courtship displays than non-ovulated females. Based on this, we hypothesized that ovulation status impacts visual capabilities in A. burtoni females. Using electroretinograms, we found that ovulated females had greater visual sensitivity at wavelengths corresponding to male courtship coloration compared with non-reproductively-receptive females. In addition, ovulated females had higher neural activation in the retina and higher mRNA expression levels of neuromodulatory receptors (e.g., sex-steroids; gonadotropins) in the eye than non-ovulated females. Here, we add to this body of work by testing the hypothesis that cone opsin expression changes with female reproductive state. Ovulated females had higher expression of short wavelength sensitive opsins (sws1, sws2a, sws2b) compared with mouthbrooding females. Further, expression of sws2a, the most abundant opsin in the A. burtoni eye, positively correlated with levels of circulating 11-ketotestosterone and estradiol and estrogen, androgen, and gonadotropin system receptor expression in the eye in females. These data indicate that reproductive state-dependent plasticity also occurs at the level of photoreceptors, not just through modulation of visual signals at downstream retinal layers. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA.,Department of Biology, Stanford University, 304 Gilbert, 371 Jane Stanford Way, Stanford, CA 94305, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Matsuo M, Kamei Y, Fukamachi S. Behavioural red-light sensitivity in fish according to the optomotor response. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210415. [PMID: 34386255 PMCID: PMC8334835 DOI: 10.1098/rsos.210415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 05/12/2023]
Abstract
Various procedures have been adopted to investigate spectral sensitivity of animals, e.g. absorption spectra of visual pigments, electroretinography, optokinetic response, optomotor response (OMR) and phototaxis. The use of these techniques has led to various conclusions about animal vision. However, visual sensitivity should be evaluated consistently for a reliable comparison. In this study, we retrieved behavioural data of several fish species using a single OMR procedure and compared their sensitivities to near-infrared light. Besides cavefish that lack eyes, some species were not appropriate for the OMR test because they either stayed still or changed swimming direction frequently. Eight of 13 fish species tested were OMR positive. Detailed analyses using medaka, goldfish, zebrafish, guppy, stickleback and cichlid revealed that all the fish were sensitive to light at a wavelength greater than or equal to 750 nm, where the threshold wavelengths varied from 750 to 880 nm. Fish opsin repertoire affected the perception of red light. By contrast, the copy number of long-wavelength-sensitive (LWS) genes did not necessarily improve red-light sensitivity. While the duplication of LWS and other cone opsin genes that has occurred extensively during fish evolution might not aid increasing spectral sensitivity, it may provide some other advantageous ophthalmic function, such as enhanced spectral discrimination.
Collapse
Affiliation(s)
- Megumi Matsuo
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| |
Collapse
|
14
|
Behrens KA, Girasek QL, Sickler A, Hyde J, Buonaccorsi VP. Regions of genetic divergence in depth-separated Sebastes rockfish species pairs: Depth as a potential driver of speciation. Mol Ecol 2021; 30:4259-4275. [PMID: 34181798 DOI: 10.1111/mec.16046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Depth separation is a proposed driver of speciation in marine fishes, with marine rockfish (genus Sebastes) providing a potentially informative study system. Sebastes rockfishes are commercially and ecologically important. This genus encompasses more than one hundred species and the ecological and morphological variance between these species provides opportunity for identifying speciation-driving adaptations, particularly along a depth gradient. A reduced-representation sequencing method (ddRADseq) was used to compare 95 individuals encompassing six Sebastes species. In this study, we sought to identify regions of divergence between species that were indicative of divergent adaptation and reproductive barriers leading to speciation. A pairwise comparison of S. chrysomelas (black-and-yellow rockfish) and S. carnatus (gopher rockfish) FST values revealed three major regions of elevated genomic divergence, two of which were also present in the S. miniatus (vermilion rockfish) and S. crocotulus (sunset rockfish) comparison. These corresponded with regions of both elevated DXY values and reduced nucleotide diversity in two cases, suggesting a speciation-with-gene-flow evolutionary model followed by post-speciation selective sweeps within each species. Limited whole-genome resequencing was also performed to identify mutations with predicted effects between S. chrysomelas and S. carnatus. Within these islands, we identified important SNPs in genes involved in immune function and vision. This supports their potential role in speciation, as these are adaptive vectors noted in other organisms. Additionally, changes to genes involved in pigment expression and mate recognition shed light on how S. chrysomelas and S. carnatus may have become reproductively isolated.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Quinn L Girasek
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Alex Sickler
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Hyde
- Fisheries Resources Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California, USA
| | | |
Collapse
|
15
|
Torres-Dowdall J, Karagic N, Härer A, Meyer A. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Mol Ecol 2021; 30:1880-1891. [PMID: 33619757 DOI: 10.1111/mec.15855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
The visual system of vertebrates has greatly contributed to our understanding of how different molecular mechanisms shape adaptive phenotypic diversity. Extensive work on African cichlid fishes has shown how variation in opsin gene expression mediates diversification as well as convergent evolution in colour vision. This trait has received less attention in Neotropical cichlids, the sister lineage to African cichlids, but the work done so far led to the conclusion that colour vision is much less variable in Neotropical species. However, as only few taxa have been investigated and as recent work found contradicting patterns, the diversity in meotropical cichlids might be greatly underestimated. Here, we survey patterns of opsin gene expression in 35 representative species of Neotropical cichlids, revealing much more variation than previously known. This diversity can be attributed to two main mechanisms: (i) differential expression of the blue-sensitive sws2a, the green-sensitive rh2a, and the red-sensitive lws opsin genes, and (ii) simultaneous expression of up to five opsin genes, instead of only three as commonly found, in a striking dorsoventral pattern across the retina. This intraretinal variation in opsin genes expression results in steep gradients in visual sensitivity that may represent a convergent adaptation to clear waters with broad light environments. These results highlight the role and flexibility of gene expression in generating adaptive phenotypic diversification.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Härer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Liénard MA, Bernard GD, Allen A, Lassance JM, Song S, Childers RR, Yu N, Ye D, Stephenson A, Valencia-Montoya WA, Salzman S, Whitaker MRL, Calonje M, Zhang F, Pierce NE. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc Natl Acad Sci U S A 2021; 118:e2008986118. [PMID: 33547236 PMCID: PMC8017955 DOI: 10.1073/pnas.2008986118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Gary D Bernard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Andrew Allen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Siliang Song
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Richard Rabideau Childers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
| | - Dajia Ye
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Adriana Stephenson
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
17
|
Carleton KL, Conte MA, Malinsky M, Nandamuri SP, Sandkam BA, Meier JI, Mwaiko S, Seehausen O, Kocher TD. Movement of transposable elements contributes to cichlid diversity. Mol Ecol 2020; 29:4956-4969. [PMID: 33049090 DOI: 10.1111/mec.15685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Milan Malinsky
- Wellcome Sanger Institute, Cambridge, UK
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | - Joana I Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
18
|
Nolen ZJ, Yildirim B, Irisarri I, Liu S, Groot Crego C, Amby DB, Mayer F, Gilbert MTP, Pereira RJ. Historical isolation facilitates species radiation by sexual selection: Insights from
Chorthippus
grasshoppers. Mol Ecol 2020; 29:4985-5002. [DOI: 10.1111/mec.15695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Zachary J. Nolen
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Department of Biology Lund University Lund Sweden
| | - Burcin Yildirim
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Department of Organismal Biology (Systematic Biology) Uppsala University Uppsala Sweden
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics University of Goettingen, Campus Institute Data Science Goettingen Germany
| | - Shanlin Liu
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- College of Plant Protection China Agricultural University Beijing China
| | - Clara Groot Crego
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | | | - Frieder Mayer
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | | | - Ricardo J. Pereira
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| |
Collapse
|
19
|
DeLeo DM, Bracken-Grissom HD. Illuminating the impact of diel vertical migration on visual gene expression in deep-sea shrimp. Mol Ecol 2020; 29:3494-3510. [PMID: 32748474 DOI: 10.1111/mec.15570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Diel vertical migration (DVM) of marine animals represents one of the largest migrations on our planet. Migrating fauna are subjected to a variety of light fields and environmental conditions that can have notable impacts on sensory mechanisms, including an organism's visual capabilities. Among deep-sea migrators are oplophorid shrimp that vertically migrate hundreds of metres to feed in shallow waters at night. These species also have bioluminescent light organs that emit light during migrations to aid in camouflage. The organs have recently been shown to contain visual proteins (opsins) and genes that infer light sensitivity. Knowledge regarding the impacts of vertical migratory behaviour, and fluctuating environmental conditions, on sensory system evolution is unknown. In this study, the oplophorid Systellaspis debilis was either collected during the day from deep waters or at night from relatively shallow waters to ensure sampling across the vertical distributional range. De novo transcriptomes of light-sensitive tissues (eyes/photophores) from the day/night specimens were sequenced and analysed to characterize opsin diversity and visual/light interaction genes. Gene expression analyses were also conducted to quantify expression differences associated with DVM. Our results revealed an expanded opsin repertoire among the shrimp and differential opsin expression that may be linked to spectral tuning during the migratory process. This study sheds light on the sensory systems of a bioluminescent invertebrate and provides additional evidence for extraocular light sensitivity. Our findings further suggest opsin co-expression and subsequent fluctuations in opsin expression may play an important role in diversifying the visual responses of vertical migrators.
Collapse
Affiliation(s)
- Danielle M DeLeo
- Institute of Environment, Department of Biology, Florida International University, North Miami, FL, USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biology, Florida International University, North Miami, FL, USA
| |
Collapse
|
20
|
Sandkam BA, Campello L, O’Brien C, Nandamuri SP, Gammerdinger WJ, Conte MA, Swaroop A, Carleton KL. Tbx2a Modulates Switching of RH2 and LWS Opsin Gene Expression. Mol Biol Evol 2020; 37:2002-2014. [PMID: 32191319 PMCID: PMC7849988 DOI: 10.1093/molbev/msaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.
Collapse
Affiliation(s)
| | - Laura Campello
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Conor O’Brien
- Department of Biology, University of Maryland, College Park, MD
| | | | | | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
21
|
Schneider RF, Rometsch SJ, Torres-Dowdall J, Meyer A. Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Mol Ecol 2020; 29:1476-1493. [PMID: 32215986 DOI: 10.1111/mec.15416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.
Collapse
Affiliation(s)
- Ralph F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Marine Ecology, GEOMAR, Kiel, Germany
| | - Sina J Rometsch
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Faber-Hammond JJ, Bezault E, Lunt DH, Joyce DA, Renn SCP. The Genomic Substrate for Adaptive Radiation: Copy Number Variation across 12 Tribes of African Cichlid Species. Genome Biol Evol 2020; 11:2856-2874. [PMID: 31504491 DOI: 10.1093/gbe/evz185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The initial sequencing of five cichlid genomes revealed an accumulation of genetic variation, including extensive copy number variation in cichlid lineages particularly those that have undergone dramatic evolutionary radiation. Gene duplication has the potential to generate substantial molecular substrate for the origin of evolutionary novelty. We use array-based comparative heterologous genomic hybridization to identify copy number variation events (CNVEs) for 168 samples representing 53 cichlid species including the 5 species for which full genome sequence is available. We identify an average of 50-100 CNVEs per individual. For those species represented by multiple samples, we identify 150-200 total CNVEs suggesting a substantial amount of intraspecific variation. For these species, only ∼10% of the detected CNVEs are fixed. Hierarchical clustering of species according to CNVE data recapitulates phylogenetic relationships fairly well at both the tribe and radiation level. Although CNVEs are detected on all linkage groups, they tend to cluster in "hotspots" and are likely to contain and be flanked by transposable elements. Furthermore, we show that CNVEs impact functional categories of genes with potential roles in adaptive phenotypes that could reasonably promote divergence and speciation in the cichlid clade. These data contribute to a more complete understanding of the molecular basis for adaptive natural selection, speciation, and evolutionary radiation.
Collapse
Affiliation(s)
| | - Etienne Bezault
- BOREA Research Unit, MNHN, CNRS 7208, Sorbonne Université, IRD 207, UCN, UA, Paris, France
| | - David H Lunt
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Domino A Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland OR 97202
| |
Collapse
|
23
|
Musilova Z, Indermaur A, Bitja‐Nyom AR, Omelchenko D, Kłodawska M, Albergati L, Remišová K, Salzburger W. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol 2019; 28:5010-5031. [DOI: 10.1111/mec.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Zuzana Musilova
- Department of Zoology Charles University in Prague Prague Czech Republic
- Zoological Institute University of Basel Basel Switzerland
| | | | - Arnold Roger Bitja‐Nyom
- Department of Biological Sciences University of Ngaoundéré Ngaoundéré Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems University of Douala Douala Cameroon
| | - Dmytro Omelchenko
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Monika Kłodawska
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Lia Albergati
- Zoological Institute University of Basel Basel Switzerland
| | - Kateřina Remišová
- Department of Physiology Charles University in Prague Prague Czech Republic
| | | |
Collapse
|
24
|
Yourick MR, Sandkam BA, Gammerdinger WJ, Escobar-Camacho D, Nandamuri SP, Clark FE, Joyce B, Conte MA, Kocher TD, Carleton KL. Diurnal variation in opsin expression and common housekeeping genes necessitates comprehensive normalization methods for quantitative real-time PCR analyses. Mol Ecol Resour 2019; 19:1447-1460. [PMID: 31325910 DOI: 10.1111/1755-0998.13062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
To determine the visual sensitivities of an organism of interest, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is often used to quantify expression of the light-sensitive opsins in the retina. While qRT-PCR is an affordable, high-throughput method for measuring expression, it comes with inherent normalization issues that affect the interpretation of results, especially as opsin expression can vary greatly based on developmental stage, light environment or diurnal cycles. We tested for diurnal cycles of opsin expression over a period of 24 hr at 1-hr increments and examined how normalization affects a data set with fluctuating expression levels using qRT-PCR and transcriptome data from the retinae of the cichlid Pelmatolapia mariae. We compared five methods of normalizing opsin expression relative to (a) the average of three stably expressed housekeeping genes (Ube2z, EF1-α and β-actin), (b) total RNA concentration, (c) GNAT2, (the cone-specific subunit of transducin), (d) total opsin expression and (e) only opsins expressed in the same cone type. Normalizing by proportion of cone type produced the least variation and would be best for removing time-of-day variation. In contrast, normalizing by housekeeping genes produced the highest daily variation in expression and demonstrated that the peak of cone opsin expression was in the late afternoon. A weighted correlation network analysis showed that the expression of different cone opsins follows a very similar daily cycle. With the knowledge of how these normalization methods affect opsin expression data, we make recommendations for designing sampling approaches and quantification methods based upon the scientific question being examined.
Collapse
Affiliation(s)
- Miranda R Yourick
- Department of Biology, University of Maryland, College Park, Maryland
| | | | | | | | | | - Frances E Clark
- Department of Biology, University of Maryland, College Park, Maryland
| | - Brendan Joyce
- Department of Biology, University of Maryland, College Park, Maryland
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
25
|
Wright DS, Meijer R, van Eijk R, Vos W, Seehausen O, Maan ME. Geographic variation in opsin expression does not align with opsin genotype in Lake Victoria cichlid populations. Ecol Evol 2019; 9:8676-8689. [PMID: 31410271 PMCID: PMC6686298 DOI: 10.1002/ece3.5411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022] Open
Abstract
Sensory adaptation to the local environment can contribute to speciation. Aquatic environments are well suited for studying this process: The natural attenuation of light through water results in heterogeneous light environments, to which vision-dependent species must adapt for communication and survival. Here, we study visual adaptation in sympatric Pundamilia cichlids from southeastern Lake Victoria. Species with blue or red male nuptial coloration co-occur at many rocky islands but tend to be depth-differentiated, entailing different visual habitats, more strongly at some islands than others. Divergent visual adaptation to these environments has been implicated as a major factor in the divergence of P. pundamilia and P. nyererei, as they show consistent differentiation in the long-wavelength-sensitive visual pigment gene sequence (LWS opsin). In addition to sequence variation, variation in the opsin gene expression levels may contribute to visual adaptation. We characterized opsin gene expression and LWS genotype across Pundamilia populations inhabiting turbid and clear waters, to examine how different mechanisms of visual tuning contribute to visual adaptation. As predicted, the short-wavelength-sensitive opsin (SWS2b) was expressed exclusively in a population from clear water. Contrary to prediction however, expression levels of the other opsins were species- and island-dependent and did not align with species differences in LWS genotype. Specifically, in two locations with turbid water, the shallow-water dwelling blue species expressed more LWS and less RH2A than the deeper-dwelling red species, while the opposite pattern occurred in the two locations with clear water. Visual modeling suggests that the observed distribution of opsin expression profiles and LWS genotypes does not maximize visual performance, implying the involvement of additional visual tuning mechanisms and/or incomplete adaptation. OPEN RESEARCH BADGE This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://hdl.handle.net/10411/I1IUUQ.
Collapse
Affiliation(s)
- Daniel Shane Wright
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Roy Meijer
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- University of Applied Sciences van Hall LarensteinLeeuwardenThe Netherlands
| | - Roel van Eijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Wicher Vos
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Ole Seehausen
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
- Department Fish Ecology & EvolutionEawag, Center for Ecology, Evolution and BiogeochemistryKastanienbaumSwitzerland
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 2019; 28:3025-3041. [DOI: 10.1111/mec.15102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | | | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
27
|
Owens GL, Rennison DJ. Evolutionary ecology of opsin gene sequence, expression and repertoire. Mol Ecol 2019; 26:1207-1210. [PMID: 28271616 DOI: 10.1111/mec.14032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/30/2022]
Abstract
Linking molecular evolution to biological function is a long-standing challenge in evolutionary biology. Some of the best examples of this involve opsins, the genes that encode the molecular basis of light reception. In this issue of Molecular Ecology, three studies examine opsin gene sequence, expression and repertoire to determine how natural selection has shaped the visual system. First, Escobar-Camacho et al. () use opsin repertoire and expression in three Amazonian cichlid species to show that a shift in sensitivity towards longer wavelengths is coincident with the long-wavelength-dominated Amazon basin. Second, Stieb et al. () explore opsin sequence and expression in reef-dwelling damselfish and find that UV- and long-wavelength vision are both important, but likely for different ecological functions. Lastly, Suvorov et al. () study an expansive opsin repertoire in the insect order Odonata and find evidence that copy number expansion is consistent with the permanent heterozygote model of gene duplication. Together these studies emphasize the utility of opsin genes for studying both the local adaptation of sensory systems and, more generally, gene family evolution.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Diana J Rennison
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Montenegro J, Mochida K, Matsui K, Mokodongan DF, Sumarto BKA, Lawelle SA, Nofrianto AB, Hadiaty RK, Masengi KWA, Yong L, Inomata N, Irie T, Hashiguchi Y, Terai Y, Kitano J, Yamahira K. Convergent evolution of body color between sympatric freshwater fishes via different visual sensory evolution. Ecol Evol 2019; 9:6389-6398. [PMID: 31236229 PMCID: PMC6580282 DOI: 10.1002/ece3.5211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Although there are many examples of color evolution potentially driven by sensory drive, only few studies have examined whether distinct species inhabiting the same environments evolve similar body colors via shared sensory mechanisms. In this study, we tested whether two sympatric freshwater fish taxa, halfbeaks of the genus Nomorhamphus and ricefishes of the genus Oryzias in Sulawesi Island, converge in both body color and visual sensitivity. After reconstructing the phylogeny separately for Nomorhamphus and Oryzias using transcriptome-wide sequences, we demonstrated positive correlations of body redness between these two taxa across environments, even after phylogenetic corrections, which support convergent evolution. However, substantial differences were observed in the expression profiles of opsin genes in the eyes between Nomorhamphus and Oryzias. Particularly, the expression levels of the long wavelength-sensitive genes were negatively correlated between the taxa, indicating that they have different visual sensitivities despite living in similar light environments. Thus, the convergence of body colorations between these two freshwater fish taxa was not accompanied by convergence in opsin sensitivities. This system presents a case in which body color convergence can occur between sympatric species via different mechanisms.
Collapse
Affiliation(s)
- Javier Montenegro
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | - Koji Mochida
- Department of BiologyKeio UniversityYokohamaJapan
| | - Kumi Matsui
- School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Daniel F. Mokodongan
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | | | - Sjamsu A. Lawelle
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | - Andy B. Nofrianto
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | | | | | - Lengxob Yong
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
- Center for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterCornwallUK
| | - Nobuyuki Inomata
- Department of Environmental ScienceFukuoka Women's UniversityFukuokaJapan
| | | | | | - Yohey Terai
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayamaJapan
| | - Jun Kitano
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
| | - Kazunori Yamahira
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| |
Collapse
|
29
|
Chang CH, Yan HY. Plasticity of opsin gene expression in the adult red shiner (Cyprinella lutrensis) in response to turbid habitats. PLoS One 2019; 14:e0215376. [PMID: 30978235 PMCID: PMC6461250 DOI: 10.1371/journal.pone.0215376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Vision is very important to fish as it is required for foraging food, fighting competitors, fleeing from predators, and finding potential mates. Vertebrates express opsin genes in photoreceptor cells to receive visual signals, and the variety of light levels in aquatic habits has driven fish to evolve multiple opsin genes with expression profiles that are highly plastic. In this study, red shiners (Cyprinella lutrensis) were exposed to four water turbidity treatments and their opsin genes were cloned to elucidate how opsin gene expression could be modulated by ambient light conditions. Opsin gene cloning revealed that these fish have single RH1, SWS1, SWS2 and LWS genes and two RH2 genes. Phylogenetic analysis also indicated that these two RH2 opsin genes-RH2A and RH2B -are in-paralogous. Using quantitative PCR, we found evidence that opsin expression is plastic in adults. Elevated proportional expression of LWS in the cone under ambient light and turbid treatment indicated that the red shiner's visual spectrum displays a red shift in response to increased turbidity.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Science, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Hong Young Yan
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| |
Collapse
|
30
|
Escobar-Camacho D, Pierotti MER, Ferenc V, Sharpe DMT, Ramos E, Martins C, Carleton KL. Variable vision in variable environments: the visual system of an invasive cichlid ( Cichla monoculus) in Lake Gatun, Panama. ACTA ACUST UNITED AC 2019; 222:jeb.188300. [PMID: 30787138 DOI: 10.1242/jeb.188300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/10/2019] [Indexed: 01/11/2023]
Abstract
An adaptive visual system is essential for organisms inhabiting new or changing light environments. The Panama Canal exhibits such variable environments owing to its anthropogenic origin and current human activities. Within the Panama Canal, Lake Gatun harbors several exotic fish species including the invasive peacock bass (Cichla monoculus), a predatory Amazonian cichlid. In this research, through spectral measurements and molecular and physiological experiments, we studied the visual system of C. monoculus and its adaptive capabilities. Our results suggest that (1) Lake Gatun is a highly variable environment, where light transmission changes throughout the canal waterway, and that (2) C. monoculus has several visual adaptations suited for this red-shifted light environment. Cichla monoculus filters short wavelengths (∼400 nm) from the environment through its ocular media and tunes its visual sensitivities to the available light through opsin gene expression. More importantly, based on shifts in spectral sensitivities of photoreceptors alone, and on transcriptome analysis, C. monoculus exhibits extreme intraspecific variation in the use of vitamin A1/A2 chromophore in their photoreceptors. Fish living in turbid water had higher proportions of vitamin A2, shifting sensitivities to longer wavelengths, than fish living in clear water. Furthermore, we also found variation in retinal transcriptomes, where fish from turbid and clear waters exhibited differentially expressed genes that vary greatly in their function. We suggest that this phenotypic plasticity has been key in the invasion success of C. monoculus.
Collapse
Affiliation(s)
| | - Michele E R Pierotti
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Calzada de Amador, Bld 356, 0843-03092 Panama, Republic of Panama
| | - Viktoria Ferenc
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Diana M T Sharpe
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Calzada de Amador, Bld 356, 0843-03092 Panama, Republic of Panama
| | - Erica Ramos
- Department of Morphology, Biosciences Institute, São Paulo State University, Botucatu 18618-689, Brazil
| | - Cesar Martins
- Department of Morphology, Biosciences Institute, São Paulo State University, Botucatu 18618-689, Brazil
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Cole GL, Lynn JCB, Kranz AM, Endler JA. Colour‐based foraging diverges after multiple generations under different light environments. Ethology 2019. [DOI: 10.1111/eth.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gemma L. Cole
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Jessica C. B. Lynn
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Alexandrea M. Kranz
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| |
Collapse
|
32
|
Nandamuri SP, Conte MA, Carleton KL. Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics 2018; 19:945. [PMID: 30563463 PMCID: PMC6299527 DOI: 10.1186/s12864-018-5328-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background Dissecting the genetic basis of phenotypic diversity is one of the fundamental goals in evolutionary biology. Despite growing evidence for gene expression divergence being responsible for the evolution of complex traits, knowledge about the proximate genetic causes underlying these traits is still limited. African cichlids have diverse visual systems, with different species expressing different combinations of seven cone opsin genes. Using opsin expression variation in African cichlids as a model for gene expression evolution, this study aims to investigate the genetic architecture of opsin expression divergence in this group. Results Results from a genome-wide linkage mapping on the F2 progeny of an intergeneric cross, between two species with differential opsin expression show that opsins in Lake Malawi cichlids are controlled by multiple quantitative trait loci (QTLs). Most of these QTLs are located in trans to the opsins except for one cis-QTL for SWS1 on LG17. A closer look at this major QTL revealed the presence of a 691 bp deletion in the promoter of the SWS1 opsin (located 751 bp upstream of the start site) that is associated with a decrease in its expression. Phylogenetic footprinting indicates that the region spanning the deletion harbors a microRNA miR-729 and a conserved non-coding element (CNE) that also occurs in zebrafish and other teleosts. This suggests that the deletion might contain ancestrally preserved regulators that have been tuned for SWS1 gene expression in Lake Malawi. While this deletion is not common, it does occur in several other species within the lake. Conclusions Differential expression of cichlid opsins is associated with multiple overlapping QTL, with all but one in trans to the opsins they regulate. The one cis-acting factor is a deletion in the promoter of the SWS1 opsin, suggesting that ancestral polymorphic deletions may contribute to cichlid’s visual diversity. In addition to expanding our understanding of the molecular landscape of opsin expression in African cichlids, this study sheds light on the molecular mechanisms underlying phenotypic variation in natural populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA.
| |
Collapse
|
33
|
Härer A, Meyer A, Torres‐Dowdall J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2018; 2:341-354. [PMID: 30283686 PMCID: PMC6121847 DOI: 10.1002/evl3.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeMassachusetts02138
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| |
Collapse
|
34
|
Sandkam B, Dalton B, Breden F, Carleton K. Reviewing guppy color vision: integrating the molecular and physiological variation in visual tuning of a classic system for sensory drive. Curr Zool 2018; 64:535-545. [PMID: 30108634 PMCID: PMC6084590 DOI: 10.1093/cz/zoy047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
Sensory drive predicts coevolution of mate choice signals with the sensory systems detecting those signals. Guppies are a classic model for sensory drive as mate preferences based on coloration differ across individuals and populations. A large body of work has identified variation in color vision, yet we lack a direct tie between how such variation in color vision influences variation in color preference. Here we bring together studies that have investigated guppy vision over the past 40 years to: (1) highlight our current understanding of where variation occurs in the guppy color vision pathway and (2) suggest future avenues of research into sources of visual system variation that could influence guppy color preference. This will allow researchers to design careful studies that couple measures of color preference with measures of visual system variation from the same individual or population. Such studies will finally provide important answers as to what sets the direction and speed of mate preference evolution via sensory drive.
Collapse
Affiliation(s)
- Benjamin Sandkam
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Brian Dalton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Carleton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | | |
Collapse
|
35
|
Karagic N, Härer A, Meyer A, Torres‐Dowdall J. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:202-214. [DOI: 10.1002/jez.b.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Nidal Karagic
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Andreas Härer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- Radcliffe Institute for Advanced StudyHarvard University Cambridge Massachusetts
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- ZukunftskollegUniversity of Konstanz Konstanz Germany
| |
Collapse
|
36
|
Cummings ME, Endler JA. 25 Years of sensory drive: the evidence and its watery bias. Curr Zool 2018; 64:471-484. [PMID: 30108628 PMCID: PMC6084598 DOI: 10.1093/cz/zoy043] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
It has been 25 years since the formalization of the Sensory Drive hypothesis was published in the American Naturalist (1992). Since then, there has been an explosion of research identifying its utility in contributing to our understanding of inter- and intra-specific variation in sensory systems and signaling properties. The main tenet of Sensory Drive is that environmental characteristics will influence the evolutionary trajectory of both sensory (detecting capabilities) and signaling (detectable features and behaviors) traits in predictable directions. We review the accumulating evidence in 154 studies addressing these questions and categorized their approach in terms of testing for environmental influence on sensory tuning, signal characteristics, or both. For the subset of studies that examined sensory tuning, there was greater support for Sensory Drive processes shaping visual than auditory tuning, and it was more prevalent in aquatic than terrestrial habitats. Terrestrial habitats and visual traits were the prevalent habitat and sensory modality in the 104 studies showing support for environmental influence on signaling properties. An additional 19 studies that found no supporting evidence for environmental influence on signaling traits were all based in terrestrial ecosystems and almost exclusively involved auditory signals. Only 29 studies examined the complete coevolutionary process between sensory and signaling traits and were dominated by fish visual communication. We discuss biophysical factors that may contribute to the visual and aquatic bias for Sensory Drive evidence, as well as biotic factors that may contribute to the lack of Sensory Drive processes in terrestrial acoustic signaling systems.
Collapse
Affiliation(s)
- Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - John A Endler
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
37
|
Schweikert LE, Grace MS. Altered environmental light drives retinal change in the Atlantic Tarpon (Megalops atlanticus) over timescales relevant to marine environmental disturbance. BMC Ecol 2018; 18:1. [PMID: 29347979 PMCID: PMC5774114 DOI: 10.1186/s12898-018-0157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background For many fish species, retinal function changes between life history stages as part of an encoded developmental program. Retinal change is also known to exhibit plasticity because retinal form and function can be influenced by light exposure over the course of development. Aside from studies of gene expression, it remains largely unknown whether retinal plasticity can provide functional responses to short-term changes in environmental light quality. The aim of this study was to determine whether the structure and function of the fish retina can change in response to altered light intensity and spectrum—not over the course of a developmental regime, but over shorter time periods relevant to marine habitat disturbance. Results The effects of light environment on sensitivity of the retina, as well as on cone photoreceptor distribution were examined in the Atlantic tarpon (Megalops atlanticus) on 2- and 4-month timescales. In a spectral experiment, juvenile M. atlanticus were placed in either ‘red’ or ‘blue’ light conditions (with near identical irradiance), and in an intensity experiment, juveniles were placed in either ‘bright’ or ‘dim’ light conditions (with near identical spectra). Analysis of the retina by electroretinography and anti-opsin immunofluorescence revealed that relative to fish held in the blue condition, those in the red condition exhibited longer-wavelength peak sensitivity and greater abundance of long-wavelength-sensitive (LWS) cone photoreceptors over time. Following pre-test dark adaption of the retina, fish held in the dim light required less irradiance to produce a standard retinal response than fish held in bright light, developing a greater sensitivity to white light over time. Conclusions The results show that structure and function of the M. atlanticus retina can rapidly adjust to changes in environmental light within a given developmental stage, and that such changes are dependent on light quality and the length of exposure. These findings suggest that the fish retina may be resilient to disturbances in environmental light, using retinal plasticity to compensate for changes in light quality over short timescales. Electronic supplementary material The online version of this article (10.1186/s12898-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.,Department of Biology, Duke University, 130 Science Dr. Durham, Durham, NC, 27583, USA
| | - Michael S Grace
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
38
|
Valen R, Karlsen R, Helvik JV. Environmental, population and life-stage plasticity in the visual system of Atlantic cod. ACTA ACUST UNITED AC 2018; 221:jeb.165191. [PMID: 29146770 DOI: 10.1242/jeb.165191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023]
Abstract
The visual system is for many fishes essential in guiding behaviors, such as foraging, predator avoidance and mate choice. The marine environment is characterized by large spatio-temporal fluctuations in light intensity and spectral composition. However, visual capabilities are restricted by both space limitations set by eye size and by the genomic content of light-absorbing opsin genes. The rich array of visual opsins in teleosts may be used differentially to tune vision towards specific needs during ontogeny and to changing light. Yet, to what extent visual plasticity is a pre-programmed developmental event, or is triggered by photic environment, is unclear. Our previous studies on Atlantic cod revealed an evolutionary genomic loss of UV-sensitive sws1 and red-sensitive lws opsin families, while blue-sensitive sws2 and green-sensitive rh2 opsins had duplicated. The current study has taken an opsin expression approach to characterize visual plasticity in cod towards different spectral light during the larval stage, to maturation and extreme seasonal changes in the Barents Sea. Our data suggest that opsin plasticity in cod larvae is controlled by developmental programme rather than immediate light environment. The lack of expressional changes during maturation suggests a less important role for visual modulation related to mate choice. Although no seasonal effects on visual opsins were detected in migratory Northeast Arctic cod, the expressed opsin subset differed from the more stationary Norwegian coastal cod described in previous studies. Interestingly, these data provide the first indications of a population difference in actively used visual opsins associated with cod ecotypes.
Collapse
Affiliation(s)
- Ragnhild Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Rita Karlsen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
39
|
Luehrmann M, Stieb SM, Carleton KL, Pietzker A, Cheney KL, Marshall NJ. Short term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct reef fish species. J Exp Biol 2018; 221:jeb.175281. [DOI: 10.1242/jeb.175281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on opsin genes, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales including shorter time frames due to seasonal variation, or through longer term evolutionary tuning. There is also evidence for ‘on-the-fly’ adaptations in adult fish in response to rapidly changing environmental conditions, however, results are contradictory. Here we investigated the ability of three reef fish species that belong to two ecologically distinct families, Yellow-striped cardinalfish, Ostorhinchus cyanosoma, Ambon damselfish, Pomacentrus amboinensis, and Lemon damselfish, Pomacentrus moluccensis, to alter opsin-gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that opsin expression changes in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.
Collapse
Affiliation(s)
- Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Sara M. Stieb
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Carleton
- Department of Biology, The University of Maryland, College Park, MD, 20742, USA
| | - Alisa Pietzker
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Cheney
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
- School of Biological Sciences, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Hauser FE, Ilves KL, Schott RK, Castiglione GM, López-Fernández H, Chang BSW. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America. Mol Biol Evol 2017; 34:2650-2664. [PMID: 28957507 DOI: 10.1093/molbev/msx192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cichlids encompass one of the most diverse groups of fishes in South and Central America, and show extensive variation in life history, morphology, and colouration. While studies of visual system evolution in cichlids have focussed largely on the African rift lake species flocks, Neotropical cichlids offer a unique opportunity to investigate visual system evolution at broader temporal and geographic scales. South American cichlid colonization of Central America has likely promoted accelerated rates of morphological evolution in Central American lineages as they encountered reduced competition, renewed ecological opportunity, and novel aquatic habitats. To investigate whether such transitions have influenced molecular evolution of vision in Central American cichlids, we sequenced the dim-light rhodopsin gene in 101 Neotropical cichlid species, spanning the diversity of the clade. We find strong evidence for increased rates of evolution in Central American cichlid rhodopsin relative to South American lineages, and identify several sites under positive selection in rhodopsin that likely contribute to adaptation to different photic environments. We expressed a Neotropical cichlid rhodopsin protein invitro for the first time, and found that while its spectral tuning properties were characteristic of typical vertebrate rhodopsin pigments, the rate of decay of its active signalling form was much slower, consistent with dim light adaptation in other vertebrate rhodopsins. Using site-directed mutagenesis combined with spectroscopic assays, we found that a key amino acid substitution present in some Central American cichlids accelerates the rate of decay of active rhodopsin, which may mediate adaptation to clear water habitats.
Collapse
Affiliation(s)
- Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katriina L Ilves
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Biology, Pace University, New York, NY
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Opin Genet Dev 2017; 47:110-120. [PMID: 29102895 DOI: 10.1016/j.gde.2017.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.
Collapse
|
42
|
Nandamuri SP, Yourick MR, Carleton KL. Adult plasticity in African cichlids: Rapid changes in opsin expression in response to environmental light differences. Mol Ecol 2017; 26:6036-6052. [PMID: 28926160 DOI: 10.1111/mec.14357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV-deficient fluorescent lighting; while lab raised M. benetos were placed under UV-rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV-sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.
Collapse
Affiliation(s)
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
43
|
Nandamuri SP, Dalton BE, Carleton KL. Determination of the Genetic Architecture Underlying Short Wavelength Sensitivity in Lake Malawi Cichlids. J Hered 2017; 108:379-390. [PMID: 28498989 DOI: 10.1093/jhered/esx020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
African cichlids are an exemplary system to study organismal diversity and rapid speciation. Species differ in external morphology including jaw shape and body coloration, but also differ in sensory systems including vision. All cichlids have 7 cone opsin genes with species differing broadly in which opsins are expressed. The differential opsin expression results in closely related species with substantial differences in spectral sensitivity of their photoreceptors. In this work, we take a first step in determining the genetic basis of opsin expression in cichlids. Using a second generation cross between 2 species with different opsin expression patterns, we make a conservative estimate that short wavelength opsin expression is regulated by a few loci. Genetic mapping in 96 F2 hybrids provides clear evidence of a cis-regulatory region for SWS1 opsin that explains 34% of the variation in expression between the 2 species. Additionally, in situ hybridization has shown that SWS1 and SWS2B opsins are coexpressed in individual single cones in the retinas of F2 progeny. Results from this work will contribute to a better understanding of the genetic architecture underlying opsin expression. This knowledge will help answer long-standing questions about the evolutionary processes fundamental to opsin expression variation and how this contributes to adaptive cichlid divergence.
Collapse
Affiliation(s)
| | - Brian E Dalton
- National & Environmental Sciences Department, Western State Colorado University, Gunnison, CO 81231
| | - Karen L Carleton
- From the Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
44
|
Härer A, Torres-Dowdall J, Meyer A. Rapid adaptation to a novel light environment: The importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus
spp.). Mol Ecol 2017; 26:5582-5593. [DOI: 10.1111/mec.14289] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
- Zukunftskolleg; University of Konstanz; Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| |
Collapse
|
45
|
Terai Y, Miyagi R, Aibara M, Mizoiri S, Imai H, Okitsu T, Wada A, Takahashi-Kariyazono S, Sato A, Tichy H, Mrosso HDJ, Mzighani SI, Okada N. Visual adaptation in Lake Victoria cichlid fishes: depth-related variation of color and scotopic opsins in species from sand/mud bottoms. BMC Evol Biol 2017; 17:200. [PMID: 28830359 PMCID: PMC5568302 DOI: 10.1186/s12862-017-1040-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Background For Lake Victoria cichlid species inhabiting rocky substrates with differing light regimes, it has been proposed that adaptation of the long-wavelength-sensitive (LWS) opsin gene triggered speciation by sensory drive through color signal divergence. The extensive and continuous sand/mud substrates are also species-rich, and a correlation between male nuptial coloration and the absorption of LWS pigments has been reported. However, the factors driving genetic and functional diversity of LWS pigments in sand/mud habitats are still unresolved. Results To address this issue, nucleotide sequences of eight opsin genes were compared in ten Lake Victoria cichlid species collected from sand/mud bottoms. Among eight opsins, the LWS and rod-opsin (RH1) alleles were diversified and one particular allele was dominant or fixed in each species. Natural selection has acted on and fixed LWS alleles in each species. The functions of LWS and RH1 alleles were measured by absorption of reconstituted A1- and A2-derived visual pigments. The absorption of pigments from RH1 alleles most common in deep water were largely shifted toward red, whereas those of LWS alleles were largely shifted toward blue in both A1 and A2 pigments. In both RH1 and LWS pigments, A2-derived pigments were closer to the dominant light in deep water, suggesting the possibility of the adaptation of A2-derived pigments to depth-dependent light regimes. Conclusions The RH1 and LWS sequences may be diversified for adaptation of A2-derived pigments to different light environments in sand/mud substrates. Diversification of the LWS alleles may have originally taken place in riverine environments, with a new mutation occurring subsequently in Lake Victoria. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan. .,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Ryutaro Miyagi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Mitsuto Aibara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Shinji Mizoiri
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Takashi Okitsu
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Akie Sato
- Department of Anatomy and Cytohistology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Herbert Tichy
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, 72076, Tübingen, Germany
| | | | - Semvua I Mzighani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Tanzania Fisheries Research Institute (TAFIRI), Mwanza, Tanzania
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Present address: Department of Life Sciences, National Cheng Kung University, 701, Tainan, Taiwan. .,Present address: Foundation for Advancement of International Science (FAIS), Tsukuba, Japan.
| |
Collapse
|
46
|
Rennison DJ, Owens GL, Heckman N, Schluter D, Veen T. Rapid adaptive evolution of colour vision in the threespine stickleback radiation. Proc Biol Sci 2017; 283:rspb.2016.0242. [PMID: 27147098 DOI: 10.1098/rspb.2016.0242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss.
Collapse
Affiliation(s)
- Diana J Rennison
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory L Owens
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Heckman
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thor Veen
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada Department of Integrative Biology, University of Texas at Austin, TX, USA
| |
Collapse
|
47
|
Abstract
Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.
Collapse
|
48
|
Friesen CN, Ramsey ME, Cummings ME. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. Gen Comp Endocrinol 2017; 246:200-210. [PMID: 28013033 DOI: 10.1016/j.ygcen.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The sensory system shapes an individual's perception of the world, including social interactions with conspecifics, habitat selection, predator detection, and foraging behavior. Sensory signaling can be modulated by steroid hormones, making these processes particularly vulnerable to environmental perturbations. Here we examine the influence of exogenous estrogen manipulation on the visual physiology of female western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna), two poeciliid species that inhabit freshwater environments across the southern United States. We conducted two experiments to address this aim. First, we exposed females from both species to a one-week dose response experiment with three treatments of waterborne β-estradiol. Next, we conducted a one-week estrogen manipulation experiment with a waterborne estrogen (β-Estradiol), a selective estrogen receptor modulator (tamoxifen), or combination estrogen and tamoxifen treatment. We used quantitative PCR (qPCR) to examine the expression of cone opsins (SWS1, SWS2b, SWS2a, Rh2, LWS), rhodopsin (Rh1), and steroid receptor genes (ARα, ARβ, ERα, ERβ2, GPER) in the eyes of individual females from each species. Results from the dose response experiment revealed estradiol-sensitivity in opsin (SWS2a, Rh2, Rh1) and androgen receptor (ARα, ARβ) gene expression in mosquitofish females, but not sailfins. Meanwhile, our estrogen receptor modulation experiments revealed estrogen sensitivity in LWS opsin expression in both species, along with sensitivity in SWS1, SWS2b, and Rh2 opsins in mosquitofish. Comparisons of control females across experiments reveal species-level differences in opsin expression, with mosquitofish retinas dominated by short-wavelength sensitive opsins (SWS2b) and sailfins retinas dominated by medium- and long-wavelength sensitive opsins (Rh2 and LWS). Our research suggests that variation in exogenous levels of sex hormones within freshwater environments can modify the visual physiology of fishes in a species-specific manner.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA. https://www.researchgate.net/profile/Caitlin_Friesen
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
49
|
Iwanicki TW, Novales Flamarique I, Ausiό J, Morris E, Taylor JS. Fine-tuning light sensitivity in the starry flounder (Platichthys stellatus) retina: Regional variation in photoreceptor cell morphology and opsin gene expression. J Comp Neurol 2017; 525:2328-2342. [DOI: 10.1002/cne.24205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Tom W. Iwanicki
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| | - Iñigo Novales Flamarique
- Department of Biology; University of Victoria; Victoria British Columbia Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
| | - Juan Ausiό
- Department of Biochemistry; University of Victoria; Victoria British Columbia Canada
| | - Emily Morris
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| | - John S. Taylor
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| |
Collapse
|
50
|
Torres-Dowdall J, Pierotti ME, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A. Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes. Mol Biol Evol 2017; 34:2469-2485. [DOI: 10.1093/molbev/msx143] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|