1
|
Grzechowiak M, Sliwiak J, Link A, Ruszkowski M. Legume-type glutamate dehydrogenase: Structure, activity, and inhibition studies. Int J Biol Macromol 2024; 278:134648. [PMID: 39142482 DOI: 10.1016/j.ijbiomac.2024.134648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Glutamate dehydrogenases (GDHs) are key enzymes at the crossroads of N and C metabolism in plants. Legumes, whose N metabolism is particularly intricate, possess a unique type of GDH. This study presents an analysis of a legume-type GDH (isoform 2) from Medicago truncatula (MtGDH2). We measured MtGDH2 activity in both the Glu → 2-oxoglutarate (2OG) and 2OG → Glu reaction directions and obtained kinetic parameters for Glu, 2OG, NAD+, and NADH. Inhibition assays revealed that compounds possessing di- or tricarboxylates act as inhibitors of plant GDHs. Interestingly, 2,6-pyridinedicarboxylate (PYR) weakly inhibits MtGDH2 compared to Arabidopsis thaliana homologs. Furthermore, we explored tetrazole derivatives to discover 3-(1H-tetrazol-5-yl)benzoic acid (TBA) as an MtGDH2 inhibitor. The kinetic experiments are supported by six crystal structures, solved as: (i) unliganded enzyme, (ii) trapping the reaction intermediate 2-amino-2-hydroxyglutarate and NAD+, and also complexed with NAD+ and inhibitors such as (iii) citrate, (iv) PYR, (v) isophthalate, and (vi) TBA. The complex with TBA revealed a new mode of action that, in contrast to other inhibitors, prevents domain closure. This discovery points to TBA as a starting point for the development of novel GDH inhibitors to study the functions of GDH in plants and potentially boost biomass production.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
2
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Francisco FR, Aono AH, da Silva CC, Gonçalves PS, Scaloppi Junior EJ, Le Guen V, Fritsche-Neto R, Souza LM, de Souza AP. Unravelling Rubber Tree Growth by Integrating GWAS and Biological Network-Based Approaches. FRONTIERS IN PLANT SCIENCE 2021; 12:768589. [PMID: 34992619 PMCID: PMC8724537 DOI: 10.3389/fpls.2021.768589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.
Collapse
Affiliation(s)
- Felipe Roberto Francisco
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo S. Gonçalves
- Center of Rubber Tree and Agroforestry Systems, Agronomic Institute (IAC), Votuporanga, Brazil
| | | | - Vincent Le Guen
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Livia Moura Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- São Francisco University (USF), Itatiba, Brazil
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Eprintsev AT, Anokhina GB, Fedorin DN. Regulation of Glutamate Dehydrogenase Activity in Maize Leaves (Zea mays L.) with Change in the Light Сonditions. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Marchi L, Degola F, Baruffini E, Restivo FM. How to easily detect plant NADH-glutamate dehydrogenase (GDH) activity? A simple and reliable in planta procedure suitable for tissues, extracts and heterologous microbial systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110714. [PMID: 33568313 DOI: 10.1016/j.plantsci.2020.110714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Plant NADH glutamate dehydrogenase (GDH) is an intriguing enzyme, since it is involved in different metabolic processes owing to its reversible (anabolic/catabolic) activity and due to the oligomeric nature of the enzyme, that gives rise to several isoforms. The complexity of GDH isoenzymes pattern and the variability of the spatial and temporal localization of the different isoforms have limited our comprehension of the physiological role of GDH in plants. Genetics, immunological, and biochemical approaches have been used until now in order to shed light on the regulatory mechanism that control GDH expression in different plant systems and environmental conditions. We describe here the validation of a simple in planta GDH activity staining procedure, providing evidence that it might be used, with different purposes, to determine GDH expression in plant organs, tissues, extracts and also heterologous systems.
Collapse
Affiliation(s)
- L Marchi
- Department of Medicine and Surgery, University of Parma, Italy.
| | - F Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - E Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - F M Restivo
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| |
Collapse
|
6
|
Grzechowiak M, Sliwiak J, Jaskolski M, Ruszkowski M. Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:754. [PMID: 32655590 PMCID: PMC7326016 DOI: 10.3389/fpls.2020.00754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 05/24/2023]
Abstract
Glutamate dehydrogenase (GDH) releases ammonia in a reversible NAD(P)+-dependent oxidative deamination of glutamate that yields 2-oxoglutarate (2OG). In current perception, GDH contributes to Glu homeostasis and plays a significant role at the junction of carbon and nitrogen assimilation pathways. GDHs are members of a superfamily of ELFV (Glu/Leu/Phe/Val) amino acid dehydrogenases and are subdivided into three subclasses, based on coenzyme specificity: NAD+-specific, NAD+/NADP+ dual-specific, and NADP+-specific. We determined in this work that the mitochondrial AtGDH1 isozyme from A. thaliana is NAD+-specific. Altogether, A. thaliana expresses three GDH isozymes (AtGDH1-3) targeted to mitochondria, of which AtGDH2 has an extra EF-hand motif and is stimulated by calcium. Our enzymatic assays of AtGDH1 established that its sensitivity to calcium is negligible. In vivo the AtGDH1-3 enzymes form homo- and heterohexamers of varied composition. We solved the crystal structure of recombinant AtGDH1 in the apo-form and in complex with NAD+ at 2.59 and 2.03 Å resolution, respectively. We demonstrate also that both in the apo form and in 1:1 complex with NAD+, it forms D 3-symmetric homohexamers. A subunit of AtGDH1 consists of domain I, which is involved in hexamer formation and substrate binding, and of domain II which binds coenzyme. Most of the subunits in our crystal structures, including those in NAD+ complex, are in open conformation, with domain II forming a large (albeit variable) angle with domain I. One of the subunits of the AtGDH1-NAD+ hexamer contains a serendipitous 2OG molecule in the active site, causing a dramatic (∼25°) closure of the domains. We provide convincing evidence that the N-terminal peptide preceding domain I is a mitochondrial targeting signal, with a predicted cleavage site for mitochondrial processing peptidase (MPP) at Leu17-Leu18 that is followed by an unexpected potassium coordination site (Ser27, Ile30). We also identified several MPD [(+/-)-2-methyl-2,4-pentanediol] binding sites with conserved sequence. Although AtGDH1 is insensitive to MPD in our assays, the observation of druggable sites opens a potential for non-competitive herbicide design.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Sliwiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Milosz Ruszkowski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
7
|
Magadlela A, Morcillo RJL, Kleinert A, Venter M, Steenkamp E, Valentine A. Glutamate dehydrogenase is essential in the acclimation of Virgilia divaricata, a legume indigenous to the nutrient-poor Mediterranean-type ecosystems of the Cape Fynbos. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153053. [PMID: 31644998 DOI: 10.1016/j.jplph.2019.153053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dehydrogenase (NAD(H)- GDH, EC 1.4.1.2) is an important enzyme in nitrogen (N) metabolism. It serves as a link between C and N metabolism, in its role of assimilating ammonia into glutamine or deaminating glutamate into 2-oxoglutarate and ammonia. GDH may also have a key in the N assimilation of legumes growing in P-poor soils. Virgilia divaricata is such a legume, growing in the nutrient limited soils of the mediterranean-type Cape fynbos ecosystem. In order to understand the role of GDH in the nitrogen nutrition of V. divaricata, the aim of this study was to identify the GDH gene transcripts, their relative expressions and enzyme activity in P-stressed roots and nodules during N metabolism. During P deficiency there was a reduction in total plant biomass as well as total plant P concentration. The analysis of the GDH cDNA sequences in V. divaricata revealed the presence of GHD1 and GHD2 subunits, these corresponding to the GDH1, GDH-B and GDH3 genes of legumes and non-legume plants. The relative expression of GDH1 and GDH2 genes in the roots and nodules, indicates that two the subunits were differently regulated depending on the organ type, rather than P supply. Although both transcripts appeared to be ubiquitously expressed in the roots and nodules, the GDH2 transcript evidently predominated over those of GDH1. Furthermore, the higher expression of both GDH transcripts in the roots than nodules, suggests that roots are more reliant on on GDH in P-poor soils, than nodules. With regards to GHD activity, both aminating and deaminating GDH activities were differently affected by P deficiency in roots and nodules. This may function to assimilate N and regulate internal C and N in the roots and nodules. The variation in GDH1 and GDH2 transcript expression and GDH enzyme activities, indicate that the enzyme may be regulated by post-translational modification, instead of by gene expression during P deficiency in V. divaricata.
Collapse
Affiliation(s)
- Anathi Magadlela
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X 01, Scottsville 3209, South Africa
| | - Rafael Jorge Leon Morcillo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, People's Republic of China
| | - Aleysia Kleinert
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Mauritz Venter
- AzarGen Biotechnologies, Launchlab, Hammandshand Road, Stellenbosch 7600, South Africa
| | - Emma Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alex Valentine
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
8
|
Naliwajski MR, Skłodowska M. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. PeerJ 2018; 6:e6043. [PMID: 30581664 PMCID: PMC6292378 DOI: 10.7717/peerj.6043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
The study examines the effect of acclimation on carbon and nitrogen metabolism in cucumber leaves subjected to moderate and severe NaCl stress. The levels of glucose, sucrose, NADH/NAD+-GDH, AspAT, AlaAT, NADP+-ICDH, G6PDH and 6GPDH activity were determined after 24 and 72 hour periods of salt stress in acclimated and non-acclimated plants. Although both groups of plants showed high Glc and Suc accumulation, they differed with regard to the range and time of accumulation. Acclimation to salinity decreased the activities of NADP+-ICDH and deaminating NAD+-GDH compared to controls; however, these enzymes, together with the other examined parameters, showed elevated values in the stressed plants. The acclimated plants showed higher G6PDH activity than the non-acclimated plants, whereas both groups demonstrated similar 6PGDH activity. The high activities of NADH-GDH, AlaAT and AspAT observed in the examined plants could be attributed to a high demand for glutamate. The observed changes may be required for the maintenance of correct TCA cycle activity, and acclimation appeared to positively influence these adaptive processes.
Collapse
Affiliation(s)
- Marcin Robert Naliwajski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maria Skłodowska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease. BIOLOGY 2017; 6:biology6010011. [PMID: 28208702 PMCID: PMC5372004 DOI: 10.3390/biology6010011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Glutamate dehydrogenase (GDH) is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)⁺ to NAD(P)H. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate), lipid biosynthesis (via oxidative generation of citrate), and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human) that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1) is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH) in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth. In addition, deregulation of hGDH1/2 is implicated in the pathogenesis of several human disorders.
Collapse
|
10
|
Habib D, Zia M, Bibi Y, Abbasi BH, Chaudhary MF. Response of nitrogen assimilating enzymes during in vitro culture of Argyrolobium roseum. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Tercé-Laforgue T, Clément G, Marchi L, Restivo FM, Lea PJ, Hirel B. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production. PLANT & CELL PHYSIOLOGY 2015; 56:1918-29. [PMID: 26251210 DOI: 10.1093/pcp/pcv114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
NAD-dependent glutamate dehydrogenase (NAD-GDH) of higher plants has a central position at the interface between carbon and nitrogen metabolism due to its ability to carry out the deamination of glutamate. In order to obtain a better understanding of the physiological function of NAD-GDH under salt stress conditions, transgenic tobacco (Nicotiana tabacum L.) plants that overexpress two genes from Nicotiana plumbaginifolia individually (GDHA and GDHB) or simultaneously (GDHA/B) were grown in the presence of 50 mM NaCl. In the different GDH overexpressors, the NaCl treatment induced an additional increase in GDH enzyme activity, indicating that a post-transcriptional mechanism regulates the final enzyme activity under salt stress conditions. A greater shoot and root biomass production was observed in the three types of GDH overexpressors following growth in 50 mM NaCl, when compared with the untransformed plants subjected to the same salinity stress. Changes in metabolites representative of the plant carbon and nitrogen status were also observed. They were mainly characterized by an increased amount of starch present in the leaves of the GDH overexpressors as compared with the wild type when plants were grown in 50 mM NaCl. Metabolomic analysis revealed that overexpressing the two genes GDHA and GDHB, individually or simultaneously, induced a differential accumulation of several carbon- and nitrogen-containing molecules involved in a variety of metabolic, developmental and stress-responsive processes. An accumulation of digalactosylglycerol, erythronate and porphyrin was found in the GDHA, GDHB and GDHA/B overexpressors, suggesting that these molecules could contribute to the improved performance of the transgenic plants under salinity stress conditions.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Gilles Clément
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Laura Marchi
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | - Francesco M Restivo
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| |
Collapse
|
12
|
Marchi L, Polverini E, Degola F, Baruffini E, Restivo FM. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is less thermostable than GDH1 and GDH2 isoenzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:225-231. [PMID: 25180813 DOI: 10.1016/j.plaphy.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant and ubiquitous enzyme that may exist in different isoenzymic forms. Variation in the composition of the GDH isoenzyme pattern is observed during plant development and specific cell, tissue and organ localization of the different isoforms have been reported. However, the mechanisms involved in the regulation of the isoenzymatic pattern are still obscure. Regulation may be exerted at several levels, i.e. at the level of transcription and translation of the relevant genes, but also when the enzyme is assembled to originate the catalytically active form of the protein. In Arabidopsis thaliana, three genes (GDH1, GDH2 and GDH3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and hetero-hexamers. In order to asses if the different Arabidopsis GDH isoforms may display different structural properties we have investigated their thermal stability. In particular the stability of GDH1 and GDH3 isoenzymes was studied using site-directed mutagenesis in a heterologous yeast expression system. It was established that the carboxyl terminus of the GDH subunit is involved in the stabilization of the oligomeric structure of the enzyme.
Collapse
Affiliation(s)
- Laura Marchi
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Eugenia Polverini
- Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Francesca Degola
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco Maria Restivo
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
13
|
Zou HX, Pang QY, Lin LD, Zhang AQ, Li N, Lin YQ, Li LM, Wu QQ, Yan XF. Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. PLoS One 2014; 9:e101960. [PMID: 25025229 PMCID: PMC4098904 DOI: 10.1371/journal.pone.0101960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qiu-Ying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Li-Dong Lin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Ai-Qin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Nan Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Yan-Qing Lin
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Lu-Min Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qin-Qin Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Xiu-Feng Yan
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| |
Collapse
|
14
|
Marchi L, Degola F, Polverini E, Tercé-Laforgue T, Dubois F, Hirel B, Restivo FM. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:368-74. [PMID: 24189523 DOI: 10.1016/j.plaphy.2013.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 05/24/2023]
Abstract
In higher plants, NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant enzyme that exists in different isoenzymic forms. In Arabidopsis thaliana, three genes (Gdh1, Gdh2 and Gdh3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and heterohexamers. The modification of the GDH isoenzyme pattern and its regulation was studied during the development of A. thaliana in the gdh1, gdh2 single mutants and the gdh1-2 double mutant, with particular emphasis on GDH3. Investigations showed that the GDH3 isoenzyme could not be detected in closely related Arabidopsis species. The induction and regulation of GDH3 activity in the leaves and roots was investigated following nitrogen deprivation in the presence or absence of sucrose or kinetin. These experiments indicate that GDH3 is likely to play an important role during senescence and nutrient remobilization.
Collapse
Affiliation(s)
- Laura Marchi
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. PLANT & CELL PHYSIOLOGY 2013; 54:1635-47. [PMID: 23893023 DOI: 10.1093/pcp/pct108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Fontaine JX, Tercé-Laforgue T, Bouton S, Pageau K, Lea PJ, Dubois F, Hirel B. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:e23329. [PMID: 23299333 PMCID: PMC3676500 DOI: 10.4161/psb.23329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Following the discovery that in Arabidopsis, a third isoenzyme of NADH-dependent glutamate dehydrogenase (GDH) is expressed in the mitochondria of the root companion cells, we have re-examined the GDH isoenzyme composition. By analyzing the NADH-GDH isoenzyme composition of single, double and triple mutants deficient in the expression of the three genes encoding the enzyme, we have found that the α, β and γ polypeptides that comprise the enzyme can be assembled into a complex combination of heterohexamers in roots. Moreover, we observed that when one or two of the three root isoenzymes were missing from the mutants, the remaining isoenzymes compensated for this deficiency. The significance of such complexity is discussed in relation to the metabolic and signaling function of the NADH-GDH enzyme. Although it has been shown that a fourth gene encoding a NADPH-dependent enzyme is present in Arabidopsis, we were not able to detect corresponding enzyme activity, even in the triple mutant totally lacking NADH-GDH activity.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement; Unité Mixte de Recherche 1318; Institut Jean-Pierre Bourgin; Institut National de la Recherche Agronomique (INRA); Centre de Versailles-Grignon; Versailles, France
| | - Sophie Bouton
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Karine Pageau
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Peter J. Lea
- Lancaster Environment Centre; Lancaster University; Lancaster, UK
| | - Frédéric Dubois
- Equipe d’Accueil Ecologie et Dynamique des Systèmes Antropisés (EDYSAN); Agroécologie, Ecophysiologie et Biologie intégrative (AEB); Faculté des Sciences; Amiens, France
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement; Unité Mixte de Recherche 1318; Institut Jean-Pierre Bourgin; Institut National de la Recherche Agronomique (INRA); Centre de Versailles-Grignon; Versailles, France
- Correspondence to: Bertrand Hirel,
| |
Collapse
|
17
|
Krapp A, Castaings L. [Plant adaptation to nitrogen availability]. Biol Aujourdhui 2013; 206:323-35. [PMID: 23419259 DOI: 10.1051/jbio/2012031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Indexed: 11/15/2022]
Abstract
Nitrogen is an essential macronutrient for plant development and productivity. The adaptation toward changes in nitrogen availability in the soil is crucial for the immobile plant. Nitrate is the primary nitrogen source in temperate climate. Nitrate transport and assimilation are discussed with emphasis on the adaptation to nitrogen starvation. The integration of nitrogen metabolism with primary and secondary metabolism and the homeostasis with other nutrients are discussed. However, nitrate is not only a nutrient, but also a signaling molecule acting on multiple levels. The molecular players involved in the regulatory network are discussed.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10 78000 Versailles, France.
| | | |
Collapse
|
18
|
Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS One 2012; 7:e39658. [PMID: 22761858 PMCID: PMC3383670 DOI: 10.1371/journal.pone.0039658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants.
Collapse
|
19
|
Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. PLANT PHYSIOLOGY 2011; 157:1255-82. [PMID: 21900481 PMCID: PMC3252138 DOI: 10.1104/pp.111.179838] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.
Collapse
Affiliation(s)
- Anne Krapp
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, F-78026 Versailles cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lehmann T, Dabert M, Nowak W. Organ-specific expression of glutamate dehydrogenase (GDH) subunits in yellow lupine. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1060-1066. [PMID: 21333382 DOI: 10.1016/j.jplph.2010.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/03/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Glutamate dehydrogenase (GDH, EC 1.4.2-4) is present in yellow lupine (Lupinus luteus cv. Juno) in many isoforms. The number and banding pattern of isoenzymes varies with respect to plant organ and developmental stage. To better understand the complex nature of GDH regulation in plants, the levels of GDH transcripts, enzyme activity and isoenzyme patterns in germinating seeds and roots of yellow lupine were examined. The analysis of GDH cDNA sequences in lupine revealed three mRNA types, of which two encoded the β-GDH subunit and one encoded the α-GDH subunit (corresponding to the GDH1(GDH3) and GDH2 genes, respectively). The relative expression of GDH1 and GDH2 genes was analyzed in various lupine organs by using quantitative real-time PCR. Our results indicate that different mRNA types were differently regulated depending on organ type. Although both genes appeared to be ubiquitously expressed in all lupine tissues, the GDH1 transcripts evidently predominated over those of GDH2. Immunochemical analyses confirmed that, during embryo development, varied expression of two GDH subunits takes place. The α-GDH subunit (43kDa) predominated in the early stages of germinating seeds, while the β-GDH subunit (44kDa) was the only GDH polypeptide present in lupine roots. These results firmly support the hypothesis that isoenzyme variability of GDH in yellow lupine is associated with the varied expression of α and β subunits into the complexes of hexameric GDH forms. The presence of several isogenes of GDH in yellow lupine may explain the high number (over 20) of its molecular forms in germinating lupine.
Collapse
Affiliation(s)
- Teresa Lehmann
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
21
|
Maaroufi-Dguimi H, Debouba M, Gaufichon L, Clément G, Gouia H, Hajjaji A, Suzuki A. An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:623-8. [PMID: 21478030 DOI: 10.1016/j.plaphy.2011.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/15/2011] [Indexed: 05/06/2023]
Abstract
Salt tolerance of Arabidopsis knockout mutant with T-DNA insertion in ASN2 gene encoding asparagine synthetase (AS, EC 6.3.5.4) (asn2-1) was investigated. Wild-type Arabidopsis Col0 and asn2-1 mutant were grown for one month by hydroponic culture and subjected to 100 mM NaCl stress for a short time from 6 to 24 h. The salt treatment decreased chlorophyll and soluble protein contents, and increased ammonium level in the asn2-1 leaves. The salinity induced ASN1 mRNA level in the wild-type and asn2-1 leaves. By contrast, the salt treatment inhibited the transcript and protein levels of chloroplastic glutamine synthetase 2 (GS2, EC 6.3.1.2) in the wild-type and asn2-1 leaves. Increase in asparagine and proline contents in response to the salt treatment provides evidence for the role of asparagine as a prevailing stress responding amino acid. Glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2) exhibited a slight increase in the α-subunit and β-subunit in the wild-type line and the asn2-1 line, respectively under the salinity, whereas its in vitro aminating activity in the wild-type leaves was not affected. The results indicate that the asn2-1 mutant was impaired in nitrogen assimilation and translocation under salt treatment.
Collapse
Affiliation(s)
- Houda Maaroufi-Dguimi
- Unité de Recherche, Nutrition et Métabolisme Azotés et Protéines de Stress, 99 UR /09-20, Campus Universitaire, Faculté des Sciences de Tunis, Département de Biologie, Université Tunis EL MANAR, Tunis 1060, Tunisia
| | | | | | | | | | | | | |
Collapse
|
22
|
Fontaine JX, Molinié R, Tercé-Laforgue T, Cailleu D, Hirel B, Dubois F, Mesnard F. Use of 1H-NMR metabolomics to precise the function of the third glutamate dehydrogenase gene in Arabidopsis thaliana. CR CHIM 2010. [DOI: 10.1016/j.crci.2009.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Kissen R, Winge P, Tran DHT, Jørstad TS, Størseth TR, Christensen T, Bones AM. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC Genomics 2010; 11:190. [PMID: 20307264 PMCID: PMC2858750 DOI: 10.1186/1471-2164-11-190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/22/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glutamate plays a central position in the synthesis of a variety of organic molecules in plants and is synthesised from nitrate through a series of enzymatic reactions. Glutamate synthases catalyse the last step in this pathway and two types are present in plants: NADH- or ferredoxin-dependent. Here we report a genome wide microarray analysis of the transcriptional reprogramming that occurs in leaves and roots of the A. thaliana mutant glu1-2 knocked-down in the expression of Fd-GOGAT1 (GLU1; At5g04140), one of the two genes of A. thaliana encoding ferredoxin-dependent glutamate synthase. RESULTS Transcriptional profiling of glu1-2 revealed extensive changes with the expression of more than 5500 genes significantly affected in leaves and nearly 700 in roots. Both genes involved in glutamate biosynthesis and transformation are affected, leading to changes in amino acid compositions as revealed by NMR metabolome analysis. An elevated glutamine level in the glu1-2 mutant was the most prominent of these changes. An unbiased analysis of the gene expression datasets allowed us to identify the pathways that constitute the secondary response of an FdGOGAT1/GLU1 knock-down. Among the most significantly affected pathways, photosynthesis, photorespiratory cycle and chlorophyll biosynthesis show an overall downregulation in glu1-2 leaves. This is in accordance with their slight chlorotic phenotype. Another characteristic of the glu1-2 transcriptional profile is the activation of multiple stress responses, mimicking cold, heat, drought and oxidative stress. The change in expression of genes involved in flavonoid biosynthesis is also revealed. The expression of a substantial number of genes encoding stress-related transcription factors, cytochrome P450 monooxygenases, glutathione S-transferases and UDP-glycosyltransferases is affected in the glu1-2 mutant. This may indicate an induction of the detoxification of secondary metabolites in the mutant. CONCLUSIONS Analysis of the glu1-2 transcriptome reveals extensive changes in gene expression profiles revealing the importance of Fd-GOGAT1, and indirectly the central role of glutamate, in plant development. Besides the effect on genes involved in glutamate synthesis and transformation, the glu1-2 mutant transcriptome was characterised by an extensive secondary response including the downregulation of photosynthesis-related pathways and the induction of genes and pathways involved in the plant response to a multitude of stresses.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Diem Hong Thi Tran
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Tommy S Jørstad
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Current address: Scandpower AS, NO-7462 Trondheim, Norway
| | | | - Tone Christensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Current address: Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7489 Trondheim, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
24
|
Ito J, Taylor NL, Castleden I, Weckwerth W, Millar AH, Heazlewood JL. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 2009; 9:4229-40. [PMID: 19688752 DOI: 10.1002/pmic.200900064] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein phosphorylation in purified mitochondria from cell suspensions of the model plant Arabidopsis thaliana using affinity enrichment and proteomic tools. Eighteen putative phosphoproteins consisting of mitochondrial metabolic enzymes, HSPs, a protease and several proteins of unknown function were detected on 2-DE separations of Arabidopsis mitochondrial proteins and affinity-enriched phosphoproteins using the Pro-Q Diamond phospho-specific in-gel dye. Comparisons with mitochondrial phosphoproteomes of yeast and mouse indicate that these three species share few validated phosphoproteins. Phosphorylation sites for seven of the eighteen mitochondrial proteins were characterized by titanium dioxide enrichment and MS/MS. In the process, 71 phosphopeptides from Arabidopsis proteins which are not present in mitochondria but found as contaminants in various types of mitochondrial preparations were also identified, indicating the low level of phosphorylation of mitochondrial components compared with other cellular components in Arabidopsis. Information gained from this study provides a better understanding of protein phosphorylation at both the subcellular and the cellular level in Arabidopsis.
Collapse
Affiliation(s)
- Jun Ito
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Labboun S, Tercé-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moshou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B. Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. PLANT & CELL PHYSIOLOGY 2009; 50:1761-73. [PMID: 19690000 PMCID: PMC2759343 DOI: 10.1093/pcp/pcp118] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/11/2009] [Indexed: 05/18/2023]
Abstract
In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time (15)N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [(15)N]Glu or (15)NH(4)(+) respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants.
Collapse
Affiliation(s)
- Soraya Labboun
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Albrecht Roscher
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Magali Bedu
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Francesco M. Restivo
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | | | | | | | | | - Akira Suzuki
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Bertrand Hirel
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| |
Collapse
|
26
|
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:300-18. [PMID: 19054347 DOI: 10.1111/j.1365-3040.2008.01921.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.
Collapse
Affiliation(s)
- Hendrik Tschoep
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miyashita Y, Good AG. Glutamate deamination by glutamate dehydrogenase plays a central role in amino acid catabolism in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:842-3. [PMID: 19704517 PMCID: PMC2634392 DOI: 10.4161/psb.3.10.5936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 05/08/2023]
Abstract
Glutamate is of central importance in plant N metabolism since the biosynthesis of all other amino acids requires this compound. Glutamate dehydrogenase (GDH; EC 1.4.1.2), which catalyzes in vitro reversible reductive amination of 2-oxoglutatre to form glutamate, is a key player in the metabolism of glutamate. While most previous studies have indicated that the oxidative deamination is the in vivo direction of the GDH reaction, its physiological role has remained ambiguous for decades. We have recently isolated mutants for the two known Arabidopsis GDH genes and created a gdh double mutant. Our recent work revealed an increased susceptibility of the gdh double mutant to dark-induced C starvation, the first phenotype associated with the loss of GDH activity in plants. Monitoring the amino acid breakdown during the dark treatment also suggested that the deamination of glutamate catalyzed by GDH is central to the catabolism of many other amino acids.
Collapse
Affiliation(s)
- Yo Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton, Alberta Canada
| | | |
Collapse
|
28
|
Zhang C, Barthelson RA, Lambert GM, Galbraith DW. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. PLANT PHYSIOLOGY 2008; 147:30-40. [PMID: 18354040 PMCID: PMC2330299 DOI: 10.1104/pp.107.115246] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/13/2008] [Indexed: 05/18/2023]
Abstract
We describe a simple and highly effective means for global identification of genes that are expressed within specific cell types within complex tissues. It involves transgenic expression of nuclear-targeted green fluorescent protein in a cell-type-specific manner. The fluorescent nuclei are then purified from homogenates by fluorescence-activated sorting, and the RNAs employed as targets for microarray hybridization. We demonstrate the validity of the approach through the identification of 12 genes that are selectively expressed in phloem.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences , The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
29
|
Lehmann T, Ratajczak L. The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:149-58. [PMID: 17566603 DOI: 10.1016/j.jplph.2006.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 05/15/2023]
Abstract
In germinating seeds of legumes, amino acids liberated during mobilization of storage proteins are partially used for synthesis of storage proteins of the developing axis, but some of them are respired. The amino acids are catabolized by both glutamate dehydrogenase (GDH) and transaminases. Ammonium is reassimilated by glutamine synthetase (GS) and, through the action of asparagine synthetase (AS), is stored in asparagine (Asn). This review presents the ways in which amino acids are converted into Asn and their regulation, mostly in germinating seeds of yellow lupine, where Asn can make up to 30% of dry matter. The energy balance of the synthesis of Asn from glutamate, the most common amino acid in lupine storage proteins, also shows an adaptation of lupine for oxidation of amino acids in early stages of germination. Regulation of the pathway of Asn synthesis is described with regard to the role of GDH and AS, as well as compartmentation of particular metabolites. The regulatory effect of sugar on major links of the pathway (mobilization of storage proteins, induction of genes and activity of GDH and AS) is discussed with respect to recent genetic and molecular studies. Moreover, the effect of glutamate and phytohormones is presented at various stages of Asn biosynthesis.
Collapse
Affiliation(s)
- Teresa Lehmann
- Department of Plant Physiology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | |
Collapse
|
30
|
Miyashita Y, Good AG. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:667-80. [PMID: 18296429 DOI: 10.1093/jxb/erm340] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.
Collapse
Affiliation(s)
- Yo Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | |
Collapse
|