1
|
Tyszka AS, Bretz EC, Robertson HM, Woodcock-Girard MD, Ramanauskas K, Larson DA, Stull GW, Walker JF. Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1125107. [PMID: 37063179 PMCID: PMC10098128 DOI: 10.3389/fpls.2023.1125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.
Collapse
Affiliation(s)
- Alexa S. Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Eric C. Bretz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Holly M. Robertson
- Sainsbury Laboratory, School of Biological Sciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Miles D. Woodcock-Girard
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Drew A. Larson
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Gregory W. Stull
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Joseph F. Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Duhin A, Machado RAR, Turlings TCJ, Röder G. Early land plants: Plentiful but neglected nutritional resources for herbivores? Ecol Evol 2022; 12:e9617. [PMID: 36523517 PMCID: PMC9745390 DOI: 10.1002/ece3.9617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Plants and herbivores have been engaged in a co-evolutionary arms race for millions of years, during which plants evolved various defenses and other traits to cope with herbivores, whereas herbivores evolved traits to overcome the plants' resistance strategies. Herbivores may also avoid certain plants merely because these lack suitable nutrients for their development. Interestingly, the number of herbivores that attack individual early land plants like mosses and ferns is quite low. Among others, poor nutrient quality has been hypothesized to explain the apparent low herbivory pressure on such plants but still waits for scientific evidences. Here, the nutritive suitability of representative mosses and liverworts (bryophytes) and ferns (pteridophytes) for herbivores was investigated using feeding assays combined with quantifications of nutrients (proteins, amino acids, and sugars). Growth and survival of two polyphagous herbivores, a caterpillar and a snail, were monitored when fed on 15 species of bryophytes and pteridophytes, as well as on maize (Zea mays, angiosperm) used as an external indicative nutritional resource. Overall, our results show that the poor performance of the herbivores on the studied early land plants is not correlated with nutritional quality. The growth and performance of snails and caterpillars fed with these plants were highly variable and independent of nutrient content. These findings arguably dismiss the poor nutrient quality hypothesis as the cause of herbivory deficit in bryophytes and pteridophytes. They suggest the possible presence of early resistance traits that have persisted all through the long evolutionary history of plant-herbivore interactions.
Collapse
Affiliation(s)
- Audrey Duhin
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ricardo A. R. Machado
- Experimental Biology Research Group, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Gregory Röder
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
3
|
Chamberland L, Agnarsson I, Quayle IL, Ruddy T, Starrett J, Bond JE. Biogeography and eye size evolution of the ogre-faced spiders. Sci Rep 2022; 12:17769. [PMID: 36273015 PMCID: PMC9588044 DOI: 10.1038/s41598-022-22157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.
Collapse
Affiliation(s)
- Lisa Chamberland
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Ingi Agnarsson
- grid.14013.370000 0004 0640 0021Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Iris L. Quayle
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Tess Ruddy
- grid.267778.b0000 0001 2290 5183Vassar College, Poughkeepsie, NY 12604 USA
| | - James Starrett
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Jason E. Bond
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
4
|
The Evolution and Functional Roles of miR408 and Its Targets in Plants. Int J Mol Sci 2022; 23:ijms23010530. [PMID: 35008962 PMCID: PMC8745667 DOI: 10.3390/ijms23010530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNA408 (miR408) is an ancient and highly conserved miRNA, which is involved in the regulation of plant growth, development and stress response. However, previous research results on the evolution and functional roles of miR408 and its targets are relatively scattered, and there is a lack of a systematic comparison and comprehensive summary of the detailed evolutionary pathways and regulatory mechanisms of miR408 and its targets in plants. Here, we analyzed the evolutionary pathway of miR408 in plants, and summarized the functions of miR408 and its targets in regulating plant growth and development and plant responses to various abiotic and biotic stresses. The evolutionary analysis shows that miR408 is an ancient and highly conserved microRNA, which is widely distributed in different plants. miR408 regulates the growth and development of different plants by down-regulating its targets, encoding blue copper (Cu) proteins, and by transporting Cu to plastocyanin (PC), which affects photosynthesis and ultimately promotes grain yield. In addition, miR408 improves tolerance to stress by down-regulating target genes and enhancing cellular antioxidants, thereby increasing the antioxidant capacity of plants. This review expands and promotes an in-depth understanding of the evolutionary and regulatory roles of miR408 and its targets in plants.
Collapse
|
5
|
Yang T, Sahu SK, Yang L, Liu Y, Mu W, Liu X, Strube ML, Liu H, Zhong B. Comparative Analyses of 3,654 Plastid Genomes Unravel Insights Into Evolutionary Dynamics and Phylogenetic Discordance of Green Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:808156. [PMID: 35498716 PMCID: PMC9038950 DOI: 10.3389/fpls.2022.808156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The plastid organelle is essential for many vital cellular processes and the growth and development of plants. The availability of a large number of complete plastid genomes could be effectively utilized to understand the evolution of the plastid genomes and phylogenetic relationships among plants. We comprehensively analyzed the plastid genomes of Viridiplantae comprising 3,654 taxa from 298 families and 111 orders and compared the genomic organizations in their plastid genomic DNA among major clades, which include gene gain/loss, gene copy number, GC content, and gene blocks. We discovered that some important genes that exhibit similar functions likely formed gene blocks, such as the psb family presumably showing co-occurrence and forming gene blocks in Viridiplantae. The inverted repeats (IRs) in plastid genomes have doubled in size across land plants, and their GC content is substantially higher than non-IR genes. By employing three different data sets [all nucleotide positions (nt123), only the first and second codon positions (nt12), and amino acids (AA)], our phylogenomic analyses revealed Chlorokybales + Mesostigmatales as the earliest-branching lineage of streptophytes. Hornworts, mosses, and liverworts forming a monophylum were identified as the sister lineage of tracheophytes. Based on nt12 and AA data sets, monocots, Chloranthales and magnoliids are successive sister lineages to the eudicots + Ceratophyllales clade. The comprehensive taxon sampling and analysis of different data sets from plastid genomes recovered well-supported relationships of green plants, thereby contributing to resolving some long-standing uncertainties in the plant phylogeny.
Collapse
Affiliation(s)
- Ting Yang
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sunil Kumar Sahu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- *Correspondence: Sunil Kumar Sahu,
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Weixue Mu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Xin Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huan Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Bojian Zhong,
| |
Collapse
|
6
|
Matsvay A, Dyachkova M, Mikhaylov I, Kiselev D, Say A, Burskaia V, Artyushin I, Khafizov K, Shipulin G. Complete Genome Sequence, Molecular Characterization and Phylogenetic Relationships of a Novel Tern Atadenovirus. Microorganisms 2021; 10:31. [PMID: 35056480 PMCID: PMC8781740 DOI: 10.3390/microorganisms10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery and study of viruses carried by migratory birds are tasks of high importance due to the host's ability to spread infectious diseases over significant distances. With this paper, we present and characterize the first complete genome sequence of atadenovirus from a tern bird (common tern, Sterna hirundo) preliminarily named tern atadenovirus 1 (TeAdV-1). TeAdV-1 genome is a linear double-stranded DNA molecule, 31,334 base pairs which contain 30 methionine-initiated open reading frames with gene structure typical for Atadenovirus genus, and the shortest known inverted terminal repeats (ITRs) within the Atadenovirus genus consisted of 25 bases. The nucleotide composition of the genome is characterized by a low G + C content (33.86%), which is the most AT-rich genome of known avian adenoviruses within Atadenovirus genus. The nucleotide sequence of the TeAdV-1 genome shows high divergence compared to known representatives of the Atadenovirus genus with the highest similarity to the duck atadenovirus 1 (53.7%). Phylogenetic analysis of the protein sequences of core genes confirms the taxonomic affiliation of the new representative to the genus Atadenovirus with the degree of divergence from the known representatives exceeding the interspecies distance within the genus. Thereby we proposed a novel TeAdV-1 to be considered as a separate species.
Collapse
Affiliation(s)
- Alina Matsvay
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 119121 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Moscow, Russia
| | - Marina Dyachkova
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Ivan Mikhaylov
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Daniil Kiselev
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, 34091 Montpellier, France
| | - Anna Say
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | | | - Ilya Artyushin
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Kamil Khafizov
- Moscow Institute of Physics and Technology, National Research University, 115184 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
7
|
The Pioneering Role of Bryophytes in Ecological Restoration of Manganese Waste Residue Areas, Southwestern China. J CHEM-NY 2021. [DOI: 10.1155/2021/9969253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mining of manganese brings excellent wealth to humankind. However, it destroys the ecological environment, mainly manifested as heavy metal pollution and vegetation destruction. The restoration of ecological vegetation in manganese mining areas has become an important work after mineral exploitation. The effect of bryophytes on ecological restoration in mining areas is irreplaceable. The bryophytes diversity and its pioneering role in two types of manganese waste residue areas were investigated in Guizhou province, China. The results showed that there were 24 species of mosses in mine waste slag areas, and all of them belonged to 6 families and 15 genera; the species Gymnostomum subrigidulum, Pohlia gedeana, and Bryum atrovirens were the dominant mosses. There were 6 species of mosses in electrolytic manganese slag areas, and all of them belonged to 5 families and 5 genera. The dominant moss was B. atrovirens. The bryophytes diversity in the electrolytic manganese slag areas with lower pH was poorer than that in mine slag areas. The accumulation of heavy metals in mosses showed that B. atrovirens collected from two types of areas had a strong ability to accumulate Mn with the cumulants 5588.00 μg/g and 4283.41 μg/g, respectively. All mosses had a strong enrichment ability to Cd. It indicated that mosses had strong tolerance to heavy metals. Bryophytes increased the available nutrients and bacterial community diversity of mosses growth substrates in two types of areas. Besides, we studied the relationships between bacterial community structure and soil factors. The main soil factor affecting the bacterial community structure was available nitrogen (AN) in mine waste slag areas, while it was pH in the electrolytic manganese residue areas. The systematic study suggested that bryophytes increased the available nutrients and the microbial community diversity of the growth substrates in manganese waste residue areas, which provided the basic conditions for the growth of vascular plants.
Collapse
|
8
|
Bellini E, Betti C, Sanità di Toppi L. Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:770. [PMID: 33919852 PMCID: PMC8070800 DOI: 10.3390/plants10040770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
Several transition metals are essential for plant growth and development, as they are involved in various fundamental metabolic functions. By contrast, cadmium (Cd) is a metal that can prove extremely toxic for plants and other organisms in a dose-dependent manner. Charophytes and bryophytes are early-diverging streptophytes widely employed for biomonitoring purposes, as they are able to cope with high concentrations of toxic metal(loid)s without showing any apparent heavy damage. In this review, we will deal with different mechanisms that charophytes and bryophytes have evolved to respond to Cd at a cellular level. Particular attention will be addressed to strategies involving Cd vacuolar sequestration and cell wall immobilization, focusing on specific mechanisms that help achieve detoxification. Understanding the effects of metal(loid) pollution and accumulation on the morpho-physiological traits of charophytes and bryophytes can be in fact fundamental for optimizing their use as phytomonitors and/or phytoremediators.
Collapse
Affiliation(s)
- Erika Bellini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (E.B.); (L.S.d.T.)
| | - Camilla Betti
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
9
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
10
|
Bell D, Lin Q, Gerelle WK, Joya S, Chang Y, Taylor ZN, Rothfels CJ, Larsson A, Villarreal JC, Li FW, Pokorny L, Szövényi P, Crandall-Stotler B, DeGironimo L, Floyd SK, Beerling DJ, Deyholos MK, von Konrat M, Ellis S, Shaw AJ, Chen T, Wong GKS, Stevenson DW, Palmer JD, Graham SW. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. AMERICAN JOURNAL OF BOTANY 2020; 107:91-115. [PMID: 31814117 DOI: 10.1002/ajb2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Collapse
Affiliation(s)
- David Bell
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Qianshi Lin
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wesley K Gerelle
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Steve Joya
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ying Chang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Z Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94702, USA
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Juan Carlos Villarreal
- Department of Biology, Université Laval, Québec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, TW9 3DS, Surrey, UK
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | - Lisa DeGironimo
- Department of Biology, College of Arts and Science, New York University, New York, New York, 10003, USA
| | - Sandra K Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - Matt von Konrat
- Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Shona Ellis
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | | | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
11
|
Smith SA, Walker-Hale N, Walker JF, Brown JW. Phylogenetic Conflicts, Combinability, and Deep Phylogenomics in Plants. Syst Biol 2019; 69:579-592. [DOI: 10.1093/sysbio/syz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods. We demonstrate these on a large phylogenomic plant data set. Our results support the placement of Amborella as sister to the remaining extant angiosperms, Gnetales as sister to pines, and the monophyly of extant gymnosperms. Several other contentious relationships, including the resolution of relationships within the bryophytes and the eudicots, remain uncertain given the low number of supporting gene trees. To address whether concatenation of filtered genes amplified phylogenetic signal for relationships, we implemented a combinatorial heuristic to test combinability of genes. We found that nested conflicts limited the ability of data filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed that the underlying conflicting signal does not support broad concatenation of genes. Our approach provides a means of dissecting a specific data set to address deep phylogenetic relationships while also identifying the inferential boundaries of the data set. [Angiosperms; coalescent; gene-tree conflict; genomics; phylogenetics; phylogenomics.]
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
| | - Nathanael Walker-Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridge, UK
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Sainsbury Laboratory (SLCU), University of Cambrige, Bateman St, Cambridge CB2 1LR, Cambridge, UK
| | - Joseph W Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, Sheffield, UK
| |
Collapse
|
12
|
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
13
|
Flores JR, Catalano SA, Muñoz J, Suárez GM. Combined phylogenetic analysis of the subclass Marchantiidae (Marchantiophyta): towards a robustly diagnosed classification. Cladistics 2018; 34:517-541. [PMID: 34706484 DOI: 10.1111/cla.12225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/26/2022] Open
Abstract
The most extensive combined phylogenetic analyses of the subclass Marchantiidae yet undertaken was conducted on the basis of morphological and molecular data. The morphological data comprised 126 characters and 56 species. Taxonomic sampling included 35 ingroup species with all genera and orders of Marchantiidae sampled, and 21 outgroup species with two genera of Blasiidae (Marchantiopsida), 15 species of Jungermanniopsida (the three subclasses represented) and the three genera of Haplomitriopsida. Takakia ceratophylla (Bryophyta) was employed to root the trees. Character sampling involved 92 gametophytic and 34 sporophytic traits, supplemented with ten continuous characters. Molecular data included 11 molecular markers: one nuclear ribosomal (26S), three mitochondrial genes (nad1, nad5, rps3) and seven chloroplast regions (atpB, psbT-psbH, rbcL, ITS, rpoC1, rps4, psbA). Searches were performed under extended implied weighting, weighting the character blocks against the average homoplasy. Clade stability was assessed across three additional weighting schemes (implied weighting corrected for missing entries, standard implied weighting and equal weighting) in three datasets (molecular, morphological and combined). The contribution from different biological phases regarding node recovery and diagnosis was evaluated. Our results agree with many of the previous studies but cast doubt on some relationships, mainly at the family and interfamily level. The combined analyses underlined the fact that, by combining data, taxonomic enhancements could be achieved regarding taxon delimitation and quality of diagnosis. Support values for many clades of previous molecular studies were improved by the addition of morphological data. The long-held assumption that morphology may render spurious or low-quality results in this taxonomic group is challenged. The morphological trends previously proposed are re-evaluated in light of the new phylogenetic scheme.
Collapse
Affiliation(s)
- Jorge R Flores
- Unidad Ejecutora Lillo (UEL; FML-CONICET), Miguel Lillo 251, S.M. de Tucumán, 4000, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, S.M. de Tucumán, 4000, Argentina
| | - Santiago A Catalano
- Unidad Ejecutora Lillo (UEL; FML-CONICET), Miguel Lillo 251, S.M. de Tucumán, 4000, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, S.M. de Tucumán, 4000, Argentina
| | - Jesus Muñoz
- Real Jardín Botánico (RJB - CSIC), Plaza de Murillo 2, Madrid, 28014, Spain
| | - Guillermo M Suárez
- Unidad Ejecutora Lillo (UEL; FML-CONICET), Miguel Lillo 251, S.M. de Tucumán, 4000, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, S.M. de Tucumán, 4000, Argentina
| |
Collapse
|
14
|
Dangwal M, Das S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 2018; 86:511-530. [PMID: 30206666 DOI: 10.1007/s00239-018-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the "transition zone", between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.
Collapse
Affiliation(s)
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
15
|
Elgorriaga A, Escapa IH, Rothwell GW, Tomescu AMF, Rubén Cúneo N. Origin of Equisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida. AMERICAN JOURNAL OF BOTANY 2018; 105:1286-1303. [PMID: 30025163 DOI: 10.1002/ajb2.1125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Equisetum is the sole living representative of Sphenopsida, a clade with impressive species richness, a long fossil history dating back to the Devonian, and obscure relationships with other living pteridophytes. Based on molecular data, the crown group age of Equisetum is mid-Paleogene, although fossils with possible crown synapomorphies appear in the Triassic. The most widely circulated hypothesis states that the lineage of Equisetum derives from calamitaceans, but no comprehensive phylogenetic studies support the claim. Using a combined approach, we provide a comprehensive phylogenetic analysis of Equisetales, with special emphasis on the origin of genus Equisetum. METHODS We performed parsimony phylogenetic analyses to address relationships of 43 equisetalean species (15 extant, 28 extinct) using a combination of morphological and molecular characters. KEY RESULTS We recovered Equisetaceae + Neocalamites as sister to Calamitaceae + a clade of Angaran and Gondwanan horsetails, with the four groups forming a clade that is sister to Archaeocalamitaceae. The estimated age for the Equisetum crown group is mid-Mesozoic. CONCLUSIONS Modern horsetails are not nested within calamitaceans; instead, both groups have explored independent evolutionary trajectories since the Carboniferous. Diverse fossil taxon sampling helps to shed light on the position and relationships of equisetalean lineages, of which only a tiny remnant is present within the extant flora. Understanding these relationships and early character configurations of ancient plant clades as Equisetales provide useful tests of hypotheses about overall phylogenetic relationships of euphyllophytes and foundations for future tests of molecular dates with paleontological data.
Collapse
Affiliation(s)
- Andrés Elgorriaga
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Chubut, 9100, Argentina
| | - Ignacio H Escapa
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Chubut, 9100, Argentina
| | - Gar W Rothwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - N Rubén Cúneo
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Chubut, 9100, Argentina
| |
Collapse
|
16
|
Pandey S, Sharma V, Alam A. Phylogeny based on 16S rRNA sequence and morphology of selected mosses of Mount Abu, Rajasthan (India). Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. The timescale of early land plant evolution. Proc Natl Acad Sci U S A 2018; 115:E2274-E2283. [PMID: 29463716 PMCID: PMC5877938 DOI: 10.1073/pnas.1719588115] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.
Collapse
Affiliation(s)
- Jennifer L Morris
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - James W Clark
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10, United Kingdom
| | - Paul Kenrick
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
- Radclie Institute for Advanced Studies, Harvard University, Cambridge, MA 02138
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
| |
Collapse
|
18
|
Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. AMERICAN JOURNAL OF BOTANY 2018; 105:291-301. [PMID: 29603143 DOI: 10.1002/ajb2.1048] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. KEY RESULTS Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. CONCLUSIONS This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
Collapse
Affiliation(s)
- Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Brad R Ruhfel
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, 40475, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
19
|
Goga M, Ručová D, Kolarčik V, Sabovljević M, Bačkor M, Lang I. Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol Evol 2018; 8:2781-2787. [PMID: 29531694 PMCID: PMC5838065 DOI: 10.1002/ece3.3908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 01/14/2018] [Indexed: 11/09/2022] Open
Abstract
Lichens and mosses often share the same environmental conditions where they compete for substrate and other essential factors. Lichens use secondary metabolites as allelochemicals to repel surrounding plants and potential rivals. In mosses, endoreduplication leads to the occurrence of various ploidy levels in the same individual and has been suggested as an adaptation to abiotic stresses. Here, we show that also biotic factors such as usnic acid, an allelochemical produced by lichens, directly influenced the level of ploidy in mosses. Application of usnic acid changed the nuclei proportion and significantly enhanced the endoreduplication index in two moss species, Physcomitrella patens and Pohlia drummondii. These investigations add a new aspect on secondary metabolites of lichens which count as biotic factors and affect ploidy levels in mosses.
Collapse
Affiliation(s)
- Michal Goga
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Dajana Ručová
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Vladislav Kolarčik
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Marko Sabovljević
- Faculty of BiologyInstitute of Botany and Botanical GardenUniversity of BelgradeBelgradeSerbia
| | - Martin Bačkor
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Ingeborg Lang
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
20
|
Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA. Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:385-403. [PMID: 29746719 DOI: 10.1002/ajb2.1016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Phylogenetic support has been difficult to evaluate within the green plant tree of life partly due to a lack of specificity between conflicted versus poorly informed branches. As data sets continue to expand in both breadth and depth, new support measures are needed that are more efficient and informative. METHODS We describe the Quartet Sampling (QS) method, a quartet-based evaluation system that synthesizes several phylogenetic and genomic analytical approaches. QS characterizes discordance in large-sparse and genome-wide data sets, overcoming issues of alignment sparsity and distinguishing strong conflict from weak support. We tested QS with simulations and recent plant phylogenies inferred from variously sized data sets. KEY RESULTS QS scores demonstrated convergence with increasing replicates and were not strongly affected by branch depth. Patterns of QS support from different phylogenies led to a coherent understanding of ancestral branches defining key disagreements, including the relationships of Ginkgo to cycads, magnoliids to monocots and eudicots, and mosses to liverworts. The relationships of ANA-grade angiosperms (Amborella, Nymphaeales, Austrobaileyales), major monocot groups, bryophytes, and fern families are likely highly discordant in their evolutionary histories, rather than poorly informed. QS can also detect discordance due to introgression in phylogenomic data. CONCLUSIONS Quartet Sampling is an efficient synthesis of phylogenetic tests that offers more comprehensive and specific information on branch support than conventional measures. The QS method corroborates growing evidence that phylogenomic investigations that incorporate discordance testing are warranted when reconstructing complex evolutionary histories, in particular those surrounding ANA-grade, monocots, and nonvascular plants.
Collapse
Affiliation(s)
- James B Pease
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, North Carolina, 27101, USA
| | - Joseph W Brown
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Cody E Hinchliff
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho, 83844, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
21
|
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ. The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte. Curr Biol 2018; 28:733-745.e2. [PMID: 29456145 DOI: 10.1016/j.cub.2018.01.063] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
Abstract
The evolutionary emergence of land plant body plans transformed the planet. However, our understanding of this formative episode is mired in the uncertainty associated with the phylogenetic relationships among bryophytes (hornworts, liverworts, and mosses) and tracheophytes (vascular plants). Here we attempt to clarify this problem by analyzing a large transcriptomic dataset with models that allow for compositional heterogeneity between sites. Zygnematophyceae is resolved as sister to land plants, but we obtain several distinct relationships between bryophytes and tracheophytes. Concatenated sequence analyses that can explicitly accommodate site-specific compositional heterogeneity give more support for a mosses-liverworts clade, "Setaphyta," as the sister to all other land plants, and weak support for hornworts as the sister to all other land plants. Bryophyte monophyly is supported by gene concatenation analyses using models explicitly accommodating lineage-specific compositional heterogeneity and analyses of gene trees. Both maximum-likelihood analyses that compare the fit of each gene tree to proposed species trees and Bayesian supertree estimation based on gene trees support bryophyte monophyly. Of the 15 distinct rooted relationships for embryophytes, we reject all but three hypotheses, which differ only in the position of hornworts. Our results imply that the ancestral embryophyte was more complex than has been envisaged based on topologies recognizing liverworts as the sister lineage to all other embryophytes. This requires many phenotypic character losses and transformations in the liverwort lineage, diminishes inconsistency between phylogeny and the fossil record, and prompts re-evaluation of the phylogenetic affinity of early land plant fossils, the majority of which are considered stem tracheophytes.
Collapse
Affiliation(s)
- Mark N Puttick
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jennifer L Morris
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Harald Schneider
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China.
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
22
|
The Exceptional Preservation of Plant Fossils: A Review of Taphonomic Pathways and Biases in the Fossil Record. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600002874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The exceptional preservation of plant fossils falls into two categories: whole plant preservation and anatomical detail. Whole plant preservation is controlled primarily by transport and event preservation (e.g., ash falls), whereas anatomical preservation can occur through one of several taphonomic pathways: compression-impression, silicification, coal-ball formation, pyritization, and charcoalification. This review focuses on these taphonomic pathways, highlighting important factors and controls on the exceptional preservation of plants. Special emphasis is given to data garnered from experimental and actualistic approaches.
Collapse
|
23
|
Fogliani B, Gâteblé G, Villegente M, Fabre I, Klein N, Anger N, Baskin CC, Scutt CP. The morphophysiological dormancy in Amborella trichopoda seeds is a pleisiomorphic trait in angiosperms. ANNALS OF BOTANY 2017; 119:581-590. [PMID: 28087660 PMCID: PMC5379585 DOI: 10.1093/aob/mcw244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Recent parsimony-based reconstructions suggest that seeds of early angiosperms had either morphophysiological or physiological dormancy, with the former considered as more probable. The aim of this study was to determine the class of seed dormancy present in Amborella trichopoda , the sole living representative of the most basal angiosperm lineage Amborellales, with a view to resolving fully the class of dormancy present at the base of the angiosperm clade. METHODS Drupes of A. trichopoda without fleshy parts were germinated and dissected to observe their structure and embryo growth. Pre-treatments including acid scarification, gibberellin treatment and seed excision were tested to determine their influence on dormancy breakage and germination. Character-state mapping by maximum parsimony, incorporating data from the present work and published sources, was then used to determine the likely class of dormancy present in early angiosperms. KEY RESULTS Germination in A. trichopoda requires a warm stratification period of at least approx. 90 d, which is followed by endosperm swelling, causing the water-permeable pericarp-mesocarp envelope to split open. The embryo then grows rapidly within the seed, to radicle emergence some 17 d later and cotyledon emergence after an additional 24 d. Gibberellin treatment, acid scarification and excision of seeds from the surrounding drupe tissues all promoted germination by shortening the initial phase of dormancy, prior to embryo growth. CONCLUSIONS Seeds of A. trichopoda have non-deep simple morphophysiological dormancy, in which mechanical resistance of the pericarp-mesocarp envelope plays a key role in the initial physiological phase. Maximum parsimony analyses, including data obtained in the present work, indicate that morphophysiological dormancy is likely to be a pleisiomorphic trait in flowering plants. The significance of this conclusion for studies of early angiosperm evolution is discussed.
Collapse
Affiliation(s)
- Bruno Fogliani
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, 98890 Païta, New Caledonia
- Laboratoire Insulaire du Vivant et de l’Environnement (LIVE)–EA 4243, University of New Caledonia (UNC), BP R4, 98851 Noumea, New Caledonia
| | - Gildas Gâteblé
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, 98890 Païta, New Caledonia
| | - Matthieu Villegente
- Laboratoire Insulaire du Vivant et de l’Environnement (LIVE)–EA 4243, University of New Caledonia (UNC), BP R4, 98851 Noumea, New Caledonia
| | - Isabelle Fabre
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, 98890 Païta, New Caledonia
| | - Nicolas Klein
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, 98890 Païta, New Caledonia
- Laboratoire Insulaire du Vivant et de l’Environnement (LIVE)–EA 4243, University of New Caledonia (UNC), BP R4, 98851 Noumea, New Caledonia
| | - Nicolas Anger
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, 98890 Païta, New Caledonia
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Charlie P Scutt
- Reproduction et Développement des Plantes (RDP; UMR5667, CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
24
|
Jill Harrison C. Development and genetics in the evolution of land plant body plans. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150490. [PMID: 27994131 PMCID: PMC5182422 DOI: 10.1098/rstb.2015.0490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The colonization of land by plants shaped the terrestrial biosphere, the geosphere and global climates. The nature of morphological and molecular innovation driving land plant evolution has been an enigma for over 200 years. Recent phylogenetic and palaeobotanical advances jointly demonstrate that land plants evolved from freshwater algae and pinpoint key morphological innovations in plant evolution. In the haploid gametophyte phase of the plant life cycle, these include the innovation of mulitcellular forms with apical growth and multiple growth axes. In the diploid phase of the life cycle, multicellular axial sporophytes were an early innovation priming subsequent diversification of indeterminate branched forms with leaves and roots. Reverse and forward genetic approaches in newly emerging model systems are starting to identify the genetic basis of such innovations. The data place plant evo-devo research at the cusp of discovering the developmental and genetic changes driving the radiation of land plant body plans.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Tang JY, Ma J, Li XD, Li YH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol 2016; 16:276. [PMID: 27852238 PMCID: PMC5112639 DOI: 10.1186/s12866-016-0892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies on the bacteria associated with the bryophytes showed that there were abundant bacteria inhabited in/on these hosts. However, the type of bacteria and whether these discriminate between different bryophytes based on a particular factor remains largely unknown. Results This study was designed to analyze the biodiversity and community of the bacteria associated with ten liverworts and ten mosses using Illumina-sequencing techniques based on bacterial 16S rRNA gene. A total of 125,762 high quality sequences and 437 OTUs were obtained from twenty bryophytes. Generally, there were no obvious differences between the richness of bacteria associated with liverworts and mosses; however, the diversity was significantly higher in liverworts than in mosses. The taxonomic analyses showed that there were abundant bacteria inhabited with each bryophyte and those primarily detected in all samples were within the phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Armatimonadetes and Planctomycetes. In addition, bacteria assigned to Chloroflexi, Fibrobacteres, Gemmatimonadetes, Chlamydiae, group of TM6 and WCHB1-60 also appeared in part of the bryophytes. The assigned bacteria included those adapted to aquatic, anaerobic and even extreme drought environments, which is consistent with the bryophyte transition from aquatic to terrestrial conditions. Of them, approximately 10 recognized genera were shared by all the samples in a higher proportion, such as Burkholderia, Novosphingobium, Mucilaginibacter, Sorangium, Frankia, Frondihatitans, Haliangium, Rhizobacter, Granulicella and Hafnia, and 11 unclassified genera were also detected in all samples, which exhibited that large amounts of unclassified bacteria could interact with the bryophytes. The Heatmap and Principle Coordinate Analyses showed that bacteria associated with six mosses displayed a higher community similarity. Notably, the bacteria associated with another four mosses exhibited higher similarity with the ten liverworts. Conclusions The result of further analysis of the bacterial community in different bryophytes revealed that the phylogeny of hosts might portray a strong influence on the associated bacterial community and that niche also played important roles when the hosts were phylogenetically more similar. Further studies are needed to confirm the role of phylogeny on bacterial communities and determine the level of influence on predicting which bacteria is associated with the host.
Collapse
Affiliation(s)
- Jing Yan Tang
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Jing Ma
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Xue Dong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China.
| |
Collapse
|
26
|
Catarino B, Hetherington AJ, Emms DM, Kelly S, Dolan L. The Stepwise Increase in the Number of Transcription Factor Families in the Precambrian Predated the Diversification of Plants On Land. Mol Biol Evol 2016; 33:2815-2819. [PMID: 27499132 DOI: 10.1093/molbev/msw155] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The colonization of the land by streptophytes and their subsequent radiation is a major event in Earth history. We report a stepwise increase in the number of transcription factor (TF) families and subfamilies in Archaeplastida before the colonization of the land. The subsequent increase in TF number on land was through duplication within existing TF families and subfamilies. Almost all subfamilies of the Homeodomain (HD) and basic Helix-Loop-Helix (bHLH) had evolved before the radiation of extant land plant lineages from a common ancestor. We demonstrate that the evolution of these TF families independently followed similar trends in both plants and metazoans; almost all extant HD and bHLH subfamilies were present in the first land plants and in the last common ancestor of bilaterians. These findings reveal that the majority of innovation in plant and metazoan TF families occurred in the Precambrian before the Phanerozoic radiation of land plants and metazoans.
Collapse
Affiliation(s)
- Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
| | | | - David M Emms
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
27
|
Hamm CA, Fordyce JA. Selaginella and the Satyr: Euptychia westwoodi (Lepidoptera: Nymphalidae) Oviposition Preference and Larval Performance. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew018. [PMID: 27126962 PMCID: PMC4864580 DOI: 10.1093/jisesa/iew018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Members of the plant genus Selaginella (de Beauvois 1805) have few known insect herbivores even though they are considered by some to be 'living fossils', with extant taxa virtually indistinguishable from 300 Mya fossils. Butterflies are well-known herbivores, and the satyrs are among the most speciose of them despite having radiated ∼ 35 Mya ago. Nearly all satyrs feed on grass or sedges, but members of the Neotropical genus Euptychia Hübner 1818 feed on Selaginella; little is known about the degree to which this butterfly favors this ancient plant over those that its close relatives utilize. To advance our knowledge of Euptychia natural history, we conducted a series of experiments to examine oviposition preference and growth rates across a series of potential host plants on a Euptychia westwoodi population in Costa Rica. We found that Euptychia westwoodi Butler 1867 exhibit a strong preference to oviposit on Selaginella eurynota over the sympatric Selaginella arthritica, though they perform equally well as larvae on both plants. We did not observe oviposition on a sympatric grass that is commonly consumed by close relatives of E. westwoodi, and when larvae were offered the grass they refused to eat. These results suggest that E. westwoodi in Costa Rica exhibit a strong preference for Selaginella and may have lost the ability to feed on a locally abundant grass commonly used by other Satyrinae.
Collapse
Affiliation(s)
- Christopher A Hamm
- Department of Ecology and Evolutionary Biology, University of Kansas, Haworth Hall - 5032, Lawrence KS 66045, USA;
| | - James A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
28
|
Kumar R, Jiwani G, Pareek A, SravanKumar T, Khurana A, Sharma AK. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato. THE PLANT GENOME 2016; 9. [PMID: 27898758 DOI: 10.3835/plantgenome2015.07.0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC), including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L.) Heynh., pepper ( L.), and tomato ( L.) pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene () operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.
Collapse
|
29
|
Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. Mol Phylogenet Evol 2015; 90:140-9. [DOI: 10.1016/j.ympev.2015.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022]
|
30
|
Rothfels CJ, Li FW, Sigel EM, Huiet L, Larsson A, Burge DO, Ruhsam M, Deyholos M, Soltis DE, Stewart CN, Shaw SW, Pokorny L, Chen T, dePamphilis C, DeGironimo L, Chen L, Wei X, Sun X, Korall P, Stevenson DW, Graham SW, Wong GKS, Pryer KM. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. AMERICAN JOURNAL OF BOTANY 2015. [PMID: 26199366 DOI: 10.3732/ajb.1500089] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.
Collapse
Affiliation(s)
- Carl J Rothfels
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Erin M Sigel
- Department of Botany (MRC 166), National Museum of Natural History, Smithsonian Institution, P.O. Box 37012 Washington, District of Columbia 20013-7012 USA
| | - Layne Huiet
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Anders Larsson
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dylan O Burge
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118 USA
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK
| | - Michael Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada
| | - Douglas E Soltis
- Florida Museum of Natural History, Department of Biology, and the Genetics Institute. University of Florida. Gainesville, Florida 32611 USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Lisa Pokorny
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico-Consejo Superior de Investigaciones Científicas, 28014 Madrid, Spain
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Claude dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Lisa DeGironimo
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Li Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaofeng Wei
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiao Sun
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Petra Korall
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dennis W Stevenson
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| |
Collapse
|
31
|
Szövényi P, Frangedakis E, Ricca M, Quandt D, Wicke S, Langdale JA. Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC PLANT BIOLOGY 2015; 15:98. [PMID: 25886741 PMCID: PMC4393856 DOI: 10.1186/s12870-015-0481-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants colonized terrestrial environments approximately 480 million years ago and have contributed significantly to the diversification of life on Earth. Phylogenetic analyses position a subset of charophyte algae as the sister group to land plants, and distinguish two land plant groups that diverged around 450 million years ago - the bryophytes and the vascular plants. Relationships between liverworts, mosses hornworts and vascular plants have proven difficult to resolve, and as such it is not clear which bryophyte lineage is the sister group to all other land plants and which is the sister to vascular plants. The lack of comparative molecular studies in representatives of all three lineages exacerbates this uncertainty. Such comparisons can be made between mosses and liverworts because representative model organisms are well established in these two bryophyte lineages. To date, however, a model hornwort species has not been available. RESULTS Here we report the establishment of Anthoceros agrestis as a model hornwort species for laboratory experiments. Axenic culture conditions for maintenance and vegetative propagation have been determined, and treatments for the induction of sexual reproduction and sporophyte development have been established. In addition, protocols have been developed for the extraction of DNA and RNA that is of a quality suitable for molecular analyses. Analysis of haploid-derived genome sequence data of two A. agrestis isolates revealed single nucleotide polymorphisms at multiple loci, and thus these two strains are suitable starting material for classical genetic and mapping experiments. CONCLUSIONS Methods and resources have been developed to enable A. agrestis to be used as a model species for developmental, molecular, genomic, and genetic studies. This advance provides an unprecedented opportunity to investigate the biology of hornworts.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- MTA-ELTE-MTM Ecology Research Group, ELTE, Biological Institute, Budapest, Hungary.
| | - Eftychios Frangedakis
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
- Current Address: Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 0033, Japan.
| | - Mariana Ricca
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
| | - Dietmar Quandt
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
| | - Susann Wicke
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149, Muenster, Germany.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
| |
Collapse
|
32
|
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GKS, Leebens-Mack J. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 2014; 111:E4859-68. [PMID: 25355905 PMCID: PMC4234587 DOI: 10.1073/pnas.1323926111] [Citation(s) in RCA: 769] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Collapse
Affiliation(s)
- Norman J Wickett
- Chicago Botanic Garden, Glencoe, IL 60022; Program in Biological Sciences, Northwestern University, Evanston, IL 60208;
| | - Siavash Mirarab
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Nam Nguyen
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Tandy Warnow
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Naim Matasci
- iPlant Collaborative, Tucson, AZ 85721; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Matthew A Gitzendanner
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611
| | - Brad R Ruhfel
- Department of Biology and Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; Florida Museum of Natural History, Gainesville, FL 32611
| | - Eric Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | - Joshua P Der
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | | | - Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138
| | | | - Douglas E Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | - Pamela S Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | | | - Carl J Rothfels
- Department of Biology, Duke University, Durham, NC 27708; Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Lisa Pokorny
- Department of Biology, Duke University, Durham, NC 27708; Department of Biodiversity and Conservation, Real Jardín Botánico-Consejo Superior de Investigaciones Cientificas, 28014 Madrid, Spain
| | | | | | | | - Barbara Surek
- Botanical Institute, Universität zu Köln, Cologne D-50674, Germany
| | - Juan Carlos Villarreal
- Department fur Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universitat, 80638 Munich, Germany
| | - Béatrice Roure
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7
| | - Hervé Philippe
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7; CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | | | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Toni M Kutchan
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | | | - Jun Wang
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Yong Zhang
- CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | - Zhijian Tian
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Zhixiang Yan
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiaolei Wu
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiao Sun
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | |
Collapse
|
33
|
Liu Y, Cox CJ, Wang W, Goffinet B. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst Biol 2014; 63:862-78. [PMID: 25070972 DOI: 10.1093/sysbio/syu049] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic analyses using concatenation of genomic-scale data have been seen as the panacea for resolving the incongruences among inferences from few or single genes. However, phylogenomics may also suffer from systematic errors, due to the, perhaps cumulative, effects of saturation, among-taxa compositional (GC content) heterogeneity, or codon-usage bias plaguing the individual nucleotide loci that are concatenated. Here, we provide an example of how these factors affect the inferences of the phylogeny of early land plants based on mitochondrial genomic data. Mitochondrial sequences evolve slowly in plants and hence are thought to be suitable for resolving deep relationships. We newly assembled mitochondrial genomes from 20 bryophytes, complemented these with 40 other streptophytes (land plants plus algal outgroups), compiling a data matrix of 60 taxa and 41 mitochondrial genes. Homogeneous analyses of the concatenated nucleotide data resolve mosses as sister-group to the remaining land plants. However, the corresponding translated amino acid data support the liverwort lineage in this position. Both results receive weak to moderate support in maximum-likelihood analyses, but strong support in Bayesian inferences. Tests of alternative hypotheses using either nucleotide or amino acid data provide implicit support for their respective optimal topologies, and clearly reject the hypotheses that bryophytes are monophyletic, liverworts and mosses share a unique common ancestor, or hornworts are sister to the remaining land plants. We determined that land plant lineages differ in their nucleotide composition, and in their usage of synonymous codon variants. Composition heterogeneous Bayesian analyses employing a nonstationary model that accounts for variation in among-lineage composition, and inferences from degenerated nucleotide data that avoid the effects of synonymous substitutions that underlie codon-usage bias, again recovered liverworts being sister to the remaining land plants but without support. These analyses indicate that the inference of an early-branching moss lineage based on the nucleotide data is caused by convergent compositional biases. Accommodating among-site amino acid compositional heterogeneity (CAT-model) yields no support for the optimal resolution of liverwort as sister to the rest of land plants, suggesting that the robust inference of the liverwort position in homogeneous analyses may be due in part to compositional biases among sites. All analyses support a paraphyletic bryophytes with hornworts composing the sister-group to tracheophytes. We conclude that while genomic data may generate highly supported phylogenetic trees, these inferences may be artifacts. We suggest that phylogenomic analyses should assess the possible impact of potential biases through comparisons of protein-coding gene data and their amino acid translations by evaluating the impact of substitutional saturation, synonymous substitutions, and compositional biases through data deletion strategies and by analyzing the data using heterogeneous composition models. We caution against relying on any one presentation of the data (nucleotide or amino acid) or any one type of analysis even when analyzing large-scale data sets, no matter how well-supported, without fully exploring the effects of substitution models.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cymon J Cox
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
34
|
Struck TH. TreSpEx-Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information. Evol Bioinform Online 2014; 10:51-67. [PMID: 24701118 PMCID: PMC3972080 DOI: 10.4137/ebo.s14239] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html.
Collapse
|
35
|
Affiliation(s)
- Jeffery D Kovach
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
36
|
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 2014; 14:23. [PMID: 24533922 PMCID: PMC3933183 DOI: 10.1186/1471-2148-14-23] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/13/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. RESULTS We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. CONCLUSIONS Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.
Collapse
Affiliation(s)
- Brad R Ruhfel
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF, Thévenon E, Chahtane H, Warthmann N, Melkonian M, Zhang Y, Wong GKS, Weigel D, Parcy F, Dumas R. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 2014; 343:645-8. [PMID: 24436181 DOI: 10.1126/science.1248229] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.
Collapse
Affiliation(s)
- Camille Sayou
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), UMR 5168, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xi Z, Rest JS, Davis CC. Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS One 2013; 8:e80870. [PMID: 24278335 PMCID: PMC3836751 DOI: 10.1371/journal.pone.0080870] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Qi X, Chanderbali AS, Wong GKS, Soltis DE, Soltis PS. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants. BMC Evol Biol 2013; 13:143. [PMID: 23834366 PMCID: PMC3710211 DOI: 10.1186/1471-2148-13-143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the evolutionary history and functional diversification of the GSK3 gene family in land plants. RESULTS Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis GSK3 genes with genetically confirmed roles in floral development, AtSK11 and AtSK12, exhibit floral preferential expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa. CONCLUSIONS Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the diversity of this "green" branch of the gene family has increased in concert with the increasing morphological and physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3 genes have also diversified during evolutionary time.
Collapse
Affiliation(s)
- Xinshuai Qi
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - André S Chanderbali
- Department of Biology, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Grewe F, Guo W, Gubbels EA, Hansen AK, Mower JP. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol Biol 2013; 13:8. [PMID: 23311954 PMCID: PMC3553075 DOI: 10.1186/1471-2148-13-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. RESULTS In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. CONCLUSIONS Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution.
Collapse
Affiliation(s)
- Felix Grewe
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Emily A Gubbels
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - A Katie Hansen
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Present address: College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
41
|
Siengalewicz P, Mulzer J, Rinner U. Lycopodium alkaloids--synthetic highlights and recent developments. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2013; 72:1-151. [PMID: 24712098 DOI: 10.1016/b978-0-12-407774-4.00001-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Saitou N. Eukaryote Genomes. INTRODUCTION TO EVOLUTIONARY GENOMICS 2013. [PMCID: PMC7119937 DOI: 10.1007/978-1-4471-5304-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
General overviews of eukaryote genomes are first discussed, including organelle genomes, introns, and junk DNAs. We then discuss the evolutionary features of eukaryote genomes, such as genome duplication, C-value paradox, and the relationship between genome size and mutation rates. Genomes of multicellular organisms, plants, fungi, and animals are then briefly discussed.
Collapse
|
43
|
Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM. Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 2012; 489:431-3. [PMID: 22810584 DOI: 10.1038/nature11330] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/15/2012] [Indexed: 11/09/2022]
Abstract
Sexual reproduction in non-vascular plants requires unicellular free-motile sperm to travel from male to female reproductive structures across the terrestrial landscape. Recent data suggest that microarthropods can disperse sperm in mosses. However, little is known about the chemical communication, if any, that is involved in this interaction or the relative importance of microarthropod dispersal compared to abiotic dispersal agents in mosses. Here we show that tissues of the cosmopolitan moss Ceratodon purpureus emit complex volatile scents, similar in chemical diversity to those described in pollination mutualisms between flowering plants and insects, that the chemical composition of C. purpureus volatiles are sex-specific, and that moss-dwelling microarthropods are differentially attracted to these sex-specific moss volatile cues. Furthermore, using experimental microcosms, we show that microarthropods significantly increase moss fertilization rates, even in the presence of water spray, highlighting the important role of microarthropod dispersal in contributing to moss mating success. Taken together, our results indicate the presence of a scent-based 'plant-pollinator-like' relationship that has evolved between two of Earth's most ancient terrestrial lineages, mosses and microarthropods.
Collapse
Affiliation(s)
- Todd N Rosenstiel
- Department of Biology and Center for Life in Extreme Environments, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
44
|
Salinas M, Xing S, Höhmann S, Berndtgen R, Huijser P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. PLANTA 2012; 235:1171-84. [PMID: 22160465 DOI: 10.1007/s00425-011-1565-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/25/2011] [Indexed: 05/07/2023]
Abstract
SBP-box genes represent transcription factors ubiquitously found in the plant kingdom and recognized as important regulators of many different aspects of plant development. In this study, 15 SBP-box gene family members were identified in tomato and analyzed with respect to their genomic organization and other structural features. Phylogenetic reconstruction based on the DNA-binding SBP-domain, allowed the classification of the SlySBP proteins into eight groups representing clear orthologous relationships to family members of other flowering plants and the moss Physcomitrella. In order to have a better understanding of their possible function in the development of a fleshy-fruit species like tomato, the mRNA expression levels of all SlySBP genes were quantified in vegetative and reproductive organs of plants, at different stages of growth. As transcripts of ten SlySBP genes were found to carry putative miR156- and miR157-response elements, the expression levels of the corresponding microRNAs were determined as well, revealing different patterns of expression. In addition, eight putative miR156 and four miR157 encoding loci could be identified in the tomato genome, four of them forming a polycistronic cluster. Whereas miR156 and miR157 levels were highest in seedlings, leaves and anthers of young flowers, most miR156-targeted SlySBP genes were found to be expressed in young inflorescences and during fruit development and ripening, suggesting a particularly important role during tomato reproductive growth. The data presented provide a basis for future clarification of the various functions that SBP-box gene family members play in tomato growth and development.
Collapse
Affiliation(s)
- María Salinas
- Department of Molecular Plant Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA, Nikiforova SV, Lockhart PJ. Systematic error in seed plant phylogenomics. Genome Biol Evol 2011; 3:1340-8. [PMID: 22016337 PMCID: PMC3237385 DOI: 10.1093/gbe/evr105] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny.
Collapse
Affiliation(s)
- Bojian Zhong
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tchórzewska D, Bednara J. The dynamics of the actin cytoskeleton during sporogenesis in Psilotum nudum L. PROTOPLASMA 2011; 248:289-98. [PMID: 20544236 PMCID: PMC3066391 DOI: 10.1007/s00709-010-0167-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/20/2010] [Indexed: 05/10/2023]
Abstract
The actin cytoskeleton (microfilaments, MFs) accompanies the tubulin cytoskeleton (microtubules) during the meiotic division of the cell, but knowledge about the scope of their physiological competence and cooperation is insufficient. To cast more light on this issue, we analysed the F-actin distribution during the meiotic division of the Psilotum nudum sporocytes. Unfixed sporangia of P. nudum were stained with rhodamine-phalloidin and 4',6-diamidino-2-phenylindole dihydrochloride, and we monitored the changes in the actin cytoskeleton and nuclear chromatin throughout sporogenesis. We observed that the actin cytoskeleton in meiotically dividing cells is not only part of the kariokinetic spindle and phragmoplast but it also forms a well-developed network in the cytoplasm present in all phases of meiosis. Moreover, in telophase I F-actin filaments formed short-lived phragmoplast, which was adjacent to the plasma membrane, exactly at the site of future cell wall formation. Additionally, the meiocytes were pre-treated with cytochalasin-B at a concentration that causes damage to the MFs. This facilitated observation of the effect of selective MFs damage on the course of meiosis and sporogenesis of P. nudum. Changes were observed that occurred in the cytochalasin-treated cells: the daughter nuclei were located abnormally close to each other, there was no formation of the equatorial plate of organelles and, consequently, meiosis did not occur normally. It seems possible that, if the actin cytoskeleton only is damaged, regular cytokinesis will not occur and, hence, no viable spores will be produced.
Collapse
Affiliation(s)
- Dorota Tchórzewska
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | |
Collapse
|
48
|
Gustin JL, Zanis MJ, Salt DE. Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 2011; 11:76. [PMID: 21435223 PMCID: PMC3073911 DOI: 10.1186/1471-2148-11-76] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022] Open
Abstract
Background Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed. Results Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome. Conclusions Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.
Collapse
Affiliation(s)
- Jeffery L Gustin
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010, USA.
| | | | | |
Collapse
|
49
|
Shaw AJ, Szövényi P, Shaw B. Bryophyte diversity and evolution: windows into the early evolution of land plants. AMERICAN JOURNAL OF BOTANY 2011; 98:352-69. [PMID: 21613131 DOI: 10.3732/ajb.1000316] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The "bryophytes" comprise three phyla of plants united by a similar haploid-dominant life cycle and unbranched sporophytes bearing one sporangium: the liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthocerophyta). Combined, these groups include some 20000 species. As descendents of embryophytes that diverged before tracheophytes appeared, bryophytes offer unique windows into the early evolution of land plants. We review insights into the evolution of plant life cycles, in particular the elaboration of the sporophyte generation, the major lineages within bryophyte phyla, and reproductive processes that shape patterns of bryophyte evolution. Recent transcriptomic work suggests extensive overlap in gene expression in bryophyte sporophytes vs. gametophytes, but also novel patterns in the sporophyte, supporting Bower's antithetic hypothesis for origin of alternation of generations. Major lineages of liverworts, mosses, and hornworts have been resolved and general patterns of morphological evolution can now be inferred. The life cycles of bryophytes, arguably more similar to those of early embryophytes than are those in any other living plant group, provide unique insights into gametophyte mating patterns, sexual conflicts, and the efficacy and effects of spore dispersal during early land plant evolution.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
50
|
Shaw AJ, Cox CJ, Buck WR, Devos N, Buchanan AM, Cave L, Seppelt R, Shaw B, Larraín J, Andrus R, Greilhuber J, Temsch EM. Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses). AMERICAN JOURNAL OF BOTANY 2010; 97:1511-1531. [PMID: 21616905 DOI: 10.3732/ajb.1000055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. • METHODS Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. • KEY RESULTS Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. • CONCLUSIONS The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Duke University, Department of Biology, Durham, North Carolina 27708 USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|