1
|
Surina S, Yamagami A, Miyaji T, Chagan Z, Chung K, Mitsuda N, Nishida K, Tachibana R, Zhu Z, Miyakawa T, Shinozaki K, Sakuta M, Asami T, Nakano T. BIL9 Promotes Both Plant Growth via BR Signaling and Drought Stress Resistance by Binding with the Transcription Factor HDG11. PLANT & CELL PHYSIOLOGY 2024; 65:1640-1654. [PMID: 38242155 DOI: 10.1093/pcp/pcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear. Here, we identify a novel Arabidopsis gene, BRZ INSENSITIVE LONG HYPOCOTYL 9 (BIL9), which promotes plant growth via BR signaling. Overexpression of BIL9 enhances drought and mannitol stress resistance and increases the expression of drought-responsive genes. BIL9 protein is induced by dehydration and interacts with the HD-Zip IV transcription factor HOMEODOMAIN GLABROUS 11 (HDG11), which is known to promote plant resistance to drought stress, in vitro and in vivo. BIL9 enhanced the transcriptional activity of HDG11 for drought-stress-resistant genes. BIL9 is a novel BR signaling factor that enhances both plant growth and plant drought resistance.
Collapse
Affiliation(s)
- Surina Surina
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Tomoko Miyaji
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
| | - Zhana Chagan
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
| | - Kaisei Nishida
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Zhangliang Zhu
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074 Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Bunkyo-Ku, Tokyo, 112-8610 Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, Tokyo University, Bunkyo-Ku, Tokyo, 113-8657 Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| |
Collapse
|
2
|
Wei L, Zhong Y, Wu X, Wei S, Liu Y. Roles of Nitric Oxide and Brassinosteroid in Improving Fruit Quality during Postharvest: Potential Regulators? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23671-23688. [PMID: 39406695 DOI: 10.1021/acs.jafc.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yue Zhong
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiqing Liu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
3
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
4
|
Yang W, Xu H, Wang F, He W, Li D, Guo Q, Bao Y, Zhang Z. Influence of exogenous 24-epibrassinolide on improving carotenoid content, antioxidant capacity and gene expression in germinated maize seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39229826 DOI: 10.1002/jsfa.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Carotenoids have various physiological functions, such as immune regulation and cancer prevention. Germination could further improve the content of carotenoids in maize seeds. In this study, yellow maize seeds (Suyu 29) were soaked and germinated with different concentrations of 24-epibrassinolide. The changes of germination percentage, sprout length, bioactive components, antioxidant capacity and carotenoid content of the maize seeds were analyzed. Additionally, the relative expression of key genes in the carotenoid synthesis pathway was investigated. RESULTS The results showed that the sprout length, germination percentage, soluble protein, free amino acids, proline, endogenous abscisic acid, vitamin C, total phenolics and carotenoids displayed a significant increasing trend compared with the control group (P < 0.05). The activity of superoxide dismutase and peroxidase increased by 55.1% and 58.5% versus the control group, and the antioxidant capacity of 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric reducing antioxidant power was 19.8%, 13.4% and 44.1% higher than that of the control group (P < 0.05). Compared with the control group, the expression of genes was significantly up-regulated (P < 0.05). Under the treatment of 0.1 mg L-1 of 24-epibrassinolide, carotenoid content reached the highest value. The carotenoids showed a positive correspondence with antioxidant enzyme activity, antioxidant capacity and total phenolics content (P < 0.05). CONCLUSION This study showed that 0.1 mg L-1 of exogenous 24-epibrassinolide promoted the accumulation of carotenoids and improved the antioxidant capacity and the quality of germinated maize seeds. It could provide a method for the development of germinated maize products enriched in carotenoids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenying Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fanyu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Weiwei He
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingqi Guo
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yihong Bao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
5
|
Yan Z, Zhang F, Mu C, Ma C, Yao G, Sun Y, Hou J, Leng B, Liu X. The ZmbHLH47-ZmSnRK2.9 Module Promotes Drought Tolerance in Maize. Int J Mol Sci 2024; 25:4957. [PMID: 38732175 PMCID: PMC11084430 DOI: 10.3390/ijms25094957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| |
Collapse
|
6
|
Zhang W, Wu M, Zhong X, Liu Y, Yang X, Cai W, Zhu K, Zhang H, Gu J, Wang Z, Liu L, Zhang J, Yang J. Involvement of brassinosteroids and abscisic acid in spikelet degeneration in rice under soil drying during meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1580-1600. [PMID: 38035729 DOI: 10.1093/jxb/erad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengyin Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Cai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Samanta S, Seth CS, Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108259. [PMID: 38154293 DOI: 10.1016/j.plaphy.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Drought is undoubtedly a major environmental constraint that negatively affects agricultural yield and productivity throughout the globe. Plants are extremely vulnerable to drought which imposes several physiological, biochemical and molecular perturbations. Increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in different plant organs is one of the inevitable consequences of drought. ROS and RNS are toxic byproducts of metabolic reactions and poise oxidative stress and nitrosative stress that are detrimental for plants. In spite of toxic effects, these potentially active radicals also play a beneficial role in mediating several signal transduction events that lead to plant acclimation and enhanced survival under harsh environmental conditions. The precise understanding of ROS and RNS signaling and their molecular paradigm with different phytohormones, such as auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroids, strigolactones, jasmonic acid, salicylic acid and melatonin play a pivotal role for maintaining plant fitness and resilience to counteract drought toxicity. Therefore, the present review provides an overview of integrated systemic signaling between ROS, RNS and phytohormones during drought stress based on past and recent advancements and their influential role in conferring protection against drought-induced damages in different plant species. Indeed, it would not be presumptuous to hope that the detailed knowledge provided in this review will be helpful for designing drought-tolerant crop cultivars in the forthcoming times.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
8
|
Diao R, Zhao M, Liu Y, Zhang Z, Zhong B. The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2631-2644. [PMID: 37552560 DOI: 10.1111/jipb.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
The BAP module, comprising BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), functions as a molecular hub to orchestrate plant growth and development. In Arabidopsis thaliana, components of the BAP module physically interact to form a complex system that integrates light, brassinosteroid (BR), and auxin signals. Little is known about the origin and evolution of the BAP module. Here, we conducted comparative genomic and transcriptomic analyses to investigate the evolution and functional diversification of the BAP module. Our results suggest that the BAP module originated in land plants and that the ζ, ε, and γ whole-genome duplication/triplication events contributed to the expansion of BAP module components in seed plants. Comparative transcriptomic analysis suggested that the prototype BAP module arose in Marchantia polymorpha, experienced stepwise evolution, and became established as a mature regulatory system in seed plants. We developed a formula to calculate the signal transduction productivity of the BAP module and demonstrate that more crosstalk among components enables higher signal transduction efficiency. Our results reveal the evolutionary history of the BAP module and provide insights into the evolution of plant signaling networks and the strategies employed by plants to integrate environmental and endogenous signals.
Collapse
Affiliation(s)
- Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
10
|
Hartwig T, Banf M, Prietsch GP, Zhu JY, Mora-Ramírez I, Schippers JHM, Snodgrass SJ, Seetharam AS, Huettel B, Kolkman JM, Yang J, Engelhorn J, Wang ZY. Hybrid allele-specific ChIP-seq analysis identifies variation in brassinosteroid-responsive transcription factor binding linked to traits in maize. Genome Biol 2023; 24:108. [PMID: 37158941 PMCID: PMC10165856 DOI: 10.1186/s13059-023-02909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.
Collapse
Affiliation(s)
- Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany.
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany.
| | - Michael Banf
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Gisele Passaia Prietsch
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Jia-Ying Zhu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Isabel Mora-Ramírez
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Jos H M Schippers
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Samantha J Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, 413 Bradfield Hall, Ithaca, NY, 14853, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 363 Keim Hall, Lincoln, NE, 68583, USA
| | - Julia Engelhorn
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Zhang W, Huang H, Zhou Y, Zhu K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. PLANT, CELL & ENVIRONMENT 2023; 46:1340-1362. [PMID: 36097648 DOI: 10.1111/pce.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanghang Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yujiao Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Zhao X, Zhang T, Bai L, Zhao S, Guo Y, Li Z. CKL2 mediates the crosstalk between abscisic acid and brassinosteroid signaling to promote swift growth recovery after stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:64-81. [PMID: 36282494 DOI: 10.1111/jipb.13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Plants must adapt to the constantly changing environment. Adverse environmental conditions trigger various defensive responses, including growth inhibition mediated by phytohormone abscisic acid (ABA). When the stress recedes, plants must transit rapidly from stress defense to growth recovery, but the underlying mechanisms by which plants switch promptly and accurately between stress resistance and growth are poorly understood. Here, using quantitative phosphoproteomics strategy, we discovered that early ABA signaling activates upstream components of brassinosteroid (BR) signaling through CASEIN KINASE 1-LIKE PROTEIN 2 (CKL2). Further investigations showed that CKL2 interacts with and phosphorylates BRASSINOSTEROID INSENSITIVE1 (BRI1), the main BR receptor, to maintain the basal activity of the upstream of BR pathway in plants exposed to continuous stress conditions. When stress recedes, the elevated phosphorylation of BRI1 by CKL2 contributes to the swift reactivation of BR signaling, which results in quick growth recovery. These results suggest that CKL2 plays a critical regulatory role in the rapid switch between growth and stress resistance. Our evidence expands the understanding of how plants modulate stress defense and growth by integrating ABA and BR signaling cascades.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianren Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Zhang Y, Xiao Y, Zhang Y, Dong Y, Liu Y, Liu L, Wan S, He J, Yu Y. Accumulation of Galactinol and ABA Is Involved in Exogenous EBR-Induced Drought Tolerance in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13391-13403. [PMID: 36218024 DOI: 10.1021/acs.jafc.2c04892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drought stress severely limits growth and causes losses in the yield of tea plants. Exogenous application of 24-epibrassinolide (EBR) positively regulates drought responses in various plants. However, whether EBR could contribute to drought resistance in tea plants and the underlying mechanisms has not been investigated. Here, we found that EBR application is beneficial for the drought tolerance of tea plants. The transcriptome results revealed that EBR could contribute to tea plant drought resistance by promoting galactinol and abscisic acid (ABA) biosynthesis gene expression. The content of galactinol was elevated by EBR and EBR-responsive CsDof1.1 positively regulated the expression of the galactinol synthase genes CsGolS2-1 and CsGolS2-2 to contribute to the accumulation of galactinol by directly binding to their promoters. Moreover, exogenous EBR was found to elevate the expression of genes related to ABA signal transduction and stomatal closure regulation, which resulted in the promotion of stomatal closure. In addition, EBR-responsive CsMYC2-2 is involved in ABA accumulation by binding to the promoters CsNCED1 and CsNCED2 to activate their expression. In summary, findings in this study provide knowledge into the transcriptional regulatory mechanism of EBR-induced drought resistance in tea plants.
Collapse
Affiliation(s)
- Yongheng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingao Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingqing Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqing Wan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyuan He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Gao X, Ma J, Tie J, Li Y, Hu L, Yu J. BR-Mediated Protein S-Nitrosylation Alleviated Low-Temperature Stress in Mini Chinese Cabbage ( Brassica rapa ssp. pekinensis). Int J Mol Sci 2022; 23:ijms231810964. [PMID: 36142872 PMCID: PMC9503245 DOI: 10.3390/ijms231810964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Brassinosteroids (BRs), a novel plant hormone, are widely involved in plant growth and stress response processes. Nitric oxide (NO), as an important gas signaling molecule, can regulate target protein activity, subcellular localization and function in response to various stresses through post-translational S-nitrosylation modifications. However, the relationship between BR and NO in alleviating low-temperature stress of mini Chinese cabbage remains unclear. The hydroponic experiment combined with the pharmacological and molecular biological method was conducted to study the alleviating mechanism of BR at low temperature in mini Chinese cabbage. The results showed that low temperature inhibited the growth of mini Chinese cabbage seedlings, as evidenced by dwarf plants and yellow leaves. Treatment with 0.05 mg/L BR and 50 µM NO donor S-nitrosoglutathione (GSNO) significantly increased the leaf area, stem diameter, chlorophyll content, dry and fresh weight and proline content. Meanwhile, the malondialdehyde (MDA) content in 0.05 mg/L BR- and 50 µM GSNO-treated leaves were significantly lower than those in other treated leaves under low-temperature conditions. In addition, BR and GSNO applications induced an increase in NO and S-nitrosothiol (SNO) levels in vivo under low-temperature stress. Similarly, spraying BR after the elimination of NO also increased the level of S-nitrosylation in vivo, while spraying GSNO after inhibiting BR biosynthesis decreased the level of NO and SNO in vivo. In contrast, the S-nitrosoglutathione reductase (BrGSNOR) relative expression level and GSNOR enzyme activity were downregulated and inhibited by BR treatment, GSNO treatment and spraying BR after NO clearance, while the relative expression level of BrGSNOR was upregulated and GSNOR enzyme activity was also increased when spraying GSNO after inhibiting BR synthesis. Meanwhile, the biotin switch assay showed that exogenous BR increased the level of total nitrosylated protein in vivo under low-temperature stress. These results suggested that BR might act as an upstream signal of NO, induced the increase of NO content in vivo and then induced the protein S-nitrosylation modification to alleviate the damage of mini Chinese cabbage seedlings under low-temperature stress.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jizhong Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| |
Collapse
|
15
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
16
|
Liu L, Sun Y, Zhang M, Liu R, Wu X, Chen Y, Yuan J. ZmBSK1 positively regulates BR-induced H 2O 2 production via NADPH oxidase and functions in oxidative stress tolerance in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:325-335. [PMID: 35738188 DOI: 10.1016/j.plaphy.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroid (BR) has been indicated to induce the production of hydrogen peroxide (H2O2) in plants in response to various environmental stimuli. However, it remains largely unknown how BR induces H2O2 production. In this study, we found that BR treatment significantly raised the kinase activity of maize (Zea mays L.) brassinosteroid-signaling kinase 1 (ZmBSK1) using the immunoprecipitation kinase assay. ZmBSK1 could modulate the gene expressions and activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (EC 1.6.3.1) to modulate BR-induced H2O2 production. BR could enhance the interaction between ZmBSK1 and maize calcium/calmodulin-dependent protein kinase (ZmCCaMK), a previously identified substrate of ZmBSK1. The BR-induced phosphorylation and kinase activity of ZmCCaMK are dependent on ZmBSK1. Moreover, we showed that ZmBSK1 regulated the NADPH oxidase gene expression and activity via directly phosphorylating ZmCCaMK. Genetic analysis suggested that ZmBSK1-ZmCCaMK module strengthened plant tolerance to oxidative stress induced by exogenous application of H2O2 through improving the activities of antioxidant defense enzyme and alleviating the malondialdehyde (MDA) accumulation and electrolyte leakage rate. In conclusion, these findings provide the new insights of ZmBSK1 functioning in BR-induced H2O2 production and the theoretical supports for breeding stress-tolerant crops.
Collapse
Affiliation(s)
- Lei Liu
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yanchao Sun
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Meijing Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Ruixiang Liu
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xiaming Wu
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yanping Chen
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jianhua Yuan
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
17
|
Liu L, Sun Y, Di P, Cui Y, Meng Q, Wu X, Chen Y, Yuan J. Overexpression of a Zea mays Brassinosteroid-Signaling Kinase Gene ZmBSK1 Confers Salt Stress Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:894710. [PMID: 35599886 PMCID: PMC9121125 DOI: 10.3389/fpls.2022.894710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Salinity has become a crucial environmental factor seriously restricting maize (Zea mays L.) growth, development and productivity. However, how plants respond to salt stress is still poorly understood. In this study, we report that a maize brassinosteroid-signaling kinase gene ZmBSK1 plays a significant role in salt stress response. Expression pattern analysis revealed that the transcript level of ZmBSK1 was upregulated by NaCl treatment both in maize leaves, roots, and stems. Phenotypic and physiological analysis showed that overexpression of ZmBSK1 in maize improved salt tolerance by reducing the malondialdehyde (MDA) content, the percentage of electrolyte leakage, O2 - and H2O2 accumulation under salt stress, relying on the increases of antioxidant defense enzyme activities and proline content. qRT-PCR analysis showed that overexpression of ZmBSK1 also positively modulated the expression levels of reactive oxygen species (ROS)-scavenging and proline biosynthesis-related genes under salt stress. Moreover, immunoprecipitation-mass spectrometry (IP-MS) assay and firefly luciferase complementation imaging (LCI) assay showed that ZmBSK1 could associate with heat shock protein ZmHSP8 and 14-3-3-like protein ZmGF14-6, and their gene expression levels could be significantly induced by NaCl treatment in different maize tissues. Our findings unravel the new function of ZmBSK1 in salt stress response, which provides the theoretical bases for the improvement of maize salt resistance.
Collapse
Affiliation(s)
- Lei Liu
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanchao Sun
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pengcheng Di
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yakun Cui
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingchang Meng
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaming Wu
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanping Chen
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianhua Yuan
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
18
|
Phosphorylation of DUF1639 protein by osmotic stress/ABA-activated protein kinase 10 regulates abscisic acid-induced antioxidant defense in rice. Biochem Biophys Res Commun 2022; 604:30-36. [DOI: 10.1016/j.bbrc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
|
19
|
Nitric Oxide Enhanced Salt Stress Tolerance in Tomato Seedlings, Involving Phytohormone Equilibrium and Photosynthesis. Int J Mol Sci 2022; 23:ijms23094539. [PMID: 35562930 PMCID: PMC9102644 DOI: 10.3390/ijms23094539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO), as a ubiquitous gas signaling molecule, modulates various physiological and biochemical processes and stress responses in plants. In our study, the NO donor nitrosoglutathione (GSNO) significantly promoted tomato seedling growth under NaCl stress, whereas NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide potassium (cPTIO) treatment reversed the positive effect of NO, indicating that NO plays an essential role in enhancing salt stress resistance. To explore the mechanism of NO-alleviated salt stress, the transcriptome of tomato leaves was analyzed. A total of 739 differentially expressed genes (DEGs) were identified and classified into different metabolic pathways, especially photosynthesis, plant hormone signal transduction, and carbon metabolism. Of these, approximately 16 and 9 DEGs involved in plant signal transduction and photosynthesis, respectively, were further studied. We found that GSNO increased the endogenous indoleacetic acid (IAA) and salicylic acid (SA) levels but decreased abscisic acid (ABA) and ethylene (ETH) levels under salt stress conditions. Additionally, GSNO induced increases in photosynthesis pigment content and chlorophyll fluorescence parameters under NaCl stress, thereby enhancing the photosynthetic capacity of tomato seedlings. Moreover, the effects of NO mentioned above were reversed by cPTIO. Together, the results of this study revealed that NO regulates the expression of genes related to phytohormone signal transduction and photosynthesis antenna proteins and, therefore, regulates endogenous hormonal equilibrium and enhances photosynthetic capacity, alleviating salt toxicity in tomato seedlings.
Collapse
|
20
|
Yi Y, Peng Y, Song T, Lu S, Teng Z, Zheng Q, Zhao F, Meng S, Liu B, Peng Y, Chen G, Zhang J, Ye N. NLP2-NR Module Associated NO Is Involved in Regulating Seed Germination in Rice under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060795. [PMID: 35336677 PMCID: PMC8953764 DOI: 10.3390/plants11060795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Salt stress has the most severe impact on plant growth and development, including seed germination. However, little is known about the mechanism of NR (nitrate reductase)-associated nitric oxide (NO) regulates salt tolerance during seed germination in rice. Herein, we shown that inhibition of seed germination by salt stress was significantly impaired by sodium nitroferricyanide (SNP), a NO donor. Then a triple mutant, nr1/nr2/nr3, was generated. Results shown that germination of triple mutants were delayed and were much more sensitive to salt stress than WT plant, which can be rescued by application of SNP. qPCR analysis revealed that expressions of abscisic acid (ABA) catabolism gene, OsABA8ox1, was suppressed in triple mutants under salt stress, resulting in an elevated ABA content. Similar to SNP, application of nitrate also rescued seed germination under salt stress, which, however, was blocked in the triple mutants. Further study revealed that a nitrate responsive transcript factor, OsNLP2, was induced by salt stress, which thus up-regulates the expression of OsNRs and NR activity, resulting in promoted salt tolerance during seed germination. In addition, nitrate-mediated salt tolerance was impaired in mutant of aba8ox1, a target gene for NLP2. Transient trans-activation assays further revealed NLP2 can significantly activate the expression of OsABA8ox1 and OsNR1, suggesting that NLP2 activates expression of ABA catabolism gene directly or indirectly via NR-associated NO. Taken together, our results demonstrate that NLP2-NR associated NO was involved in salt response by increasing ABA catabolism during seed germination and highlight the importance of NO for stress tolerance of plants.
Collapse
Affiliation(s)
- Yake Yi
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Yaqiong Peng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Siqiong Lu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Qin Zheng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Fankai Zhao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Bohang Liu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Yan Peng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Guanghui Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.P.); (S.L.); (Z.T.); (Q.Z.); (F.Z.); (S.M.); (B.L.); (Y.P.)
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Zhang G, Li G, Xiang Y, Zhang A. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun 2022; 604:1-7. [DOI: 10.1016/j.bbrc.2022.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/22/2023]
|
22
|
Brassinosteroids Mitigate Cadmium Effects in Arabidopsis Root System without Any Cooperation with Nitric Oxide. Int J Mol Sci 2022; 23:ijms23020825. [PMID: 35055009 PMCID: PMC8776143 DOI: 10.3390/ijms23020825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis’s root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.
Collapse
|
23
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
24
|
Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. PLANT CELL REPORTS 2021; 40:1395-1414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops. Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmitter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regulatory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of current approaches used to characterise and detect the NO.
Collapse
Affiliation(s)
- Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China.
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Jin Shang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
25
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
26
|
Li Q, Xu F, Chen Z, Teng Z, Sun K, Li X, Yu J, Zhang G, Liang Y, Huang X, Du L, Qian Y, Wang Y, Chu C, Tang J. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. NATURE PLANTS 2021; 7:1108-1118. [PMID: 34226689 DOI: 10.1038/s41477-021-00959-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/03/2021] [Indexed: 05/10/2023]
Abstract
Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Teng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiancai Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lin Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Liu L, Xiang Y, Yan J, Di P, Li J, Sun X, Han G, Ni L, Jiang M, Yuan J, Zhang A. BRASSINOSTEROID-SIGNALING KINASE 1 phosphorylating CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE functions in drought tolerance in maize. THE NEW PHYTOLOGIST 2021; 231:695-712. [PMID: 33864702 DOI: 10.1111/nph.17403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Drought stress seriously limits crop productivity. Although studies have been carried out, it is still largely unknown how plants respond to drought stress. Here we find that drought treatment can enhance the phosphorylation activity of brassinosteroid-signaling kinase 1 (ZmBSK1) in maize (Zea mays). Our genetic studies reveal that ZmBSK1 positively affects drought tolerance in maize plants. ZmBSK1 localizes in plasma membrane, interacts with calcium/calmodulin (Ca2+ /CaM)-dependent protein kinase (ZmCCaMK), and phosphorylates ZmCCaMK. Ser-67 is a crucial phosphorylation site of ZmCCaMK by ZmBSK1. Drought stress enhances not only the interaction between ZmBSK1 and ZmCCaMK but also the phosphorylation of Ser-67 in ZmCCaMK by ZmBSK1. Furthermore, Ser-67 phosphorylation in ZmCCaMK regulates its Ca2+ /CaM binding, autophosphorylation and transphosphorylation activity, and positively affects its function in drought tolerance in maize. Our results reveal an important role for ZmBSK1 in drought tolerance and suggest a direct regulatory mode of ZmBSK1 phosphorylating ZmCCaMK.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Di
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua Yuan
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Wang W, Zhang G, Yang S, Zhang J, Deng Y, Qi J, Wu J, Fu D, Wang W, Hao Q. Overexpression of isochorismate synthase enhances drought tolerance in barley. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153404. [PMID: 33744782 DOI: 10.1016/j.jplph.2021.153404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Isochorismate synthase (ICS) is a key enzyme for the synthesis of salicylic acid (SA) in plants. SA mediates plant responses to both biotic and abiotic stresses. In previous studies, we found that overexpression of ICS (ICSOE) or suppression of ICS (ICSRNAi) affected the host response to Fusarium graminearum in barley. However, whether the barley ICS gene plays a role in adapting to abiotic stresses remains to be determined. In the present study, expression of the ICS gene was upregulated when treated with 20 % PEG6000, and ICSOE lines were more drought tolerant than wild type (WT) and ICSRNAi. In addition, the abscisic acid (ABA) levels in the ICSOE lines were higher than those in the WT and ICSRNAi lines under drought stress. High ABA levels significantly reduced Gs and E, which may impact water retention under drought stress. Under drought conditions, the activity of antioxidant enzymes was significantly higher in the ICSOE lines, correlating with a lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Enhanced antioxidant competence also contributed to drought tolerance in ICSOE lines. These findings help elucidate the abiotic stress resistance of the ICS pathway in barley.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China; Shandong Shofine Seed Technology Co., Ltd, China.
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China; College of Agriculture and Bioengineering, Heze University, He'ze, Shandong, China; Shandong Shofine Seed Technology Co., Ltd, China
| | - Shenlin Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Junyu Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yanmei Deng
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
29
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
30
|
Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124289. [PMID: 33153789 DOI: 10.1016/j.jhazmat.2020.124289] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 05/19/2023]
Abstract
Arsenic (As) is a toxic metalloid that adversely affects plant growth, and poses severe risks to human health. It induces disturbance to many physiological and metabolic pathways such as nutrient, water and redox imbalance, abnormal photosynthesis and ATP synthesis and loss of membrane integrity. Nitric oxide (NO) is a free radical molecule endogenously generated in plant cells which has signalling properties. Under As-stress, the endogenous NO metabolism is significantly affected in a clear connection with the metabolism of reactive oxygen species (ROS) triggering nitro-oxidative stress. However, the exogenous NO application provides beneficial effects under As-stress conditions which can relieve oxidative damages by stimulating the antioxidant systems, regulation of the expression of the transporter and other defence-related genes, modification of root cell wall composition or the biosynthesis of enriched sulfur compounds such phytochelatins (PCs). This review aims to provide up-to-date information on the key NO hallmarks to relieve As-stress in higher plants. Furthermore, it will be analyzed the diverse genetic engineering techniques to increase the endogenous NO content which could open new biotechnological applications, especially in crops under arsenic stress.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
31
|
|
32
|
Wang Q, Yu F, Xie Q. Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. PLANT, CELL & ENVIRONMENT 2020; 43:2325-2335. [PMID: 32671865 DOI: 10.1111/pce.13846] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 05/07/2023]
Abstract
Plant growth and development are plastic and canadapt to environmental changes. In this process different plant hormones coordinate to modulate plant growth and environmental interactions. In this article, we describe the individual brassinosteroid (BR) and abscisic acid (ABA) signaling pathways, emphasize the specific regulatory mechanisms between ABA and BR responses and discuss how both phytohormones coordinate growth, development and stress responses in plants. BR signaling is essential for plant development, while ABA signaling is activated to ensure plants survive stress. The crosstalk between BR and ABA, especially protein phosphorylation, protein stability control and downstream transcription control of key components of both pathways are discussed in terms of modulating plant development and stress adaptation.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Hammond C, Mira MM, Ayele BT, Renault S, Hill RD, Stasolla C. Over-expression of the Zea mays phytoglobin (ZmPgb1.1) alleviates the effect of water stress through shoot-specific mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:384-395. [PMID: 32814275 DOI: 10.1016/j.plaphy.2020.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Water deficit limits plant growth and development by interfering with several physiological and molecular processes both in root and shoot tissues. Through their ability to scavenge nitric oxide (NO), phytoglobins (Pgbs) exercise a protective role during several conditions of stress. While their action has been mainly documented in roots, it is unclear whether Pgb exercises a specific and direct role in shoot tissue. We used a Zea mays root-less system to assess how over-expression or down-regulation of ZmPgb1.1 influences the behavior of shoots exposed to polyethylene glycol (PEG)-simulated water deficit. Relative to their WT and ZmPgb1.1 down-regulating counterparts, PEG-treated shoots over-expressing ZmPgb1.1 exhibited a reduced accumulation of ROS and lipid peroxidation. These effects were ascribed to lower transcript levels of Respiratory Burst Oxidase Homolog (RBOH) genes encoding the ROS generating enzyme complex NADPH oxidase, and a more active antioxidant system. Furthermore, over-expression of ZmPgb1.1 attenuated the reduction in osmotic potential and relative water content experienced during water stress, an observation also demonstrated at a whole plant level, possibly through the retention of the expression of three aquaporins involved in water transfer and implicated in drought tolerance. Pharmacological treatments modulating NO and ethylene levels revealed that the ZmPgb1.1 action was mediated by ethylene synthesis and response, with NO acting as an upstream intermediate. Collectively we provide substantial evidence that ZmPgb1.1 exercises a direct role in shoot tissue, independent from that previously reported in roots, which confers tolerance to water stress.
Collapse
Affiliation(s)
- Cassandra Hammond
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mohamed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Sylvie Renault
- Department of Biological Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
34
|
Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J. Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC PLANT BIOLOGY 2020; 20:198. [PMID: 32384870 PMCID: PMC7206686 DOI: 10.1186/s12870-020-02414-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.
Collapse
Affiliation(s)
- Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longlong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Meiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 Hubei China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
35
|
Liu L, Han T, Liu W, Han G, Di P, Yu X, Yan J, Zhang A. Thr420 and Ser454 of ZmCCaMK play a crucial role in brassinosteroid-induced antioxidant defense in maize. Biochem Biophys Res Commun 2020; 525:537-542. [PMID: 32113680 DOI: 10.1016/j.bbrc.2020.02.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play important roles in brassinosteroid (BR)-induced antioxidant defense and enhancing the tolerance of plants to drought stress. The autophosphorylation of CCaMK is a key step for the activation of CCaMK, thus promoting substrate phosphorylation. However, how CCaMK autophosphorylation function in BR-induced antioxidant defense is not known yet. Here, seven potential autophosphorylation sites of ZmCCaMK were identified using mass spectroscopy (liquid chromatography-tandem mass spectrometry [LC-MS/MS]) analysis. The transient gene expression analysis in maize protoplasts showed that Thr420 and Ser454 of ZmCCaMK were important for BR-induced antioxidant defense. Furthermore, Thr420 and Ser454 of ZmCCaMK were crucial for improving drought tolerance and alleviating drought induced oxidative damage of plants via overexpressing various mutant versions of ZmCCaMK in tobacco (Nicotiana tabacum). Mutations of Thr420 and Ser454 in ZmCCaMK substantially blocked the autophosphorylation and substrate phosphorylation of ZmCCaMK in vitro. Taken together, our results demonstrate that Thr420 and Ser454 of ZmCCaMK are crucial for BR-induced antioxidant defense and drought tolerance through modulating the autophosphorylation and substrate phosphorylation activities of ZmCCaMK.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Pengcheng Di
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoyun Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
36
|
Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113943. [PMID: 32023797 DOI: 10.1016/j.envpol.2020.113943] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal (HM) stress is a major hazard, which significantly affects plant growth and development. In order to confront HM stress, plants directly or indirectly regulate the levels of endogenous nitric oxide (NO), a redox-related signaling molecule involved in wide range of plant growth and development as well as in response to HM stress. In addition, there is now compelling experimental evidence that NO usually mediates signaling processes through interactions with different biomolecules like phytohormones to regulate HM tolerance. Apart from phytohormones, NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation in response to HM stress. Recently, the roles of S-nitrosylation as a regulator of plant responses to HM stress and S-nitrosylated candidates have also been established and detected. Here, we describe the roles of NO in confronting HM phytotoxicity in plants with a particular focus on the presentation and discussion of recent data obtained in this field, which involves in the function of various phytohormones and S-nitrosylation during plant responses to HM stress. Additionally, both importance and challenges of future work are outlined in order to further elucidate the specific mechanisms underlying the roles of NO in plant responses to HM stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, PR China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China.
| |
Collapse
|
37
|
Li Y, Wu Y, Liao W, Hu L, Dawuda MM, Jin X, Tang Z, Yang J, Yu J. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC PLANT BIOLOGY 2020; 20:102. [PMID: 32138654 PMCID: PMC7059714 DOI: 10.1186/s12870-020-2320-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.). RESULTS Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. CONCLUSION BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.
Collapse
Affiliation(s)
- Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- Department of Horticulture, FoA, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana
| | - Xin Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jianjun Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
38
|
Gupta P, Seth CS. Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: Evidence for NR-dependent NO biosynthesis. Nitric Oxide 2020; 97:33-47. [PMID: 32045686 DOI: 10.1016/j.niox.2020.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
The present study unravels origin of nitric oxide (NO) and the interaction between 24-Epibrassinolide (EBL) and nitrate reductase (NR) for NO production in Indian mustard (Brassica juncea L.) under salinity stress. Two independent experiments were performed to check whether (i) Nitrate reductase or Nitric oxide synthase takes part in the biosynthesis of endogenous NO and (ii) EBL has any regulatory effect on NR-dependent NO biosynthesis in the alleviation of salinity stress. Results revealed that NR-inhibitor tungstate significantly (P ≤ 0.05) decreased the NR activity and endogenous NO content, while NOS inhibitor l-NAME did not influence NO biosynthesis and plant growth. Under salinity stress, inhibition in NR activity decreased the activities of antioxidant enzymes, increased H2O2, MDA, protein carbonyl content and caused DNA damage, implying that antioxidant defense might be related to NO signal. EBL supplementation enhanced the NR activity but did not influence NOS activity, suggesting that NR was involved in endogenous NO production. EBL supplementation alleviated the inhibitory effects of salinity stress and improved the plant growth by enhancing nutrients, photosynthetic pigments, compatible osmolytes, and performance of AsA-GSH cycle. It also decreased the superoxide ion accumulation, leaf epidermal damages, cell death, DNA damage, and ABA content. Comet assay revealed significant (P ≤ 0.05) enhancement in tail length and olive tail moment, while flow cytometry did not showed any significant (P ≤ 0.05) changes in genome size and ploidy level under salinity stress. Moreover, EBL supplementation increased the G6PDH activity and S-nitrosothiol content which further boosted the antioxidant responses under salinity stress. Taken together, these results suggested that NO production in mustard occurred in NR-dependent manner and EBL in association with endogenous NO activates the antioxidant system to counter salinity stress.
Collapse
Affiliation(s)
- Praveen Gupta
- Department of Botany, University of Delhi, 110007, India
| | | |
Collapse
|
39
|
Avalbaev A, Bezrukova M, Allagulova C, Lubyanova A, Kudoyarova G, Fedorova K, Maslennikova D, Yuldashev R, Shakirova F. Wheat germ agglutinin is involved in the protective action of 24-epibrassinolide on the roots of wheat seedlings under drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:420-427. [PMID: 31805496 DOI: 10.1016/j.plaphy.2019.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The involvement of wheat germ agglutinin (WGA) in the protective action of 24-epibrassinolide (EBR) against drought stress was studied in the seedling roots of two wheat cultivars differing in drought tolerance. Under dehydration conditions, the contents of ABA and WGA were shown to change significantly in the roots of either drought-tolerant cultivar Omskaya 35 or drought-sensitive cultivar Salavat Yulaev. Meanwhile, accumulation of either ABA or WGA started earlier and was two times greater in plants of drought-tolerant cultivar. Since WGA is an excreted protein, it is not surprising that the level of lectin in the roots gradually decreased by the 7th day of treatment due to its exudation into root environment. Pre-sowing treatment with EBR contributed to additional accumulation of lectin as compared to the control variants of either cultivar, while the hormone treatment did not change ABA content. Meanwhile, under conditions of drought, EBR-pretreated seedlings were characterized by lower level of accumulation of ABA and WGA in the roots. EBR application was found to prevent drought-induced inhibition of cell division in the root apical meristem, while WGA excreted into the root environment may contribute significantly to the effect.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Marina Bezrukova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Dilara Maslennikova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia.
| |
Collapse
|
40
|
Hu L, Li Y, Wu Y, Lv J, Dawuda MM, Tang Z, Liao W, Calderón-Urrea A, Xie J, Yu J. Nitric Oxide Is Involved in the Regulation of the Ascorbate-Glutathione Cycle Induced by the Appropriate Ammonium: Nitrate to Mitigate Low Light Stress in Brassica pekinensis. PLANTS 2019; 8:plants8110489. [PMID: 31717921 PMCID: PMC6918350 DOI: 10.3390/plants8110489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/13/2023]
Abstract
Low light intensity is common in northern China due to fog or haze, and causes stress for crop plants. To solve the problem of low light intensity stress on the growth and development of vegetable crops in China, new cropping strategies must be developed. We previously showed that an appropriate ratio of ammonium and nitrate (NH4+:NO3−) can alleviate the effect of low light stress on plants, although it is not clear what mechanism is involved in this alleviation. We propose the hypothesis that an appropriate ammonium/nitrate ratio (10:90) can induce NO synthesis to regulate the AsA-GSH cycle in mini Chinese cabbage seedlings under low light intensity. To test the hypothesis, we conducted a series of hydroponic experiments. The results indicated that, under low light intensity conditions, appropriate NH4+:NO3− (N, NH4+:NO3− = 10:90) decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2−) in leaves compared with nitrate treatment. Exogenous nitric oxide (SNP) had the same effects on MDA, H2O2, and O2−. However, with the addition of a NO scavenger (hemoglobin, Hb) and NO inhibitors (N-nitro-l-arginine methyl ester, L-NAME), NaN3 (NR inhibitor) significantly increased the contents of MDA, H2O2, and O2-. The application of N solution enhanced the AsA-GSH cycle by increasing the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and ascorbate oxidase (AAO), compared with control (NH4+:NO3− = 0:100). Meanwhile, exogenous SNP significantly increased the above indicators. All these effects of N on AsA-GSH cycle were inhibited by the addition of Hb, L-NAME and NaN3 in N solution. The results also revealed that the N and SNP treatments upregulated the relative expression level of GR, MDHAR1, APXT, DHAR2, and AAO gene in mini Chinese cabbage leaves under low light stress. These results demonstrated that the appropriate NH4+:NO3− (10:90) induced NO synthesis which regulates the AsA-GSH cycle in mini Chinese cabbage seedlings under low light stress.
Collapse
Affiliation(s)
- Linli Hu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
- Department of Horticulture, FoA, University for Development Studies, P. O. Box, Tamale TL 1882, Ghana
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 97340, USA;
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.W.); (J.L.); (M.M.D.); (Z.T.); (W.L.); (J.X.)
- Correspondence: ; Tel.: +86-931-7632188
| |
Collapse
|
41
|
Zhang L, Xu Z, Ji H, Zhou Y, Yang S. TaWRKY40 transcription factor positively regulate the expression of TaGAPC1 to enhance drought tolerance. BMC Genomics 2019; 20:795. [PMID: 31666006 PMCID: PMC6822423 DOI: 10.1186/s12864-019-6178-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUNDS Drought stress is one of the major factors that affects wheat yield. Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that plays the important role in abiotic stress and plant development. However, in wheat, limited information about drought-responsive GAPC genes has been reported, and the mechanism underlying the regulation of the GAPC protein is unknown. RESULTS In this study, we evaluated the potential role of GAPC1 in drought stress in wheat and Arabidopsis. We found that the overexpression of TaGAPC1 could enhance the tolerance to drought stress in transgenic Arabidopsis. Yeast one-hybrid library screening and EMSA showed that TaWRKY40 acts as a direct regulator of the TaGAPC1 gene. A dual luciferase reporter assay indicated that TaWRKY40 improved the TaGAPC1 promoter activity. The results of qRT-PCR in wheat protoplast cells with instantaneous overexpression of TaWRKY40 indicated that the expression level of TaGAPC1 induced by abiotic stress was upregulated by TaWRKY40. Moreover, TaGAPC1 promoted H2O2 detoxification in response to drought. CONCLUSION These results demonstrate that the inducible transcription factor TaWRKY40 could activate the transcription of the TaGAPC1 gene, thereby increasing the tolerance of plants to drought stress.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiyong Xu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ye Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
42
|
Kaya C, Ashraf M, Wijaya L, Ahmad P. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:119-128. [PMID: 31493672 DOI: 10.1016/j.plaphy.2019.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) have been rarely tested for their effective roles in mitigation of deleterious effects of water stress (WS) on plants. In addition, the contribution of nitric oxide (NO) in BR-improved plant tolerance to water stress needs to be elucidated. So, a trial was carried out to uncover the contribution of NO in BR-induced tolerance of pepper plants to WS. For well-watered and water-stressed plants, soil water availability was sustained at 80% and 40% of the full water storage capacity, respectively. BR (24-epibrassinolide, EB; 1.0 μM) was sprayed to the leaves of both well-watered and water stressed-pepper plants every two days for 10 days prior to the initiation of stress treatment. After starting WS treatment, cPTIO was sprayed to plant leaves twice a week for four weeks. Water stress caused a reduced plant growth and oxidative stress, but the application of EB increased plant growth and reversed the oxidative stress. The EB treatment increased endogenous NO and reinforced antioxidant defence systems, but the cPTIO application reversed the NO levels, downregulated the antioxidant defence systems, and aggravated oxidative damages caused by WS. These results show that EB-induced NO generation and NO-mediated antioxidant defence systems might be crucial mechanisms for EB-improved tolerance of pepper plants to WS. So, both EB and NO jointly are responsible for achieving improved tolerance of pepper plants to water stress.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | | | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
43
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts. Food Chem 2019; 292:372-376. [PMID: 31054689 DOI: 10.1016/j.foodchem.2018.02.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023]
Abstract
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Technology, Xuzhou University of Technology, Xuzhou, Jiangsu 221000, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
44
|
Chen E, Zhang X, Yang Z, Zhang C, Wang X, Ge X, Li F. BR deficiency causes increased sensitivity to drought and yield penalty in cotton. BMC PLANT BIOLOGY 2019; 19:220. [PMID: 31138186 PMCID: PMC6537406 DOI: 10.1186/s12870-019-1832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) play crucial roles in drought tolerance, but the underlying molecular mechanisms remain unclear in the important oilseed and fiber crop, cotton (Gossypium hirsutum L.). RESULTS To elucidate how BRs mediate drought tolerance in cotton, a cotton brassinosteroid (BR)-deficient mutant, pag1 (pagoda1), was employed for analysis. Importantly, the pag1 mutant showed increased sensitivity to drought stress, with shorter primary roots and fewer lateral roots. The number of stomata was significantly increased in the mutant, and the stomata aperture was much wider than that of the control plants. These mutant plants therefore showed an increased water loss rate. Furthermore, the abscisic acid (ABA) content, photosynthetic efficiency and starch content of the mutant were significantly lower than those of the wild type. The overall performance of the mutant plants was worse than that of the wild-type control under both normal and drought conditions. Moreover, Proteomic analysis revealed reduced levels of stress-related proteins in pag1 plants. CONCLUSIONS These results suggest that BRs may modulate the drought tolerance of cotton by regulating much genes that related to drought stress and multiple organ responses to drought, including root growth, stomata development, the stomata aperture and photosynthesis. This study provides an important basis for understanding drought resistance regulated by BRs and cultivating drought-resistant cotton lines.
Collapse
Affiliation(s)
- Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zuoren Yang
- Zhengzhou Research base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Chaojun Zhang
- Zhengzhou Research base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Xiaoqian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Fuguang Li
- Zhengzhou Research base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| |
Collapse
|
45
|
Liang Y, Jiang Y, Du M, Li B, Chen L, Chen M, Jin D, Wu J. ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:E2278. [PMID: 31072025 PMCID: PMC6539908 DOI: 10.3390/ijms20092278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in drought stress responses. However, the function of maize ASR genes in enhancing drought tolerance is not known. Here, nine maize ASR members were cloned, and the molecular features of these genes were analyzed. Phenotype results of overexpression of maize ZmASR3 gene in Arabidopsis showed lower malondialdehyde (MDA) levels and higher relative water content (RWC) and proline content than the wild type under drought conditions, demonstrating that ZmASR3 can improve drought tolerance. Further experiments showed that ZmASR3-overexpressing transgenic lines displayed increased stomatal closure and reduced reactive oxygen species (ROS) accumulation by increasing the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) under drought conditions. Moreover, overexpression of ZmASR3 in Arabidopsis increased ABA content and reduced sensitivity to exogenous ABA in both the germination and post-germination stages. In addition, the ROS-related, stress-responsive, and ABA-dependent pathway genes were activated in transgenic lines under drought stress. Taken together, these results suggest that ZmASR3 acts as a positive regulator of drought tolerance in plants.
Collapse
Affiliation(s)
- Yani Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Ming Du
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Baoyan Li
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Mingchao Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Demiao Jin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
46
|
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development 2019; 146:146/5/dev151894. [PMID: 30872266 PMCID: PMC6432667 DOI: 10.1242/dev.151894] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth and development. These hormones control the division, elongation and differentiation of various cell types throughout the entire plant life cycle. Our current understanding of the BR signaling pathway has mostly been obtained from studies using Arabidopsis thaliana as a model. In this context, the membrane steroid receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) binds directly to the BR ligand, triggering a signal cascade in the cytoplasm that leads to the transcription of BR-responsive genes that drive cellular growth. However, recent studies of the primary root have revealed distinct BR signaling pathways in different cell types and have highlighted cell-specific roles for BR signaling in controlling adaptation to stress. In this Review, we summarize our current knowledge of the spatiotemporal control of BR action in plant growth and development, focusing on BR functions in primary root development and growth, in stem cell self-renewal and death, and in plant adaption to environmental stress. Summary: This Review summarizes current knowledge of the spatiotemporal control of brassinosteroid function in plants, focusing on primary root development and growth, stem cell self-renewal and death, and adaptation to environmental stress.
Collapse
Affiliation(s)
- Ainoa Planas-Riverola
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Aditi Gupta
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Isabel Betegón-Putze
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Nadja Bosch
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| |
Collapse
|
47
|
Liu W, Xiang Y, Zhang X, Han G, Sun X, Sheng Y, Yan J, Scheller HV, Zhang A. Over-Expression of a Maize N-Acetylglutamate Kinase Gene ( ZmNAGK) Improves Drought Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 9:1902. [PMID: 30662448 PMCID: PMC6328498 DOI: 10.3389/fpls.2018.01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
Water deficit is a key limiting factor that affects the growth, development and productivity of crops. It is vital to understand the mechanisms by which plants respond to drought stress. Here an N-acetylglutamate kinase gene, ZmNAGK, was cloned from maize (Zea mays). ZmNAGK was expressed at high levels in maize leaves and at lower levels in root, stem, female flower and male flower. The expression of ZmNAGK was significantly induced by PEG, NaCl, ABA, brassinosteroid and H2O2. The ectopic expression of ZmNAGK in tobacco resulted in higher tolerance to drought compared to plants transformed with empty vector. Further physiological analysis revealed that overexpression of ZmNAGK could enhance the activities of antioxidant defense enzymes, and decrease malondialdehyde content and leakage of electrolyte in tobacco under drought stress. Moreover, the ZmNAGK transgenic tobacco accumulated more arginine and nitric oxide (NO) than control plants under drought stress. In addition, the ZmNAGK transgenic tobaccos activated drought responses faster than vector-transformed plants. These results indicate that ZmNAGK can play a vital role in enhancing drought tolerance by likely affecting the arginine and NO accumulation, and ZmNAGK could be involved in different strategies in response to drought stress.
Collapse
Affiliation(s)
- Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Henrik Vibe Scheller
- Environmental Genomics and Systems Biology Division, Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun 2018; 504:143-148. [PMID: 30170727 DOI: 10.1016/j.bbrc.2018.08.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Proper regulation of stomatal movement in response to various environmental stresses or developmental status is critical for the adaptation of many plant species to land. In plants, abscisic acid (ABA)-induced stomatal closure is a well-adapted method of regulating water status. In addition to ABA, we previously showed that plant-specific steroidal hormone, brassinosteroid (BR), also induces stomatal closure; however, BR modulates ABA-induced stomatal closure negatively at high concentrations. In this study, we further investigated the cross-talk between ABA and BR in relation to stomatal movement. In contrast to previous reports that ABA-induced stomatal closure was inhibited by brassinolide (BL), the most active BR, we showed that BL-induced stomatal closure was enhanced by ABA, indicating that the sequence of ABA or BL treatments led to different results. We found that this phenomenon occurred because the guard cells still had the capacity to be closed further by ABA, as the degree of stomatal closure by BL was always less than that by ABA. We also found that BL-induced stomatal closure required Open Stomata 1 (OST1) activity and the induced expression of OST1 was indifferent to the sequence of ABA and/or BL treatments. In addition, we examined the underlying mechanism by which inhibition of ABA-induced stomatal closure by BL occurred. We revealed that the downregulation of ABA-biosynthetic genes by BL resulted in a lower accumulation of ABA. These results suggested that the regulation of stomatal movement is finely controlled by the combined effects of plant hormones, ABA and BR.
Collapse
|
49
|
Anwar A, Bai L, Miao L, Liu Y, Li S, Yu X, Li Y. 24-Epibrassinolide Ameliorates Endogenous Hormone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings. Int J Mol Sci 2018; 19:ijms19092497. [PMID: 30149495 PMCID: PMC6164164 DOI: 10.3390/ijms19092497] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/24/2022] Open
Abstract
Phytohormone biosynthesis and accumulation are essential for plant growth and development and stress responses. Here, we investigated the effects of 24-epibrassinolide (EBR) on physiological and biochemical mechanisms in cucumber leaves under low-temperature stress. The cucumber seedlings were exposed to treatments as follows: NT (normal temperature, 26 °C/18 °C day/night), and three low-temperature (12 °C/8 °C day/night) treatments: CK (low-temperature stress); EBR (low-temperature and 0.1 μM EBR); and BZR (low-temperature and 4 μM BZR, a specific EBR biosynthesis inhibitor). The results indicated that low-temperature stress proportionately decreased cucumber seedling growth and the strong seedling index, chlorophyll (Chl) content, photosynthetic capacity, and antioxidant enzyme activities, while increasing reactive oxygen species (ROS) and malondialdehyde (MDA) contents, hormone levels, and EBR biosynthesis gene expression level. However, EBR treatments significantly enhanced cucumber seedling growth and the strong seedling index, chlorophyll content, photosynthetic capacity, activities of antioxidant enzymes, the cell membrane stability, and endogenous hormones, and upregulated EBR biosynthesis gene expression level, while decreasing ROS and the MDA content. Based on these results, it can be concluded that exogenous EBR regulates endogenous hormones by activating at the transcript level EBR biosynthetic genes, which increases antioxidant enzyme capacity levels and reduces the overproduction of ROS and MDA, protecting chlorophyll and photosynthetic machinery, thus improving cucumber seedling growth.
Collapse
Affiliation(s)
- Ali Anwar
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longqiang Bai
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Miao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yumei Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China.
| | - Shuzhen Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xianchang Yu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yansu Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
50
|
Wu S, Hu C, Tan Q, Zhao X, Xu S, Xia Y, Sun X. Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. PLANT CELL REPORTS 2018; 37:599-610. [PMID: 29340785 DOI: 10.1007/s00299-018-2254-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Our study first reveals that Mo mediates oxidative tolerance through ABA signaling. Moreover, NO acts downstream of ABA signaling in Mo-induced oxidative tolerance in wheat under drought stress. Nitric oxide (NO) is related to the improvement of molybdenum (Mo)-induced oxidative tolerance. While the function of Mo in abscisic acid (ABA) synthesis and in mediating oxidative tolerance by the interaction of ABA and NO remain to be studied. The -Mo and +Mo treatment-cultivated wheat was separated and subsequently was pretreated with AO inhibitor, ABA synthesis inhibitor, exogenous ABA, NO scavenger, NO donor or their combinations under polyethylene glycol 6000 (PEG)-stimulated drought stress (PSD). The AO activity and ABA content were increased by Mo in wheat under PSD, however, AO inhibitor decreased AO activity, correspondingly reduced ABA accumulation, suggesting that AO involves in the regulation of Mo-induced ABA synthesis. Mo enhanced activities and expressions of antioxidant enzyme, while these effects of Mo were reversed by AO inhibitor and ABA synthesis inhibitor due to the decrease of ABA content, but regained by exogenous ABA, indicating that Mo induces oxidative tolerance through ABA. Moreover, NO scavenger inhibited activities of antioxidant enzyme caused by Mo and exogenous ABA, but the inhibitions were eliminated by NO donor, indicating that NO is involved in ABA pathway in the regulation of Mo-induced oxidative tolerance in wheat under PSD. Finally, we proposed a scheme for the mechanism of Mo-induced oxidative tolerance.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Shoujun Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Yitao Xia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|