1
|
Kandoi D, Ruhil K, Govindjee G, Tripathy BC. Overexpression of cytoplasmic C 4 Flaveria bidentis carbonic anhydrase in C 3 Arabidopsis thaliana increases amino acids, photosynthetic potential, and biomass. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1518-1532. [PMID: 35467074 PMCID: PMC9342616 DOI: 10.1111/pbi.13830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 05/20/2023]
Abstract
An important method to improve photosynthesis in C3 crops, such as rice and wheat, is to transfer efficient C4 characters to them. Here, cytosolic carbonic anhydrase (CA: βCA3) of the C4 Flaveria bidentis (Fb) was overexpressed under the control of 35 S promoter in Arabidopsis thaliana, a C3 plant, to enhance its photosynthetic efficiency. Overexpression of CA resulted in a better supply of the substrate HCO3- for the endogenous phosphoenolpyruvate carboxylase in the cytosol of the overexpressers, and increased its activity for generating malate that feeds into the tricarboxylic acid cycle. This provided additional carbon skeleton for increased synthesis of amino acids aspartate, asparagine, glutamate, and glutamine. Increased amino acids contributed to higher protein content in the transgenics. Furthermore, expression of FbβCA3 in Arabidopsis led to a better growth due to expression of several genes leading to higher chlorophyll content, electron transport, and photosynthetic carbon assimilation in the transformants. Enhanced CO2 assimilation resulted in increased sugar and starch content, and plant dry weight. In addition, transgenic plants had lower stomatal conductance, reduced transpiration rate, and higher water-use efficiency. These results, taken together, show that expression of C4 CA in the cytosol of a C3 plant can indeed improve its photosynthetic capacity with enhanced water-use efficiency.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Kamal Ruhil
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Govindjee Govindjee
- Department of Plant BiologyDepartment of Biochemistry, and Center of Biophysics & Quantitative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Baishnab C. Tripathy
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
- Department of BiotechnologySharda UniversityGreater NoidaUPIndia
| |
Collapse
|
2
|
Ohnishi M, Furutani R, Sohtome T, Suzuki T, Wada S, Tanaka S, Ifuku K, Ueno D, Miyake C. Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies. Antioxidants (Basel) 2021; 10:996. [PMID: 34201487 PMCID: PMC8300717 DOI: 10.3390/antiox10070996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
In response to decreases in the assimilation efficiency of CO2, plants oxidize the reaction center chlorophyll (P700) of photosystem I (PSI) to suppress reactive oxygen species (ROS) production. In hydro-cultured sunflower leaves experiencing essential mineral deficiencies, we analyzed the following parameters that characterize PSI and PSII: (1) the reduction-oxidation states of P700 [Y(I), Y(NA), and Y(ND)]; (2) the relative electron flux in PSII [Y(II)]; (3) the reduction state of the primary electron acceptor in PSII, QA (1 - qL); and (4) the non-photochemical quenching of chlorophyll fluorescence (NPQ). Deficiency treatments for the minerals N, P, Mn, Mg, S, and Zn decreased Y(II) with an increase in the oxidized P700 [Y(ND)], while deficiencies for the minerals K, Fe, Ca, B, and Mo decreased Y(II) without an increase in Y(ND). During the induction of photosynthesis, the above parameters showed specific responses to each mineral. That is, we could diagnose the mineral deficiency and identify which mineral affected the photosynthesis parameters.
Collapse
Affiliation(s)
- Miho Ohnishi
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Riu Furutani
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Takayuki Sohtome
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
- Department of System Development, Bunkoukeiki Co. Ltd., 4-8 Takakura-machi, Hachioji-shi, Tokyo 192-0033, Japan
| | - Takeshi Suzuki
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Shinya Wada
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Soma Tanaka
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Daisei Ueno
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku 783-8502, Japan;
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| |
Collapse
|
3
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
4
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Ignatova L, Zhurikova E, Ivanov B. The presence of the low molecular mass carbonic anhydrase in photosystem II of C3 higher plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:94-99. [PMID: 30537617 DOI: 10.1016/j.jplph.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 05/24/2023]
Abstract
The carrier of carbonic anhydrase (CA) activity was detected in gel among low molecular mass proteins from pea, spinach and Arabidopsis, after nondenaturing electrophoresis in PAAG of the dodecyl-β-d-maltoside treated PSII membranes (the fragments of thylakoid membrane containing PSII complexes). The elimination of Mn-stabilizing protein PsbO by treatment of PSII membranes with salts, did not lead to a decrease in CA activity observed in the gel although it reduced the amount of this protein down to 25% compared to the original sample. The isolated protein PsbO did not demonstrated CA activity. The distinguished features of CA activity of PSII membranes were as follows: 1) resistance to heating, 2) high sensitivity to ethoxyzolamide, the specific inhibitor of CA, and 3) stimulation of this activity by acetazolamide, another specific inhibitor of CA at low concentration of the latter. CA activity was not stimulated by acetazolamide in the PSII membranes samples from Arabidopsis thaliana mutants with knocked out gene At4g20990 encoding αCA4 (according to the nomenclature by Fabre et al., 2007). Taking into account the above data and our previous findings that the energy-dependent part of nonphotochemical quenching of chlorophyll a fluorescence is highly suppressed in that mutant, we suppose that thylakoid membranes of higher plants contain in the vicinity of PSII complex a true CA belonging to the α family of CAs.
Collapse
Affiliation(s)
- Lyudmila Ignatova
- Institute of Basic Biological Problems of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena Zhurikova
- Institute of Basic Biological Problems of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
6
|
Shitov AV, Terentyev VV, Zharmukhamedov SK, Rodionova MV, Karacan M, Karacan N, Klimov VV, Allakhverdiev SI. Is carbonic anhydrase activity of photosystem II required for its maximum electron transport rate? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:292-299. [PMID: 29410217 DOI: 10.1016/j.bbabio.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023]
Abstract
It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3-/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α‑carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α‑carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3-/CO2. Addition of exogenous HCO3- or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.
Collapse
Affiliation(s)
- Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia.
| | - Vasily V Terentyev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Margarita V Rodionova
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Mehmet Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Nurcan Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia; Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region 141700, Russia; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku 1073, Azerbaijan.
| |
Collapse
|
7
|
Allakhverdiev SI, Zharmukhamedov SK, Rodionova MV, Shuvalov VA, Dismukes C, Shen JR, Barber J, Samuelsson G. Vyacheslav (Slava) Klimov (1945-2017): A scientist par excellence, a great human being, a friend, and a Renaissance man. PHOTOSYNTHESIS RESEARCH 2018; 136:1-16. [PMID: 28921410 DOI: 10.1007/s11120-017-0440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.
Collapse
Affiliation(s)
- Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Margarita V Rodionova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - James Barber
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736, Umeå, Sweden
| |
Collapse
|
8
|
Pigolev AV, Klimov VV. The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. BIOCHEMISTRY (MOSCOW) 2015; 80:662-73. [DOI: 10.1134/s0006297915060036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Järvi S, Gollan PJ, Aro EM. Understanding the roles of the thylakoid lumen in photosynthesis regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:434. [PMID: 24198822 PMCID: PMC3813922 DOI: 10.3389/fpls.2013.00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/12/2013] [Indexed: 05/20/2023]
Abstract
It has been known for a long time that the thylakoid lumen provides the environment for oxygen evolution, plastocyanin-mediated electron transfer, and photoprotection. More recently lumenal proteins have been revealed to play roles in numerous processes, most often linked with regulating thylakoid biogenesis and the activity and turnover of photosynthetic protein complexes, especially the photosystem II and NAD(P)H dehydrogenase-like complexes. Still, the functions of the majority of lumenal proteins in Arabidopsis thaliana are unknown. Interestingly, while the thylakoid lumen proteome of at least 80 proteins contains several large protein families, individual members of many protein families have highly divergent roles. This is indicative of evolutionary pressure leading to neofunctionalization of lumenal proteins, emphasizing the important role of the thylakoid lumen for photosynthetic electron transfer and ultimately for plant fitness. Furthermore, the involvement of anterograde and retrograde signaling networks that regulate the expression and activity of lumen proteins is increasingly pertinent. Recent studies have also highlighted the importance of thiol/disulfide modulation in controlling the functions of many lumenal proteins and photosynthetic regulation pathways.
Collapse
Affiliation(s)
| | | | - Eva-Mari Aro
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland e-mail:
| |
Collapse
|
10
|
Castelfranco PA. A proposed role for inorganic carbon in water oxidation. PHOTOSYNTHESIS RESEARCH 2013; 116:231-4. [PMID: 23775546 DOI: 10.1007/s11120-013-9864-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/28/2013] [Indexed: 05/21/2023]
Abstract
This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235-246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O2. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944-1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509-517, 2009). One of these proteins may be the D(I) of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O2 evolution: Ca(2+) and inorganic carbon. In this scheme, inorganic carbon (HCO3 (-)) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca(2+) in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O2. In Phase 2, PODCA is regenerated.
Collapse
Affiliation(s)
- Paul A Castelfranco
- Department of Plant Biology, University of California, Davis, CA, 95616, USA,
| |
Collapse
|
11
|
Degradation of PsbO by the Deg protease HhoA Is thioredoxin dependent. PLoS One 2012; 7:e45713. [PMID: 23029195 PMCID: PMC3446894 DOI: 10.1371/journal.pone.0045713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/24/2012] [Indexed: 02/02/2023] Open
Abstract
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.
Collapse
|
12
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
13
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
14
|
|
15
|
Ignatova LK, Rudenko NN, Mudrik VA, Fedorchuk TP, Ivanov BN. Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII. PHOTOSYNTHESIS RESEARCH 2011; 110:89-98. [PMID: 22006267 DOI: 10.1007/s11120-011-9699-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 10/03/2011] [Indexed: 05/09/2023]
Abstract
The procedure of isolating the thylakoids and the thylakoid membrane fragments enriched with either photosystem I or photosystem II (PSI- and PSII-membranes) from Arabidopsis thaliana leaves was developed. It differed from the one used with pea and spinach in durations of detergent treatment and centrifugation, and in concentrations of detergent and Mg(2+) in the media. Both the thylakoid and the fragments preserved carbonic anhydrase (CA) activities. Using nondenaturing electrophoresis followed by detection of CA activity in the gel stained with bromo thymol blue, one low molecular mass carrier of CA activity was found in the PSI-membranes, and two carriers, a low molecular mass one and a high molecular mass one, were found in the PSII-membranes. The proteins in the PSII-membranes differed in their sensitivity to acetazolamide (AA), a specific CA inhibitor. AA at 5 × 10(-7) M inhibited the CA activity of the high molecular mass protein but stimulated the activity of the low molecular mass carrier in the PSII-membranes. At the same concentration, AA moderately inhibited, by 30%, the CA activity of PSI-membranes. CA activity of the PSII-membranes was almost completely suppressed by the lipophilic CA inhibitor, ethoxyzolamide at 10(-9) M, whereas CA activity of the PSI-membranes was inhibited by this inhibitor even at 5 × 10(-7) M just the same as for AA. The observed distribution of CA activity in the thylakoid membranes from A. thaliana was close to the one found in the membranes of pea, evidencing the general pattern of CA activity in the thylakoid membranes of C3-plants.
Collapse
Affiliation(s)
- Lyudmila K Ignatova
- Institute of Basic Biological Problems of Russian Academy of Sciences, Pushchino, Moscow, Russia 142290.
| | | | | | | | | |
Collapse
|
16
|
Shitov AV, Zharmukhamedov SK, Shutova TV, Allakhverdiev SI, Samuelsson G, Klimov VV. A carbonic anhydrase inhibitor induces bicarbonate-reversible suppression of electron transfer in pea photosystem 2 membrane fragments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 104:366-71. [PMID: 21530302 DOI: 10.1016/j.jphotobiol.2011.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/31/2022]
Abstract
The effects of suppression of the carbonic anhydrase (CA) activity by a CA-inhibitor, acetazolamide (AA), on the photosynthetic activities of photosystem II (PS II) particles from higher plants were investigated. AA along with CA-activity inhibits the PS II photosynthetic electron transfer and the AA-induced suppression is totally reversed by the addition of bicarbonate (3-5 mM). Similar effect of recovery in the PS II photosynthetic activity was also revealed upon the addition of known artificial electron donors (potassium ferrocyanide and TMPD). Significance and possible functions of CA for the PS II donor side are discussed.
Collapse
Affiliation(s)
- A V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Bricker TM, Frankel LK. Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: a critical analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:165-78. [PMID: 21353792 DOI: 10.1016/j.jphotobiol.2011.01.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 01/08/2023]
Abstract
Numerous studies over the last 25 years have established that the extrinsic PsbO, PsbP and PsbQ proteins of Photosystem II play critically important roles in maintaining optimal manganese, calcium and chloride concentrations at the active site of Photosystem II. Chemical or genetic removal of these components induces multiple and profound defects in Photosystem II function and oxygen-evolving complex stability. Recently, a number of studies have indicated possible additional roles for these proteins within the photosystem. These include putative enzymatic activities, regulation of reaction center protein turnover, modulation of thylakoid membrane architecture, the mediation of PS II assembly/stability, and effects on the reducing side of the photosystem. In this review we will critically examine the findings which support these auxiliary functions and suggest additional lines of investigations which could clarify the nature of the functional interactions of these proteins with the photosystem.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
18
|
Pobeguts OV, Smolova TN, Timoshevsky DS, Klimov VV. Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2010; 100:30-7. [PMID: 20466559 DOI: 10.1016/j.jphotobiol.2010.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
The effect of reversible removal of HCO(3)(-) on structural re-arrangements in the Mn-stabilizing protein (MSP) of photosystem II, isolated from pea leaves, was studied using measurements of characteristic alterations in fluorescence of hydrophobic probe 8-anilino-1-naphthalene-sulfonic acid (ANS). It was shown that the treatments capable of removal of HCO(3)(-) (or CO(2)) from possible binding sites in MSP (pH lowering from 6.5 to 3.5, addition of a structurally similar anion HCO(3)(-) in concentration 1-20mM or air evacuation at pH 3.5) result in a significant (up to 370%) increase of ANS fluorescence (indicative of structural changes in MSP), whereas HCO(3)(-) lowers the ANS fluorescence to the initial level observed in untreated protein at pH 6.5. Since the effects are revealed at (sub)micromolar concentrations of HCO(3)(-), the specific high-affinity binding of HCO(3)(-) (or CO(2)) to MSP (required for its native structure preservation) is proposed. Possible bicarbonate binding sites and its physiological role within the water-oxidizing complex of photosystem II are discussed.
Collapse
Affiliation(s)
- Olga V Pobeguts
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | |
Collapse
|
19
|
Ferreira FJ, Guo C, Coleman JR. Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. PLANT PHYSIOLOGY 2008; 147:585-94. [PMID: 18434607 PMCID: PMC2409021 DOI: 10.1104/pp.108.118661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/04/2008] [Indexed: 05/20/2023]
Abstract
Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the interconversion of CO2 and HCO3(-) and is a major protein constituent of the C3 higher plant chloroplast where it is presumed to play a role in photosynthetic carbon assimilation. In this study, we have used both RNA antisense and gene knockout lines to specifically reduce the activity of the chloroplast betaCA1 polypeptide (At3g01500) in the model plant Arabidopsis (Arabidopsis thaliana). Although able to germinate, seedling establishment of transgenic plants is significantly reduced relative to wild-type plants when grown at ambient levels of CO2. Growth at elevated (1,500 microL L(-1)) CO2 or on plates supplemented with sucrose restores seedling establishment rates to wild-type levels. Seed from wild-type and transgenic plants exhibited no significant differences in seed protein, lipid content, or reserve mobilization during seedling growth. betaCA1-deficient seedlings do, however, exhibit reduced capacity for light-dependent 14CO2 assimilation prior to the development of true leaves. The small number of surviving seedlings able to grow and develop are phenotypically similar to wild-type plants, even when subsequently grown at subambient levels of CO2. Microarray analysis of mature leaves of betaCA1-deficient plants shows some differences in transcript abundance, particularly with genes involved in ethylene signaling and response. The data suggest that reduced levels of seedling establishment by betaCA1-deficient plants could be the result of poor cotyledon photosynthetic performance at the onset of phototrophic growth and prior to the development of true leaves.
Collapse
Affiliation(s)
- Fernando J Ferreira
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | |
Collapse
|
20
|
Dasgupta J, Ananyev GM, Dismukes GC. Photoassembly of the Water-Oxidizing Complex in Photosystem II. Coord Chem Rev 2008; 252:347-360. [PMID: 19190725 DOI: 10.1016/j.ccr.2007.08.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The light-driven steps in the biogenesis and repair of the inorganic core comprising the O(2)-evolving center of oxygenic photosynthesis (photosystem II water-oxidation complex, PSII-WOC) are reviewed. These steps, known collectively as photoactivation, involve the photoassembly of the free inorganic cofactors to the cofactor-depleted PSII-(apo-WOC) driven by light and produce the active O(2)-evolving core comprised of Mn(4)CaO(x)Cl(y). We focus on the functional role of the inorganic components as seen through the competition with non-native cofactors ("inorganic mutants") on water oxidation activity, the rate of the photoassembly reaction, and on structural insights gained from EPR spectroscopy of trapped intermediates formed in the initial steps of the assembly reaction. A chemical mechanism for the initial steps in photoactivation is given that is based on these data. Photoactivation experiments offer the powerful insights gained from replacement of the native cofactors, which together with the recent X-ray structural data for the resting holoenzyme provide a deeper understanding of the chemistry of water oxidation. We also review some new directions in research that photoactivation studies have inspired that look at the evolutionary history of this remarkable catalyst.
Collapse
Affiliation(s)
- Jyotishman Dasgupta
- 306 Lewis Hall, Department of Chemistry, University of California, Berkeley, CA 94709, USA
| | | | | |
Collapse
|
21
|
Castelfranco PA, Lu YK, Stemler AJ. Hypothesis: the peroxydicarbonic acid cycle in photosynthetic oxygen evolution. PHOTOSYNTHESIS RESEARCH 2007; 94:235-46. [PMID: 17484037 DOI: 10.1007/s11120-007-9134-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 01/08/2007] [Indexed: 05/15/2023]
Abstract
Peroxydicarbonic acid (Podca), a proposed intermediate in photosynthetic oxygen evolution, was synthesized electrochemically. Consistent with literature descriptions of this compound, it was shown to be a highly reactive molecule, spontaneously hydrolyzed to H2O2, as well as susceptible to oxidative and reductive decomposition. In the presence of Mn2+ or Co2+, Podca was quickly broken down with release of O2. The liberation of O2, however, was partially suppressed at high O2 concentrations. In the presence of Ca-washed photosystem II-enriched membranes lacking extrinsic proteins, Podca was decomposed with the release of O2, but only under conditions favoring photosynthetic electron flow (light plus a Hill oxidant). A model is proposed that details how peroxydicarbonic acid could act as an oxygen-evolving intermediate. The hypothesis is consistent with the well-established Kok model and with recent findings related to the chemistry of oxygen evolution.
Collapse
|
22
|
Roberts K, Granum E, Leegood RC, Raven JA. Carbon acquisition by diatoms. PHOTOSYNTHESIS RESEARCH 2007; 93:79-88. [PMID: 17497225 DOI: 10.1007/s11120-007-9172-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/11/2007] [Indexed: 05/04/2023]
Abstract
Diatoms are responsible for up to 40% of primary productivity in the ocean, and complete genome sequences are available for two species. However, there are very significant gaps in our understanding of how diatoms take up and assimilate inorganic C. Diatom plastids originate from secondary endosymbiosis with a red alga and their Form ID Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase) from horizontal gene transfer, which means that embryophyte paradigms can only give general guidance as to their C acquisition mechanisms. Although diatom Rubiscos have relatively high CO(2) affinity and CO(2)/O(2) selectivity, the low diffusion coefficient for CO(2) in water has the potential to restrict the rate of photosynthesis. Diatoms growing in their natural aquatic habitats operate inorganic C concentrating mechanisms (CCMs), which provide a steady-state CO(2) concentration around Rubisco higher than that in the medium. How these CCMs work is still a matter of debate. However, it is known that both CO(2) and HCO (3) (-) are taken up, and an obvious but as yet unproven possibility is that active transport of these species across the plasmalemma and/or the four-membrane plastid envelope is the basis of the CCM. In one marine diatom there is evidence of C(4)-like biochemistry which could act as, or be part of, a CCM. Alternative mechanisms which have not been eliminated include the production of CO(2) from HCO (3) (-) at low pH maintained by a H(+) pump, in a compartment close to that containing Rubisco.
Collapse
Affiliation(s)
- Karen Roberts
- Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | |
Collapse
|
23
|
Suorsa M, Aro EM. Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. PHOTOSYNTHESIS RESEARCH 2007; 93:89-100. [PMID: 17380423 DOI: 10.1007/s11120-007-9154-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 05/14/2023]
Abstract
The oxygen-evolving complex (OEC) of higher plant photosystem II (PSII) consists of an inorganic Mn(4)Ca cluster and three nuclear-encoded proteins, PsbO, PsbP and PsbQ. In this review, we focus on the assembly of these OEC proteins, and especially on the role of the small intrinsic PSII proteins and recently found "novel" PSII proteins in the assembly process. The numerous auxiliary functions suggested during the past few years for the OEC proteins will likewise be discussed. For example, besides being a manganese-stabilizing protein, PsbO has been found to bind calcium and GTP and possess a carbonic anhydrase activity. In addition, specific roles have been suggested for the two isoforms of the PsbO protein in Arabidopsis thaliana. PsbP and PsbQ seem to play an additional role in the formation of PSII supercomplexes and in grana stacking, besides their originally recognized role in providing a proper calcium and chloride ion concentration for water splitting.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | |
Collapse
|
24
|
Lu YK, Stemler AJ. Differing responses of the two forms of photosystem II carbonic anhydrase to chloride, cations, and pH. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:633-8. [PMID: 17320812 DOI: 10.1016/j.bbabio.2006.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/25/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The effects of Cl(-), Mn(2+), Ca(2+), and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl(-), and strongly inhibited above this concentration. This enzyme is activated by Mn(2+) and stimulated somewhat by Ca(2+). The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl(-) up to 0.4 M. Ca(2+) appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn(4) complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.
Collapse
Affiliation(s)
- Yih-Kuang Lu
- Section of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
25
|
McConnell IL, Badger MR, Wydrzynski T, Hillier W. A quantitative assessment of the carbonic anhydrase activity in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:639-47. [PMID: 17467655 DOI: 10.1016/j.bbabio.2007.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/15/2022]
Abstract
Using a carbonic anhydrase assay based on membrane inlet mass spectrometry (MIMS), we have extended our earlier investigations of Photosystem II (PSII)-associated carbonic anhydrase activity in spinach PSII preparations (W. Hillier, I. McConnell, M. R. Badger, A. Boussac, V.V. Klimov G. C. Dismukes, T. Wydrzynski Biochemistry 2006, 45:2094). The relationship between the carbonic anhydrase activity and O(2) evolution has been evaluated in terms of the effects of metal ion addition, preparation type, light, and response to specific inhibitors. The results indicate that the PSII-associated carbonic anhydrase activity is variable and appears not to be associated specifically with the oxygen evolving activity nor the 33 kDa extrinsic manganese stabilising protein.
Collapse
Affiliation(s)
- I L McConnell
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
26
|
Abstract
Photosystem II (PSII) is a multisubunit enzyme embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Powered by light, this enzyme catalyses the chemically and thermodynamically demanding reaction of water splitting. In so doing, it releases dioxygen into the atmosphere and provides the reducing equivalents required for the conversion of CO2 into the organic molecules of life. Recently, a fully refined structure of a 700 kDa cyanobacterial dimeric PSII complex was elucidated by X-ray crystallography which gave organizational and structural details of the 19 subunits (16 intrinsic and three extrinsic) which make up each monomer and provided information about the position and protein environments of 57 different cofactors. The water-splitting site was revealed as a cluster of four Mn ions and a Ca2+ ion surrounded by amino acid side chains, of which six or seven form direct ligands to the metals. The metal cluster was modelled as a cubane-like structure composed of three Mn ions and the Ca2+ linked by oxo-bonds with the fourth Mn attached to the cubane via one of its oxygens. The overall structure of the catalytic site is providing a framework to develop a mechanistic scheme for the water-splitting process, knowledge which could have significant implications for mimicking the reaction in an artificial chemical system.
Collapse
Affiliation(s)
- J Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Bondarava N, Un S, Krieger-Liszkay A. Manganese binding to the 23 kDa extrinsic protein of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:583-8. [PMID: 17292849 DOI: 10.1016/j.bbabio.2007.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 12/19/2006] [Accepted: 01/03/2007] [Indexed: 11/23/2022]
Abstract
The recombinant form of the extrinsic 23 kDa protein (psbP) of Photosystem II (PSII) was studied with respect to its capability to bind Mn. The stoichiometry was determined to be one manganese bound per protein. A very high binding constant, K(A)=10(-17) M(-1), was determined by dialysis of the Mn containing protein against increasing EDTA concentration. High Field EPR spectroscopy was used to distinguish between specific symmetrically ligated Mn(II) from those non-specifically Mn(II) attached to the protein surface. Upon Mn binding PsbP exhibited fluorescence emission with maxima at 415 and 435 nm when tryptophan residues were excited. The yield of this blue fluorescence was variable from sample to sample. It was likely that different conformational states of the protein were responsible for this variability. The importance of Mn binding to PsbP in the context of photoactivation of PSII is discussed.
Collapse
Affiliation(s)
- Natallia Bondarava
- Institut für Biologie II, Biochemie der Pflanzen, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
28
|
Nield J, Barber J. Refinement of the structural model for the Photosystem II supercomplex of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:353-61. [PMID: 16729961 DOI: 10.1016/j.bbabio.2006.03.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/20/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
Recent X-ray structures determined for the Photosystem II (PSII) core complex isolated from cyanobacteria have provided important information for understanding the functionality of this photosynthetic enzyme including its water splitting activity. As yet, no high-resolution structure is available for PSII of plants or eukaryotes in general. However, crystal structures have been determined for some components of plant PSII which together with the cyanobacterial structure can be used to interpret lower resolution structures of plant PSII derived from electron cryomicroscopy (cryo-EM). Here, we utilise the published X-ray structures of a cyanobacterial PSII core, Light Harvesting Complex II (LHCII), PsbP and PsbQ proteins to construct a model of the plant LHCII-PSII supercomplex using a 17 A resolution 3D electron density map of the spinach supercomplex determined by cryo-EM and single particle analysis. In so doing, we tentatively identify the relative positioning of the chlorophylls within the supercomplex and consider energy transfer pathways between the different subunits. The modelling has also allowed density to be assigned to the three extrinsic proteins of plant PSII, PsbO, PsbP and PsbQ associated with the water splitting centre and concluded that although the position of PsbO is the same as in cyanobacteria, PsbP and PsbQ are located in different positions to the cyanobacterial extrinsic PsbU and PsbV proteins.
Collapse
Affiliation(s)
- Jon Nield
- Wolfson Laboratories, Division of Molecular Biosciences, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | | |
Collapse
|