1
|
Vlasova V, Lapina T, Cheng Q, Ermilova E. Loss of PII-dependent control of arginine biosynthesis in Dunaliella salina. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112327. [PMID: 39581352 DOI: 10.1016/j.plantsci.2024.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
In cyanobacteria and most Archaeplastida, Arg regulates its formation via allosteric inhibition of the controlling enzyme, N-acetyl-L-glutamate kinase (NAGK) that requires PII protein to properly sense the feedback inhibitor. Although PII expression has been shown to be reduced in Dunaliella salina compared to other green algae, the potential impact of this protein on DsNAGK activity remains unclear. We here performed coupled enzyme assay and surface plasmon resonance analysis and show that DsNAGK is activated by NAG and inhibited by Arg but is not controlled by DsPII. Moreover, DsPII has likely lost its function as an effective glutamine sensor. Replacement of the C-terminus from DsPII with the C-terminus from Chlamydomonas PII restored sensitivity to glutamine in a recombinant DsPII protein, demonstrating the importance of C-terminal residues close to the Q-loop for PII functions. The findings are discussed in the context of the relationship between NAGK control and the acquisition of salinity tolerance during evolution.
Collapse
Affiliation(s)
- Vitalina Vlasova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071001, China
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
2
|
Miyaji S, Ito T, Kitaiwa T, Nishizono K, Agake SI, Harata H, Aoyama H, Umahashi M, Sato M, Inaba J, Fushinobu S, Yokoyama T, Maruyama-Nakashita A, Hirai MY, Ohkama-Ohtsu N. N 2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1603-1618. [PMID: 38441834 DOI: 10.1111/tpj.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.
Collapse
Affiliation(s)
- Shunsuke Miyaji
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisuke Kitaiwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kosuke Nishizono
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shin-Ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Harata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Haruna Aoyama
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Minori Umahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
3
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Vlasova V, Lapina T, Statinov V, Ermilova E. N-Acetyl-L-glutamate Kinase of Chlamydomonas reinhardtii: In Vivo Regulation by PII Protein and Beyond. Int J Mol Sci 2023; 24:12873. [PMID: 37629055 PMCID: PMC10454706 DOI: 10.3390/ijms241612873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
N-Acetyl-L-glutamate kinase (NAGK) catalyzes the rate-limiting step in the ornithine/arginine biosynthesis pathway in eukaryotic and bacterial oxygenic phototrophs. NAGK is the most highly conserved target of the PII signal transduction protein in Cyanobacteria and Archaeplastida (red algae and Chlorophyta). However, there is still much to be learned about how NAGK is regulated in vivo. The use of unicellular green alga Chlamydomonas reinhardtii as a model system has already been instrumental in identifying several key regulation mechanisms that control nitrogen (N) metabolism. With a combination of molecular-genetic and biochemical approaches, we show the existence of the complex CrNAGK control at the transcriptional level, which is dependent on N source and N availability. In growing cells, CrNAGK requires CrPII to properly sense the feedback inhibitor arginine. Moreover, we provide primary evidence that CrPII is only partly responsible for regulating CrNAGK activity to adapt to changing nutritional conditions. Collectively, our results suggest that in vivo CrNAGK is tuned at the transcriptional and post-translational levels, and CrPII and additional as yet unknown factor(s) are integral parts of this regulation.
Collapse
Affiliation(s)
| | | | | | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (V.V.); (T.L.); (V.S.)
| |
Collapse
|
5
|
Liu W, Zhang Y, Zhang B, Zou H. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107719. [PMID: 37148659 DOI: 10.1016/j.plaphy.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.
Collapse
Affiliation(s)
- Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Yan Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Binglin Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Huawen Zou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
6
|
Arabidopsis PII Proteins Form Characteristic Foci in Chloroplasts Indicating Novel Properties in Protein Interaction and Degradation. Int J Mol Sci 2021; 22:ijms222312666. [PMID: 34884470 PMCID: PMC8657445 DOI: 10.3390/ijms222312666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The PII protein is an evolutionary, highly conserved regulatory protein found in both bacteria and higher plants. In bacteria, it modulates the activity of several enzymes, transporters, and regulatory factors by interacting with them and thereby regulating important metabolic hubs, such as carbon/nitrogen homeostasis. More than two decades ago, the PII protein was characterized for the first time in plants, but its physiological role is still not sufficiently resolved. To gain more insights into the function of this protein, we investigated the interaction behavior of AtPII with candidate proteins by BiFC and FRET/FLIM in planta and with GFP/RFP traps in vitro. In the course of these studies, we found that AtPII interacts in chloroplasts with itself as well as with known interactors such as N-acetyl-L-glutamate kinase (NAGK) in dot-like aggregates, which we named PII foci. In these novel protein aggregates, AtPII also interacts with yet unknown partners, which are known to be involved in plastidic protein degradation. Further studies revealed that the C-terminal component of AtPII is crucial for the formation of PII foci. Altogether, the discovery and description of PII foci indicate a novel mode of interaction between PII proteins and other proteins in plants. These findings may represent a new starting point for the elucidation of physiological functions of PII proteins in plants.
Collapse
|
7
|
Sakamoto T, Takatani N, Sonoike K, Jimbo H, Nishiyama Y, Omata T. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2021; 62:721-731. [PMID: 33650637 PMCID: PMC8474142 DOI: 10.1093/pcp/pcab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480 Japan
| | - Haruhiko Jimbo
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
- Graduate School of Arts and Sciences, University of Tokyo,Tokyo 153-8902Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| | - Tatsuo Omata
- * Corresponding author: E-mail, ; Fax, +81-52-789-4107
| |
Collapse
|
8
|
Bolay P, Rozbeh R, Muro-Pastor MI, Timm S, Hagemann M, Florencio FJ, Forchhammer K, Klähn S. The Novel P II-Interacting Protein PirA Controls Flux into the Cyanobacterial Ornithine-Ammonia Cycle. mBio 2021; 12:e00229-21. [PMID: 33758091 PMCID: PMC8092223 DOI: 10.1128/mbio.00229-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Among prokaryotes, cyanobacteria have an exclusive position as they perform oxygenic photosynthesis. Cyanobacteria substantially differ from other bacteria in further aspects, e.g., they evolved a plethora of unique regulatory mechanisms to control primary metabolism. This is exemplified by the regulation of glutamine synthetase (GS) via small proteins termed inactivating factors (IFs). Here, we reveal another small protein, encoded by the ssr0692 gene in the model strain Synechocystis sp. PCC 6803, that regulates flux into the ornithine-ammonia cycle (OAC), the key hub of cyanobacterial nitrogen stockpiling and remobilization. This regulation is achieved by the interaction with the central carbon/nitrogen control protein PII, which commonly controls entry into the OAC by activating the key enzyme of arginine synthesis, N-acetyl-l-glutamate kinase (NAGK). In particular, the Ssr0692 protein competes with NAGK for PII binding and thereby prevents NAGK activation, which in turn lowers arginine synthesis. Accordingly, we termed it PII-interacting regulator of arginine synthesis (PirA). Similar to the GS IFs, PirA accumulates in response to ammonium upshift due to relief from repression by the global nitrogen control transcription factor NtcA. Consistent with this, the deletion of pirA affects the balance of metabolite pools of the OAC in response to ammonium shocks. Moreover, the PirA-PII interaction requires ADP and is prevented by PII mutations affecting the T-loop conformation, the major protein interaction surface of this signal processing protein. Thus, we propose that PirA is an integrator determining flux into N storage compounds not only depending on the N availability but also the energy state of the cell.IMPORTANCE Cyanobacteria contribute a significant portion to the annual oxygen yield and play important roles in biogeochemical cycles, e.g., as major primary producers. Due to their photosynthetic lifestyle, cyanobacteria also arouse interest as hosts for the sustainable production of fuel components and high-value chemicals. However, their broad application as microbial cell factories is hampered by limited knowledge about the regulation of metabolic fluxes in these organisms. Our research identified a novel regulatory protein that controls nitrogen flux, in particular arginine synthesis. Besides its role as a proteinogenic amino acid, arginine is a precursor for the cyanobacterial storage compound cyanophycin, which is of potential interest to biotechnology. Therefore, the obtained results will not only enhance our understanding of flux control in these organisms but also help to provide a scientific basis for targeted metabolic engineering and, hence, the design of photosynthesis-driven biotechnological applications.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| | - Rokhsareh Rozbeh
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| |
Collapse
|
9
|
Selim KA, Ermilova E, Forchhammer K. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. THE NEW PHYTOLOGIST 2020; 227:722-731. [PMID: 32077495 DOI: 10.1111/nph.16492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
The PII superfamily consists of signal transduction proteins found in all domains of life. Canonical PII proteins sense the cellular energy state through the competitive binding of ATP and ADP, and carbon/nitrogen balance through 2-oxoglutarate binding. The ancestor of Archaeplastida inherited its PII signal transduction protein from an ancestral cyanobacterial endosymbiont. Over the course of evolution, plant PII proteins acquired a glutamine-sensing C-terminal extension, subsequently present in all Chloroplastida PII proteins. The PII proteins of various algal strains (red, green and nonphotosynthetic algae) have been systematically investigated with respect to their sensory and regulatory properties. Comparisons of the PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, red algae, Chlorophyta and higher plants) have yielded insights into their evolutionary conservation vs adaptive properties. The highly conserved role of the controlling enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK), as a main PII-interactor has been demonstrated across oxygenic phototrophs of cyanobacteria and Archaeplastida. In addition, the PII signalling system of red algae has been identified as an evolutionary intermediate between that of Cyanobacteria and Chloroplastida. In this review, we consider recent advances in understanding metabolic signalling by PII proteins of the plant kingdom.
Collapse
Affiliation(s)
- Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Lapina TV, Kochemasova LY, Forchhammer K, Ermilova EV. Effects of arginine on Polytomella parva growth, PII protein levels and lipid body formation. PLANTA 2019; 250:1379-1385. [PMID: 31359139 DOI: 10.1007/s00425-019-03249-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
L-Arginine supports growth and resulted in increased PII signaling protein levels and lipid droplet accumulation in the colorless green alga Polytomella parva. Polytomella parva, a model system for nonphotosynthetic green algae, utilizes ammonium and several carbon sources, including ethanol and acetate. We previously reported that P. parva accumulates high amounts of arginine with the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase, exhibiting high activity. Here we demonstrate that L-arginine can be used by this alga as a nitrogen source. Externally supplied arginine directly influenced the levels of PII signaling protein and formation of triacylglycerol (TAG)-filled lipid bodies (LBs). Our results suggest that the nitrogen source, but not nitrogen starvation, may be critical for the accumulation of LBs in a PII-independent manner in P. parva.
Collapse
Affiliation(s)
- Tatiana V Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034
| | - Lidiya Yu Kochemasova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena V Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034.
| |
Collapse
|
11
|
Liu W, Xiang Y, Zhang X, Han G, Sun X, Sheng Y, Yan J, Scheller HV, Zhang A. Over-Expression of a Maize N-Acetylglutamate Kinase Gene ( ZmNAGK) Improves Drought Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 9:1902. [PMID: 30662448 PMCID: PMC6328498 DOI: 10.3389/fpls.2018.01902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
Water deficit is a key limiting factor that affects the growth, development and productivity of crops. It is vital to understand the mechanisms by which plants respond to drought stress. Here an N-acetylglutamate kinase gene, ZmNAGK, was cloned from maize (Zea mays). ZmNAGK was expressed at high levels in maize leaves and at lower levels in root, stem, female flower and male flower. The expression of ZmNAGK was significantly induced by PEG, NaCl, ABA, brassinosteroid and H2O2. The ectopic expression of ZmNAGK in tobacco resulted in higher tolerance to drought compared to plants transformed with empty vector. Further physiological analysis revealed that overexpression of ZmNAGK could enhance the activities of antioxidant defense enzymes, and decrease malondialdehyde content and leakage of electrolyte in tobacco under drought stress. Moreover, the ZmNAGK transgenic tobacco accumulated more arginine and nitric oxide (NO) than control plants under drought stress. In addition, the ZmNAGK transgenic tobaccos activated drought responses faster than vector-transformed plants. These results indicate that ZmNAGK can play a vital role in enhancing drought tolerance by likely affecting the arginine and NO accumulation, and ZmNAGK could be involved in different strategies in response to drought stress.
Collapse
Affiliation(s)
- Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Henrik Vibe Scheller
- Environmental Genomics and Systems Biology Division, Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
13
|
Parlati A, Valkov VT, D'Apuzzo E, Alves LM, Petrozza A, Summerer S, Costa A, Cellini F, Vavasseur A, Chiurazzi M. Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:1299. [PMID: 28791036 PMCID: PMC5524832 DOI: 10.3389/fpls.2017.01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/10/2017] [Indexed: 05/20/2023]
Abstract
The PII protein in plants has been associated to many different tissue specialized roles concerning the Nitrogen assimilation pathways. We report here the further characterization of L. japonicus transgenic lines overexpressing the PII protein encoded by the LjGLB1 gene that is strongly expressed in the guard cells of Lotus plants. Consistently with a putative role played by PII in that specific cellular context we have observed an alteration of the patterns of stomatal movement in the overexpressing plants. An increased stomatal closure is measured in epidermal peels from detached leaves of normally watered overexpressing plants when compared to wild type plants and this effect was by-passed by Abscisic Acid application. The biochemical characterization of the transgenic lines indicates an increased rate of the Nitric Oxide biosynthetic route, associated to an induced Nitrate Reductase activity. The phenotypic characterization is completed by measures of the photosynthetic potential in plants grown under greenhouse conditions, which reveal a higher stress index of the PII overexpressing plants.
Collapse
Affiliation(s)
- Aurora Parlati
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Consiglio Nazionale delle RicercheNapoli, Italy
| | - Vladimir T. Valkov
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Consiglio Nazionale delle RicercheNapoli, Italy
| | - Enrica D'Apuzzo
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Consiglio Nazionale delle RicercheNapoli, Italy
| | - Ludovico M. Alves
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Consiglio Nazionale delle RicercheNapoli, Italy
| | | | | | - Alex Costa
- Department of Bioscience, University of MilanMilan, Italy
- Department of Physics, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | | | - Alain Vavasseur
- Unitè Mixte de Reserche 6191 Centre National de la Reserche Scientifique, Institute de Biologie Environnementales – Commissariat à l'Energie Atomique-Universitè Aix-Marseille IISt. Paul Lez Durance, France
| | - Maurizio Chiurazzi
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Consiglio Nazionale delle RicercheNapoli, Italy
| |
Collapse
|
14
|
Minaeva E, Ermilova E. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria. PROTOPLASMA 2017; 254:1769-1776. [PMID: 28074287 DOI: 10.1007/s00709-016-1073-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
The unicellular green alga Chlorella variabilis NC64A is an endosymbiont of the ciliate Paramecium bursaria. The host's control, including the transfer of biochemical substrates from P. bursaria to C. variabilis, is involved in symbiotic relationships. C. variabilis NC64A that had been re-infected to P. bursaria for more than 1 year and isolated from the host showed higher chlorophyll levels compared to those in free-living cells. Unlike the host, the expression of C. variabilis NC64A heat shock 70 kDa protein was independent of establishment of endosymbiosis. In symbiotic cells, the levels of PII signal transduction protein (CvPII) that coordinate the central C/N anabolic metabolism were slightly higher than those in free-living cells. Furthermore, the environmental cues (light and host food bacteria availability) affected the abundance of CvPII, suggesting that synthesis of the protein was influenced by the host. Moreover, arginine concentrations in the symbiotic algae of P. bursaria were also controlled by the host's nutritional conditions. Together, our results imply that signal substrates and/or products of metabolism in host cells might act as messengers mediating the regulation of key events in symbiont cells.
Collapse
Affiliation(s)
- Ekaterina Minaeva
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia
| | - Elena Ermilova
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia.
| |
Collapse
|
15
|
Abstract
The primary processes that contribute to the efficient capture of soil nitrate are the development of a root system that effectively explores the soil and the expression of high-affinity nitrate uptake systems in those roots. Both these processes are highly regulated to take into account the availability and distribution of external nitrate pools and the endogenous N status of the plant. While significant progress has been made in elucidating the early steps in sensing and responding to external nitrate, there is much less clarity about how the plant monitors its N status. This review specifically addresses the questions of what N compounds are sensed and in which part of the plant, as well as the identity of the signalling pathways responsible for their detection. Candidates that are considered for the role of N sensory systems include the target of rapamycin (TOR) signalling pathway, the general control non-derepressible 2 (GCN2) pathway, the plastidic PII-dependent pathway, and the family of glutamate-like receptors (GLRs). However, despite significant recent progress in elucidating the function and mode of action of these signalling systems, there is still much uncertainty about the extent to which they contribute to the process by which plants monitor their N status. The possibility is discussed that the large GLR family of Ca2+ channels, which are gated by a wide range of different amino acids and expressed throughout the plant, could act as amino acid sensors upstream of a Ca2+-regulated signalling pathway, such as the TOR pathway, to regulate the plant's response to changes in N status.
Collapse
Affiliation(s)
- Lucas Gent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
16
|
Yousuf PY, Ganie AH, Khan I, Qureshi MI, Ibrahim MM, Sarwat M, Iqbal M, Ahmad A. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen. FRONTIERS IN PLANT SCIENCE 2016; 7:1074. [PMID: 27524987 PMCID: PMC4965474 DOI: 10.3389/fpls.2016.01074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard.
Collapse
Affiliation(s)
| | - Arshid H. Ganie
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Ishrat Khan
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Mohammad I. Qureshi
- Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Faculty of Natural SciencesJamia Millia Islamia, New Delhi, India
| | - Mohamed M. Ibrahim
- Department of Botany and Microbiology, Science College, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Alexandria UniversityAlexandria, Egypt
| | - Maryam Sarwat
- Pharmaceutic Biotechnology, Amity Institute of Pharmacy, Amity UniversityNoida, India
| | - Muhammad Iqbal
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Altaf Ahmad
- Proteomics and Nanobiotechnology Laboratory, Department of Botany, Faculty of Life Sciences, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
17
|
Zalutskaya Z, Kharatyan N, Forchhammer K, Ermilova E. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:1-9. [PMID: 26475183 DOI: 10.1016/j.plantsci.2015.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
In all examined organisms that have the PII signal transduction machinery, PII coordinates the central C/N anabolic metabolism. In green algae and land plants, PII is localized in the chloroplast and controls the L-arginine biosynthetic pathway pathway. To elucidate additional functions of PII in the model photosynthetic organism Chlamydomonas reinhardtii (CrPII), we generated and analyzed four strains, in which PII was strongly under-expressed by artificial microRNA (GLB1-amiRNA strains). In response to nitrogen deficiency, Chlamydomonas produces triacylglycerols (TAGs) that are accumulated in lipid bodies (LB). Quantification of LBs by confocal microscopy in four GLB1-amiRNA strains showed that reduced PII levels resulted in over-accumulation of LBs compared to their parental strains. Moreover, knock-down of PII caused also an increase in the total TAG level. We propose that the larger yields of TAG-filled LBs in N-starved GLB1-amiRNA cells can be attributed to the strain's depleted PII level and their inability to properly control acetyl-CoA carboxylase activity (ACCase). Together, our results imply that PII in Chlamydomonas negatively controls TAG accumulation in LBs during acclimation to nitrogen starvation of the alga.
Collapse
Affiliation(s)
- Zhanneta Zalutskaya
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Nina Kharatyan
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Faculty of Biology, University of Tübingen, Auf der Morgenstelle 28, 72,076 Tübingen, Germany
| | - Elena Ermilova
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
18
|
Minaeva E, Forchhammer K, Ermilova E. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools. Protist 2015; 166:493-505. [PMID: 26356535 DOI: 10.1016/j.protis.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/07/2015] [Accepted: 08/01/2015] [Indexed: 11/16/2022]
Abstract
Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella.
Collapse
Affiliation(s)
- Ekaterina Minaeva
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Elena Ermilova
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
19
|
D'Apuzzo E, Valkov VT, Parlati A, Omrane S, Barbulova A, Sainz MM, Lentini M, Esposito S, Rogato A, Chiurazzi M. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:432-42. [PMID: 25390190 DOI: 10.1094/mpmi-09-14-0285-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.
Collapse
Affiliation(s)
- Enrica D'Apuzzo
- 1 Institute of Biosciences and Bioresources, CNR, Via P. Castellino 111, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chellamuthu VR, Ermilova E, Lapina T, Lüddecke J, Minaeva E, Herrmann C, Hartmann MD, Forchhammer K. A widespread glutamine-sensing mechanism in the plant kingdom. Cell 2015; 159:1188-1199. [PMID: 25416954 DOI: 10.1016/j.cell.2014.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/13/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022]
Abstract
Glutamine is the primary metabolite of nitrogen assimilation from inorganic nitrogen sources in microorganisms and plants. The ability to monitor cellular nitrogen status is pivotal for maintaining metabolic homeostasis and sustaining growth. The present study identifies a glutamine-sensing mechanism common in the entire plant kingdom except Brassicaceae. The plastid-localized PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine synthesis pathway, N-acetyl-l-glutamate kinase (NAGK), that leads to arginine and polyamine formation. Crystal structures reveal that the plant-specific C-terminal extension of PII, which we term the Q loop, forms a low-affinity glutamine-binding site. Glutamine binding alters PII conformation, promoting interaction and activation of NAGK. The binding motif is highly conserved in plants except Brassicaceae. A functional Q loop restores glutamine sensing in a recombinant Arabidopsis thaliana PII protein, demonstrating the modular concept of the glutamine-sensing mechanism adopted by PII proteins during the evolution of plant chloroplasts.
Collapse
Affiliation(s)
- Vasuki-Ranjani Chellamuthu
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Elena Ermilova
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Tatjana Lapina
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Jan Lüddecke
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ekaterina Minaeva
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Christina Herrmann
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
22
|
Chellamuthu VR, Alva V, Forchhammer K. From cyanobacteria to plants: conservation of PII functions during plastid evolution. PLANTA 2013. [PMID: 23192387 DOI: 10.1007/s00425-012-1801-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the current state-of-the-art concerning the functions of the signal processing protein PII in cyanobacteria and plants, with a special focus on evolutionary aspects. We start out with a general introduction to PII proteins, their distribution, and their evolution. We also discuss PII-like proteins and domains, in particular, the similarity between ATP-phosphoribosyltransferase (ATP-PRT) and its PII-like domain and the complex between N-acetyl-L-glutamate kinase (NAGK) and its PII activator protein from oxygenic phototrophs. The structural basis of the function of PII as an ATP/ADP/2-oxoglutarate signal processor is described for Synechococcus elongatus PII. In both cyanobacteria and plants, a major target of PII regulation is NAGK, which catalyzes the committed step of arginine biosynthesis. The common principles of NAGK regulation by PII are outlined. Based on the observation that PII proteins from cyanobacteria and plants can functionally replace each other, the hypothesis that PII-dependent NAGK control was under selective pressure during the evolution of plastids of Chloroplastida and Rhodophyta is tested by bioinformatics approaches. It is noteworthy that two lineages of heterokont algae, diatoms and brown algae, also possess NAGK, albeit lacking PII; their NAGK however appears to have descended from an alphaproteobacterium and not from a cyanobacterium as in plants. We end this article by coming to the conclusion that during the evolution of plastids, PII lost its function in coordinating gene expression through the PipX-NtcA network but preserved its role in nitrogen (arginine) storage metabolism, and subsequently took over the fine-tuned regulation of carbon (fatty acid) storage metabolism, which is important in certain developmental stages of plants.
Collapse
Affiliation(s)
- Vasuki Ranjani Chellamuthu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, Germany.
| | | | | |
Collapse
|
23
|
|
24
|
Seabra AR, Pereira PA, Becker JD, Carvalho HG. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:976-92. [PMID: 22414438 DOI: 10.1094/mpmi-12-11-0322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
25
|
Ermilova E, Lapina T, Zalutskaya Z, Minaeva E, Fokina O, Forchhammer K. PII signal transduction protein in Chlamydomonas reinhardtii: localization and expression pattern. Protist 2012; 164:49-59. [PMID: 22578427 DOI: 10.1016/j.protis.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/05/2012] [Accepted: 04/09/2012] [Indexed: 11/25/2022]
Abstract
Although PII signal transduction proteins have been described in bacteria, archaea and higher plants, no PII homolog has so far been characterized in green algae. In the unicellular green alga Chlamydomonas reinhardtii, the PII protein is encoded by a single nuclear gene CrGLB1. The C. reinhardtii PII (CrPII) was cloned and overexpressed with a C-terminal-fused Strep-tag II peptide. Consistent with the presence of key conserved residues necessary for trimer formation, gel filtration showed the oligomeric structure of C. reinhardtii to be a homotrimer. Under the studied culture conditions, CrPII appears not to be modified by phosphorylation. Here we show that like its plant PII homologs, the CrPII protein is localized in the chloroplast. Although the CrGLB1 transcript level increased in response to dark-light shift and nitrogen depletion, the level of mature CrPII protein did not change accordingly. Changes in the level of CrGLB1 mRNA were independent of gametogenesis. Characterization of PII in the green alga C. reinhardtii provides a framework for a more complete understanding of the function of this highly conserved signaling protein.
Collapse
Affiliation(s)
- Elena Ermilova
- Laboratory of Adaptation in Microorganisms, Biological Research Institute of St. Petersburg University, Oranienbaumskoe schosse 2, Stary Peterhof, St. Petersburg, 198504 Russia.
| | | | | | | | | | | |
Collapse
|
26
|
Laichoubi KB, Espinosa J, Castells MA, Contreras A. Mutational analysis of the cyanobacterial nitrogen regulator PipX. PLoS One 2012; 7:e35845. [PMID: 22558239 PMCID: PMC3340408 DOI: 10.1371/journal.pone.0035845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/23/2012] [Indexed: 11/23/2022] Open
Abstract
PipX provides a functional link between the cyanobacterial global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as integrators of signals of the nitrogen and carbon balance. PipX, which is toxic in the absence of PII, can form alternative complexes with NtcA and PII and these interactions are respectively stimulated and inhibited by 2-oxoglutarate, providing a mechanism by which PII can modulate expression at the NtcA regulon. Structural information on PipX-NtcA complexes suggests that PipX coactivates NtcA controlled genes by stabilizing the active conformation of NtcA bound to 2-oxoglutarate and by possibly helping recruit RNA polymerase. To get insights into PipX functions, we perform here a mutational analysis of pipX informed by the structures of PipX-PII and PipX-NtcA complexes and evaluate the impact of point mutations on toxicity and gene expression. Two amino acid substitutions (Y32A and E4A) were of particular interest, since they increased PipX toxicity and activated NtcA dependent genes in vivo at lower 2-oxoglutarate levels than wild type PipX. While both mutations impaired complex formation with PII, only Y32A had a negative impact on PipX-NtcA interactions.
Collapse
|
27
|
Neubauer K, Hühns M, Hausmann T, Klemke F, Lockau W, Kahmann U, Pistorius EK, Kragl U, Broer I. Isolation of cyanophycin from tobacco and potato plants with constitutive plastidic cphATe gene expression. J Biotechnol 2012; 158:50-8. [PMID: 22244982 DOI: 10.1016/j.jbiotec.2011.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022]
Abstract
A chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer. Two different procedures were developed which yielded polymer samples of 80 and 90% purity, respectively.
Collapse
Affiliation(s)
- Katja Neubauer
- Department of Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sung TY, Chung TY, Hsu CP, Hsieh MH. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis. BMC PLANT BIOLOGY 2011; 11:118. [PMID: 21861936 PMCID: PMC3173338 DOI: 10.1186/1471-2229-11-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase), is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR) protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. RESULTS The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. CONCLUSIONS This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression of ACR11 and GLN2 is highly coordinated. These results suggest that the ACR11 and GLN2 genes may belong to the same functional module. The Arabidopsis ACR11 protein may function as a regulatory protein that is related to glutamine metabolism or signaling in the chloroplast.
Collapse
Affiliation(s)
- Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ping Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
29
|
Laichoubi KB, Beez S, Espinosa J, Forchhammer K, Contreras A. The nitrogen interaction network in Synechococcus WH5701, a cyanobacterium with two PipX and two PII-like proteins. Microbiology (Reading) 2011; 157:1220-1228. [DOI: 10.1099/mic.0.047266-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen regulation involves the formation of different types of protein complexes between signal transducers and their transcriptional or metabolic targets. In oxygenic phototrophs, the signal integrator PII activates the enzyme N-acetyl-l-glutamate kinase (NAGK) by complex formation. PII also interacts with PipX, a protein with a tudor-like domain that mediates contacts with PII and with the transcriptional regulator NtcA, to which it binds to increase its activity. Here, we use a combination of in silico, yeast two-hybrid and in vitro approaches to investigate the nitrogen regulation network of Synechococcus WH5701, a marine cyanobacterium with two PII (GlnB_A and GlnB_B) and two PipX (PipX_I and PipX_II) proteins. Our results indicate that GlnB_A is functionally equivalent to the canonical PII protein from Synechococcus elongatus. GlnB_A interacted with PipX and NAGK proteins and stimulated NAGK activity, counteracting arginine inhibition. GlnB_B had only a slight stimulatory effect on NAGK activity, but its potential to bind effectors and form heterotrimers in Synechococcus WH5701 indicates additional regulatory functions. PipX_II, and less evidently PipX_I, specifically interacted with GlnB_A and NtcA, supporting a role for both Synechococcus WH5701 PipX proteins in partner swapping with GlnB_A and NtcA.
Collapse
Affiliation(s)
| | - Sabine Beez
- Lehrstuhl für Mikrobiologie, Organismische Interaktionen, University Tuebingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Javier Espinosa
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Organismische Interaktionen, University Tuebingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Asunción Contreras
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| |
Collapse
|
30
|
Wang T, Zhang E, Chen X, Li L, Liang X. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). BMC PLANT BIOLOGY 2010; 10:267. [PMID: 21118527 PMCID: PMC3095339 DOI: 10.1186/1471-2229-10-267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/30/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. RESULTS The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1) and a susceptible cultivar (Yueyou 7) under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant cultivar challenged by A. flavus under drought stress. A significant decrease or down regulation of trypsin inhibitor caused by A. flavus in the resistant cultivar was also observed. In addition, variations in protein expression patterns for resistant and susceptible cultivars were further validated by real time RT-PCR analysis. CONCLUSION In summary, this study provides new insights into understanding of the molecular mechanism of resistance to pre-harvest aflatoxin contamination in peanut, and will help to develop peanut varieties with resistance to pre-harvested aflatoxin contamination.
Collapse
Affiliation(s)
- Tong Wang
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Erhua Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ling Li
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuanqiang Liang
- Gguangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Baud S, Feria Bourrellier AB, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:291-303. [PMID: 21070409 DOI: 10.1111/j.1365-313x.2010.04332.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The PII protein is an integrator of central metabolism and energy levels. In Arabidopsis, allosteric sensing of cellular energy and carbon levels alters the ability of PII to interact with target enzymes such as N-acetyl-l-glutamate kinase and heteromeric acetyl-coenzyme A carboxylase, thereby modulating the biological activity of these plastidial ATP- and carbon-consuming enzymes. A quantitative reverse transcriptase-polymerase chain reaction approach revealed a threefold induction of the AtGLB1 gene (At4g01900) encoding PII during early seed maturation. The activity of the AtGLB1 promoter was consistent with this pattern. A complementary set of molecular and genetic analyses showed that WRINKLED1, a transcription factor known to induce glycolytic and fatty acid biosynthetic genes at the onset of seed maturation, directly controls AtGLB1 expression. Immunoblot analyses and immunolocalization experiments using anti-PII antibodies established that PII protein levels faithfully reflected AtGLB1 mRNA accumulation. At the subcellular level, PII was observed in plastids of maturing embryos. To further investigate the function of PII in seeds, comprehensive functional analyses of two pII mutant alleles were carried out. A transient increase in fatty acid production was observed in mutant seeds at a time when PII protein content was found to be maximal in wild-type seeds. Moreover, minor though statistically significant modifications of the fatty acid composition were measured in pII seeds, which exhibited decreased amounts of modified (elongated, desaturated) fatty acid species. The results obtained outline a role for PII in the fine tuning of fatty acid biosynthesis and partitioning in seeds.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de Saint-Cyr (RD10), Versailles Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Helfmann S, Lü W, Litz C, Andrade SLA. Cooperative binding of MgATP and MgADP in the trimeric P(II) protein GlnK2 from Archaeoglobus fulgidus. J Mol Biol 2010; 402:165-77. [PMID: 20643148 DOI: 10.1016/j.jmb.2010.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
P(II)-like proteins, such as GlnK, found in a wide variety of organisms from prokaryotes to plants constitute a family of cytoplasmic signaling proteins that play a central regulatory role in the assimilation of nitrogen for biosyntheses. They specifically bind and are modulated by effector molecules such as adenosine triphosphate, adenosine diphosphate and 2-oxoglutarate. Their highly conserved, trimeric structure suggests that cooperativity in effector binding might be the basis for the ability to integrate and respond to a wide range of concentrations, but to date no direct quantification of this cooperative behavior has been presented. The hyperthermophilic archaeon Archaeoglobus fulgidus contains three GlnK proteins, functionally associated with ammonium transport proteins (Amt). We have characterized GlnK2 and its interaction with effectors by high-resolution X-ray crystallography and isothermal titration calorimetry. Binding of adenosine nucleotides resulted in distinct, cooperative behavior for ATP and ADP. While 2-oxoglutarate has been shown to interact with other GlnK proteins, GlnK2 was completely insensitive to this key indicator of a low level of intracellular nitrogen. These findings point to different regulation and modulation patterns and add to our understanding of the flexibility and versatility of the GlnK family of signaling proteins.
Collapse
Affiliation(s)
- Sarah Helfmann
- Institut für organische Chemieund Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr.21, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
33
|
Espinosa J, Castells MA, Laichoubi KB, Forchhammer K, Contreras A. Effects of spontaneous mutations in PipX functions and regulatory complexes on the cyanobacterium Synechococcus elongatus strain PCC 7942. Microbiology (Reading) 2010; 156:1517-1526. [DOI: 10.1099/mic.0.037309-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Synechococcus elongatus sp. PCC 7942, PipX forms complexes with PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, and with the cyanobacterial nitrogen regulator NtcA. We recently showed that previous inactivation of pipX facilitates subsequent inactivation of the glnB gene. Here, we show that the three spontaneous pipX point mutations pipX-92delT, pipX160C>T and pipX194T>A, initially found in different glnB strains, are indeed suppressor mutations. When these mutations were reconstructed in the wild-type background, the glnB gene could be efficiently inactivated. Furthermore, the point mutations have different effects on PipX levels, coactivation of NtcA-dependent genes and protein–protein interactions. Further support for an in vivo role of PipX–PII complexes is provided by interaction analysis with the in vivo-generated PII
T-loop+7 protein, a PII derivative unable to interact with its regulatory target N-acetyl-l-glutamate kinase, but which retains the ability to bind to PipX. The implications of these results are discussed.
Collapse
Affiliation(s)
- Javier Espinosa
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | | | | | - Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Organismische Interaktionen, University Tübingen, Auf der Morgenstelle 28 D-72076 Tübingen, Germany
| | - Asunción Contreras
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| |
Collapse
|
34
|
Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. PLANT PHYSIOLOGY 2010; 152:1219-50. [PMID: 20089766 PMCID: PMC2832236 DOI: 10.1104/pp.109.152694] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C(4) photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database.
Collapse
|
35
|
Forchhammer K. The Network of PII Signalling Protein Interactions in Unicellular Cyanobacteria. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:71-90. [DOI: 10.1007/978-1-4419-1528-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci U S A 2009; 107:502-7. [PMID: 20018655 DOI: 10.1073/pnas.0910097107] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the V(max) of the ACCase reaction without altering the K(m) for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids.
Collapse
|
37
|
Feria Bourrellier AB, Ferrario-Méry S, Vidal J, Hodges M. Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-l-glutamate kinase. Biochem Biophys Res Commun 2009; 387:700-4. [PMID: 19631611 DOI: 10.1016/j.bbrc.2009.07.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP. Using chloroplast protein extracts and PII affinity chromatography, NAGK interacted with PII only in the presence of ATP-Mg(2+), and this process was antagonized by 2-OG. These results reveal a complex metabolic control of the PII interaction with NAGK in the chloroplast stroma of higher plants.
Collapse
Affiliation(s)
- Ana Belén Feria Bourrellier
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, Université Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
38
|
Beez S, Fokina O, Herrmann C, Forchhammer K. N-Acetyl-l-Glutamate Kinase (NAGK) from Oxygenic Phototrophs: PII Signal Transduction across Domains of Life Reveals Novel Insights in NAGK Control. J Mol Biol 2009; 389:748-58. [DOI: 10.1016/j.jmb.2009.04.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/29/2022]
|
39
|
Mutations at pipX suppress lethality of PII-deficient mutants of Synechococcus elongatus PCC 7942. J Bacteriol 2009; 191:4863-9. [PMID: 19482921 DOI: 10.1128/jb.00557-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) proteins are found in all three domains of life as key integrators of signals reflecting the balance of nitrogen and carbon. Genetic inactivation of P(II) proteins is typically associated with severe growth defects or death. However, the molecular basis of these defects depends on the specific functions of the proteins with which P(II) proteins interact to regulate nitrogen metabolism in different organisms. In Synechococcus elongatus PCC 7942, where P(II) forms complexes with the NtcA coactivator PipX, attempts to engineer P(II)-deficient strains failed in a wild-type background but were successful in pipX null mutants. Consistent with the idea that P(II) is essential to counteract the activity of PipX, four different spontaneous mutations in the pipX gene were found in cultures in which glnB had been genetically inactivated.
Collapse
|
40
|
Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-López A, Rubio-Cabetas MJ, Kanellis AK. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1859-71. [PMID: 19357433 PMCID: PMC2671631 DOI: 10.1093/jxb/erp072] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 05/19/2023]
Abstract
A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.
Collapse
|
41
|
Abstract
When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation.
Collapse
|
42
|
Kudo T, Kawai A, Yamaya T, Hayakawa T. Cellular distribution of ACT domain repeat protein 9, a nuclear localizing protein, in rice (Oryza sativa). PHYSIOLOGIA PLANTARUM 2008; 133:167-79. [PMID: 18282189 DOI: 10.1111/j.1399-3054.2008.01051.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulatory ACT domains serve as amino acid-binding sites in certain amino acid metabolic enzymes and transcriptional regulators in bacteria. The ACT domain repeat protein (ACR) family in plants is primarily composed of four copies of the domain homologous to those of the bacteria Gln sensor GLND. In the current study, to evaluate the possible involvement of the protein OsACR9 in the Gln-sensing system related to nitrogen (N) metabolism in rice (Oryza sativa L.), subcellular localization of OsACR9 and its accumulation and cellular distribution in various rice organs were examined by transient expression analysis and immunological methods using a monospecific antibody, respectively. Transient expression analysis of OsACR9 fused with a synthetic green fluorescent protein in cultured rice cells suggested nuclear localization of OsACR9. In rice roots, OsACR9 protein was distributed in epidermis, exodermis, sclerenchyma and vascular parenchyma cells, and its accumulation markedly increased after supply of NH(+)(4). In rice leaf samples, OsACR9 protein was abundant in the vascular parenchyma and mestome-sheath cells of young leaf blades at the early stage of development and in the vascular parenchyma and phloem-companion cells of mature leaf sheaths. OsACR9 protein also showed a high level of accumulation in vascular parenchyma cells of dorsal vascular bundles and aleurone cells in young rice grains at the early stage of ripening. The possibility of the nuclear protein OsACR9 acting as a Gln sensor in rice is subsequently discussed through comparison of its spatiotemporal expression with that of Gln-responsive N-assimilatory genes.
Collapse
Affiliation(s)
- Toru Kudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
43
|
Hühns M, Neumann K, Hausmann T, Ziegler K, Klemke F, Kahmann U, Staiger D, Lockau W, Pistorius EK, Broer I. Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:321-36. [PMID: 18282176 DOI: 10.1111/j.1467-7652.2007.00320.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The production of biodegradable polymers in transgenic plants is an important challenge in plant biotechnology; nevertheless, it is often accompanied by reduced plant fitness. In order to decrease the phenotypic abnormalities caused by cytosolic production of the biodegradable polymer cyanophycin, and to increase polymer accumulation, four translocation pathway signal sequences for import into chloroplasts were individually fused to the coding region of the cyanophycin synthetase gene (cphA(Te)) of Thermosynechococcus elongatus BP-1, resulting in the constructs pRieske-cphA(Te), pCP24-cphA(Te), pFNR-cphA(Te) and pPsbY-cphA(Te). These constructs were expressed in Nicotiana tabacum var. Petit Havana SRI under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Three of the four constructs led to polymer production. However, only the construct pPsbY-cphA(Te) led to cyanophycin accumulation exclusively in chloroplasts. In plants transformed with the pCP24-cphA(Te) and pFNR-cphA(Te) constructs, water-soluble and water-insoluble forms of cyanophycin were only located in the cytoplasm, which resulted in phenotypic changes similar to those observed in plants transformed with constructs lacking a targeting sequence. The plants transformed with pPsbY-cphA(Te) produced predominantly the water-insoluble form of cyanophycin. The polymer accumulated to up to 1.7% of dry matter in primary (T(0)) transformants. Specific T(2) plants produced 6.8% of dry weight as cyanophycin, which is more than five-fold higher than the previously published value. Although all lines tested were fertile, the progeny of the highest cyanophycin-producing line showed reduced seed production compared with control plants.
Collapse
Affiliation(s)
- Maja Hühns
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferrario-Méry S, Meyer C, Hodges M. Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett 2008; 582:1061-6. [PMID: 18325336 DOI: 10.1016/j.febslet.2008.02.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
Abstract
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent nitrite uptake into chloroplasts is increased in PII knock-out mutants when compared to the wild-type. This leads to a higher incorporation of (15)N into ammonium and amino acids in the mutant chloroplasts. However, the uptake differences do not depend on GS/GOGAT activities. Our observations suggest that PII is involved in the regulation of nitrite uptake into higher plant chloroplasts.
Collapse
Affiliation(s)
- Sylvie Ferrario-Méry
- Unité de Nutrition Azotée des Plantes, INRA, Route de St. Cyr, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
45
|
Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 2008; 190:3018-25. [PMID: 18263723 DOI: 10.1128/jb.01831-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning > or = 16 residues dissociated PaNAGK to active dimers, those of < or = 20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile alphaH-beta16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK.
Collapse
|
46
|
Forchhammer K. PII signal transducers: novel functional and structural insights. Trends Microbiol 2008; 16:65-72. [DOI: 10.1016/j.tim.2007.11.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 11/29/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
47
|
The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci U S A 2007; 104:17644-9. [PMID: 17959776 DOI: 10.1073/pnas.0705987104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms can store nitrogen by synthesizing arginine, and, therefore, feedback inhibition of arginine synthesis must be relieved in these organisms when nitrogen is abundant. This relief is accomplished by the binding of the PII signal transduction protein to acetylglutamate kinase (NAGK), the controlling enzyme of arginine synthesis. Here, we describe the crystal structure of the complex between NAGK and PII of Synechococcus elongatus, at 2.75-A resolution. We prove the physiological relevance of the observed interactions by site-directed mutagenesis and functional studies. The complex consists of two polar PII trimers sandwiching one ring-like hexameric NAGK (a trimer of dimers) with the threefold axes of these molecules aligned. The binding of PII favors a narrow ring conformation of the NAGK hexamer that is associated with arginine sites having low affinity for this inhibitor. Each PII subunit contacts one NAGK subunit only. The contacts map in the inner circumference of the NAGK ring and involve two surfaces of the PII subunit. One surface is on the PII body and interacts with the C-domain of the NAGK subunit, helping widen the arginine site found on the other side of this domain. The other surface is at the distal region of a protruding large loop (T-loop) that presents a novel compact shape. This loop is inserted in the interdomain crevice of the NAGK subunit, contacting mainly the N-domain, and playing key roles in anchoring PII on NAGK, in activating NAGK, and in complex formation regulation by MgATP, ADP, 2-oxoglutarate, and by phosphorylation of serine-49.
Collapse
|
48
|
Mizuno Y, Moorhead GBG, Ng KKS. Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana. J Biol Chem 2007; 282:35733-40. [PMID: 17913711 DOI: 10.1074/jbc.m707127200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.
Collapse
Affiliation(s)
- Yutaka Mizuno
- Department of Biological Sciences and the Alberta Ingenuity Centre for Carbohydrate Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
49
|
Osanai T, Tanaka K. Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. PLANT & CELL PHYSIOLOGY 2007; 48:908-14. [PMID: 17566056 DOI: 10.1093/pcp/pcm072] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PII protein is conserved among bacteria, archaea and plants, and is thought to function as a carbon/nitrogen balance sensor in these organisms. Recently, several proteins that specifically interact with PII, including a PII phosphatase (PphA), an amino acid biosynthetic enzyme (NAGK), a probable membrane channel (PamA) and a small protein (PipX) that also interacts with the nitrogen transcription factor NtcA, have been identified in the unicellular cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. These findings and subsequent analyses have suggested that PII protein controls carbon and nitrogen metabolism at the gene expression level as well as at the protein activity level. In this review, the functions of PII are envisaged based on functional analyses of the PII-interacting proteins identified in cyanobacteria.
Collapse
Affiliation(s)
- Takashi Osanai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | | |
Collapse
|
50
|
Moorhead GB, Ferrar TS, Chen YM, Mizuno Y, Smith CS, Ng KK, Muench DG, Lohmeier-Vogel E. The higher plant PII signal transduction protein: structure, function and properties. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PII carbon/nitrogen sensing protein was discovered in Escherichia coli (Migula 1895) Castellani and Chalmers 1919, over 40 years ago. Orthologues have been discovered in three kingdoms of life making it one of the most ancient and conserved signaling proteins known. Recent advances in the field have established its primary binding partner in plants as N-acetyl glutamate kinase and the crystal structure has revealed features unique to plants that likely contribute to its function in vivo. Here, we review the properties, function, and novel structural features of this chloroplast-localized metabolic sensor of higher plants.
Collapse
Affiliation(s)
- Greg B.G. Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Tony S. Ferrar
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Yan M. Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Yutaka Mizuno
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Catherine S. Smith
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Kenneth K.S. Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Douglas G. Muench
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Elke Lohmeier-Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|