1
|
Zhou R, Xu J, Li L, Yin Y, Xue B, Li J, Sun F. Exploration of the Effects of Cadmium Stress on Photosynthesis in Oenanthe javanica (Blume) DC. TOXICS 2024; 12:307. [PMID: 38787086 PMCID: PMC11125355 DOI: 10.3390/toxics12050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII-PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage.
Collapse
Affiliation(s)
- Ronghua Zhou
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Jun Xu
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Liangjun Li
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Yulai Yin
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Bowen Xue
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Jingjing Li
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Fangfang Sun
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| |
Collapse
|
2
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
3
|
Zhang L, Yang C, Liu C. Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase. PHOTOSYNTHESIS RESEARCH 2023; 158:171-180. [PMID: 37653264 DOI: 10.1007/s11120-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
The chlorophyllide a oxygenase (CAO) plays a crucial role in the biosynthesis of chlorophyll b (Chl b). In the moss Physcomitrium patens (P. patens), two distinct gene copies, PpCAO1 and PpCAO2, are present. In this study, we investigate the differential expression of these CAOs following light exposure after a period of darkness (24 h) and demonstrate that the accumulation of Chl b is only abolished when both genes are knocked out. In the ppcao1cao2 mutant, most of the antenna proteins associated with both photosystems (PS) I and II are absent. Despite of the existence of LHCSR proteins and zeaxanthin, the mutant exhibits minimal non-photochemical quenching (NPQ) capacity. Nevertheless, the ppcao1cao2 mutant retains a certain level of pseudo-cyclic electron transport to provide photoprotection for PSI. These findings shed light on the dual dependency of Chl b synthesis on two CAOs and highlight the distinct effects of Chl b deprival on PSI and PSII core complexes in P. patens, a model species for bryophytes.
Collapse
Affiliation(s)
- Lin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunhong Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Bru P, Steen CJ, Park S, Amstutz CL, Sylak-Glassman EJ, Lam L, Fekete A, Mueller MJ, Longoni F, Fleming GR, Niyogi KK, Malnoë A. The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants. J Biol Chem 2022; 298:102519. [PMID: 36152752 PMCID: PMC9615032 DOI: 10.1016/j.jbc.2022.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants’ survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl–Chl excitonic interaction.
Collapse
Affiliation(s)
- Pierrick Bru
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Collin J Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Cynthia L Amstutz
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily J Sylak-Glassman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lam Lam
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Fiamma Longoni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
5
|
Wang X, Li Q, Zhang Y, Pan M, Wang R, Sun Y, An L, Liu X, Yu F, Qi Y. VAR2/AtFtsH2 and EVR2/BCM1/CBD1 synergistically regulate the accumulation of PSII reaction centre D1 protein during de-etiolation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2395-2409. [PMID: 35610189 DOI: 10.1111/pce.14368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Thylakoid FtsH complex participates in PSII repair cycle during high light-induced photoinhibition. The Arabidopsis yellow variegated2 (var2) mutants are defective in the VAR2/AtFtsH2 subunit of thylakoid FtsH complex. Taking advantage of the var2 leaf variegation phenotype, dissections of genetic enhancer loci have yielded novel paradigms in understanding functions of thylakoid FtsH complex. Here, we report the isolation of a new var2 enhancer, enhancer of variegation2-1 (evr2-1). We confirmed that EVR2 encodes a chloroplast protein that was known as BALANCE OF CHLOROPHYLL METABOLISM 1 (BCM1), or CHLOROPHYLL BIOSYNTHETIC DEFECT 1 (CBD1). We showed that EVR2/BCM1/CBD1 was involved in the oligomerization of photosystem I complexes. Genetic assays indicated that general defects in chlorophyll biosynthesis and the accumulation of photosynthetic complexes do not necessarily enhance var2 leaf variegation. In addition, we found that VAR2/AtFtsH2 is required for the accumulation of photosynthetic proteins during de-etiolation. Moreover, we identified PSII core proteins D1 and PsbC as potential EVR2-associated proteins using Co-IP/MS. Furthermore, the accumulation of D1 protein was greatly compromised in the var2-5 evr2-1 double mutant during de-etiolation. Together, our findings reveal a functional link between VAR2/AtFtsH2 and EVR2/BCM1/CBD1 in regulating chloroplast development and the accumulation of PSII reaction centre D1 protein during de-etiolation.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Qinglong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yalin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Mi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ruijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yifan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
6
|
Sárvári É, Gellén G, Sági-Kazár M, Schlosser G, Solymosi K, Solti Á. Qualitative and quantitative evaluation of thylakoid complexes separated by Blue Native PAGE. PLANT METHODS 2022; 18:23. [PMID: 35241118 PMCID: PMC8895881 DOI: 10.1186/s13007-022-00858-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/12/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Blue Native polyacrylamide gel electrophoresis (BN PAGE) followed by denaturing PAGE is a widely used, convenient and time efficient method to separate thylakoid complexes and study their composition, abundance, and interactions. Previous analyses unravelled multiple monomeric and dimeric/oligomeric thylakoid complexes but, in certain cases, the separation of complexes was not proper. Particularly, the resolution of super- and megacomplexes, which provides important information on functional interactions, still remained challenging. RESULTS Using a detergent mixture of 1% (w/V) n-dodecyl-β-D-maltoside plus 1% (w/V) digitonin for solubilisation and 4.3-8% gel gradients for separation as methodological improvements in BN PAGE, several large photosystem (PS) I containing bands were detected. According to BN(/BN)/SDS PAGE and mass spectrometry analyses, these PSI bands proved to be PSI-NADH dehydrogenase-like megacomplexes more discernible in maize bundle sheath thylakoids, and PSI complexes with different light-harvesting complex (LHC) complements (PSI-LHCII, PSI-LHCII*) more abundant in mesophyll thylakoids of lincomycin treated maize. For quantitative determination of the complexes and their comparison across taxa and physiological conditions, sample volumes applicable to the gel, correct baseline determination of the densitograms, evaluation methods to resolve complexes running together, calculation of their absolute/relative amounts and distribution among their different forms are proposed. CONCLUSIONS Here we report our experience in Blue/Clear-Native polyacrylamide gel electrophoretic separation of thylakoid complexes, their identification, quantitative determination and comparison in different samples. The applied conditions represent a powerful methodology for the analysis of thylakoid mega- and supercomplexes.
Collapse
Affiliation(s)
- Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
7
|
Aso M, Matsumae R, Tanaka A, Tanaka R, Takabayashi A. Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga Mesostigma viride. PLANT & CELL PHYSIOLOGY 2021; 62:436-446. [PMID: 33416834 DOI: 10.1093/pcp/pcaa172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae.
Collapse
Affiliation(s)
- Michiki Aso
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Renon Matsumae
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
8
|
Kameo S, Aso M, Furukawa R, Matsumae R, Yokono M, Fujita T, Tanaka A, Tanaka R, Takabayashi A. Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis. PLANT & CELL PHYSIOLOGY 2021; 62:348-355. [PMID: 33399873 DOI: 10.1093/pcp/pcaa165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/10/2020] [Indexed: 05/07/2023]
Abstract
Native polyacrylamide gel electrophoresis (PAGE) is a powerful technique for protein complex separation that retains both their activity and structure. In photosynthetic research, native-PAGE is particularly useful given that photosynthetic complexes are generally large in size, ranging from 200 kD to 1 MD or more. Recently, it has been reported that the addition of amphipol A8-35 to solubilized protein samples improved protein complex stability. In a previous study, we found that amphipol A8-35 could substitute sodium deoxycholate (DOC), a conventional electrophoretic carrier, in clear-native (CN)-PAGE. In this study, we present the optimization of amphipol-based CN-PAGE. We found that the ratio of amphipol A8-35 to α-dodecyl maltoside, a detergent commonly used to solubilize photosynthetic complexes, was critical for resolving photosynthetic machinery in CN-PAGE. In addition, LHCII dissociation from PSII-LHCII was effectively prevented by amphipol-based CN-PAGE compared with that of DOC-based CN-PAGE. Our data strongly suggest that majority of the PSII-LHCII in vivo forms C2S2M2 at least in Arabidopsis and Physcomitrella. The other forms might appear owing to the dissociation of LHCII from PSII during sample preparation and electrophoresis, which could be prevented by the addition of amphipol A8-35 after solubilization from thylakoid membranes. These results suggest that amphipol-based CN-PAGE may be a better alternative to DOC-based CN-PAGE for the study of labile protein complexes.
Collapse
Affiliation(s)
- Shinsa Kameo
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Michiki Aso
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ryo Furukawa
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Renon Matsumae
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, 243-0041 Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
9
|
Compensation Mechanism of the Photosynthetic Apparatus in Arabidopsis thaliana ch1 Mutants. Int J Mol Sci 2020; 22:ijms22010221. [PMID: 33379339 PMCID: PMC7794896 DOI: 10.3390/ijms22010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.
Collapse
|
10
|
Che Y, Kusama S, Matsui S, Suorsa M, Nakano T, Aro EM, Ifuku K. Arabidopsis PsbP-Like Protein 1 Facilitates the Assembly of the Photosystem II Supercomplexes and Optimizes Plant Fitness under Fluctuating Light. PLANT & CELL PHYSIOLOGY 2020; 61:1168-1180. [PMID: 32277833 DOI: 10.1093/pcp/pcaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In green plants, photosystem II (PSII) forms multisubunit supercomplexes (SCs) containing a dimeric core and light-harvesting complexes (LHCs). In this study, we show that Arabidopsis thaliana PsbP-like protein 1 (PPL1) is involved in the assembly of the PSII SCs and is required for adaptation to changing light intensity. PPL1 is a homolog of PsbP protein that optimizes the water-oxidizing reaction of PSII in green plants and is required for the efficient repair of photodamaged PSII; however, its exact function has been unknown. PPL1 was enriched in stroma lamellae and grana margins and associated with PSII subcomplexes including PSII monomers and PSII dimers, and several LHCII assemblies, while PPL1 was not detected in PSII-LHCII SCs. In a PPL1 null mutant (ppl1-2), assembly of CP43, PsbR and PsbW was affected, resulting in a reduced accumulation of PSII SCs even under moderate light intensity. This caused the abnormal association of LHCII in ppl1-2, as indicated by lower maximal quantum efficiency of PSII (Fv/Fm) and accelerated State 1 to State 2 transitions. These differences would lower the capability of plants to adapt to changing light environments, thereby leading to reduced growth under natural fluctuating light environments. Phylogenetic and structural analyses suggest that PPL1 is closely related to its cyanobacterial homolog CyanoP, which functions as an assembly factor in the early stage of PSII biogenesis. Our results suggest that PPL1 has a similar function, but the data also indicate that it could aid the association of LHCII with PSII.
Collapse
Affiliation(s)
- Yufen Che
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shoko Kusama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shintaro Matsui
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Yang P, Li Y, He C, Yan J, Zhang W, Li X, Xiang F, Zuo Z, Li X, Zhu Y, Liu X, Zhao X. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. J Proteomics 2019; 214:103621. [PMID: 31863931 DOI: 10.1016/j.jprot.2019.103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
The conversion of light energy into chemical energy in leaves is very important for plant growth and development. During this process, chlorophylls and their derivatives are indispensable as their fundamental role in the energy absorption and transduction activities. Chlorophyll variation mutants are important materials for studying chlorophyll metabolism, chloroplast biogenesis, photosynthesis and related physiological processes. Here, a chlorophyll-reduced mutant (crm1) was isolated from ethyl methanesulfonate (EMS) mutagenized Brassica napus. Compared to wild type, crm1 showed yellow leaves, reduced chlorophyll content, fewer thylakoid stacks and retarded growth. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that totally 4575 proteins were identified from the chloroplast of Brassica napus leaves, and 466 of which displayed differential accumulations between wild type and crm1. The differential abundance proteins were found to be involved in chlorophyll metabolism, photosynthesis, phagosome and proteasome. Our results suggest that the decreased abundance of chlorophyll biosynthetic enzymes, proteins involved in photosynthesis might account for the reduced chlorophyll content, impaired thylakoid structure, and reduction of plant productivity. The increased abundance of proteins involved in phagosome and proteasome pathways might allow plants to adapt the proteome to environmental conditions to ensure growth and survival due to chlorophyll reduction. BIOLOGICAL SIGNIFICANCE: Photosynthesis, which consists of light and dark reactions, is fundamental to biomass production. Chloroplast is regarded as the main site for photosynthesis. During photosynthesis, the pigment chlorophyll is essential for light harvesting and energy transfer. This work provides new insights into protein expression patterns, and enables the identification of many attractive candidates for investigation of chlorophyll biosynthesis, chloroplast structure and photosynthesis in Brassica napus. These findings may be applied to improve the photosynthetic efficiency by genetic engineering in crops.
Collapse
Affiliation(s)
- Piao Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongsheng He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jindong Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Wei Zhang
- Hunan Agricultural University, College of Agronnomy, Changsha, Hunan 410128, China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Fujiang Xiang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Yonghua Zhu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China.
| |
Collapse
|
12
|
Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A. Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1022-1031. [PMID: 30471153 DOI: 10.1111/tpj.14174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The STAY-GREEN (SGR) gene encodes Mg-dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion-mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv /Fm ) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light-harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| |
Collapse
|
13
|
Kato Y, Yokono M, Akimoto S, Takabayashi A, Tanaka A, Tanaka R. Deficiency of the Stroma-Lamellar Protein LIL8/PSB33 Affects Energy Transfer Around PSI in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:2026-2039. [PMID: 29136458 DOI: 10.1093/pcp/pcx124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/21/2017] [Indexed: 05/24/2023]
Abstract
Light-harvesting-like (LIL) proteins are a group of proteins that share a consensus amino acid sequence with light-harvesting Chl-binding (LHC) proteins. We hypothesized that they might be involved in photosynthesis-related processes. In order to gain a better understanding of a potential role in photosynthesis-related processes, we examined the most recently identified LIL protein, LIL8/PSB33. Recently, it was suggested that this protein is an auxiliary PSII core protein which is involved in organization of the PSII supercomplex. However, we found that the majority of LIL8/PSB33 was localized in stroma lamellae, where PSI is predominant. Moreover, the PSI antenna sizes measured under visible light were slightly increased in the lil8 mutants which lack LIL8/PSB33 protein. Analysis of fluorescence decay kinetics and fluorescence decay-associated spectra indicated that energy transfer to quenching sites within PSI was partially hampered in these mutants. On the other hand, analysis of the steady-state fluorescence spectra in these mutants indicates that a population of LHCII is energetically disconnected from PSII. Taken together, we suggest that LIL8/PSB33 is involved in the fine-tuning of light harvesting and/or energy transfer around both photosystems.
Collapse
Affiliation(s)
- Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819 Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819 Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819 Japan
| |
Collapse
|
14
|
Tyutereva EV, Evkaikina AI, Ivanova AN, Voitsekhovskaja OV. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants. PHOTOSYNTHESIS RESEARCH 2017; 133:357-370. [PMID: 28382592 DOI: 10.1007/s11120-017-0376-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Anastasiia I Evkaikina
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Alexandra N Ivanova
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia.
| |
Collapse
|
15
|
Hu X, Kato Y, Sumida A, Tanaka A, Tanaka R. The SUFBC 2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:235-248. [PMID: 28103400 DOI: 10.1111/tpj.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins play crucial roles in plastids, participating in photosynthesis and other metabolic pathways. Fe-S clusters are thought to be assembled on a scaffold complex composed of SUFB, SUFC and SUFD proteins. However, several additional proteins provide putative scaffold functions in plastids, and, therefore, the contribution of SUFB, C and D proteins to overall Fe-S assembly still remains unclear. In order to gain insights regarding Fe-S cluster biosynthesis in plastids, we analyzed the complex composed of SUFB, C and D in Arabidopsis by blue native-polyacrylamide gel electrophoresis. Using this approach, a major complex of 170 kDa containing all subunits was detected, indicating that these proteins constitute a SUFBC2 D complex similar to their well characterized bacterial counterparts. The functional effects of SUFB, SUFC or SUFD depletion were analyzed using an inducible RNAi silencing system to specifically target the aforementioned components; resulting in a decrease of various plastidic Fe-S proteins including the PsaA/B and PsaC subunits of photosystem I, ferredoxin and glutamine oxoglutarate aminotransferase. In contrast, the knockout of potential Fe-S scaffold proteins, NFU2 and HCF101, resulted in a specific decrease in the PsaA/B and PsaC levels. These results indicate that the functions of SUFB, SUFC and SUFD for Fe-S cluster biosynthesis cannot be replaced by other scaffold proteins and that SUFBC2 D, NFU2 and HCF101 are involved in the same pathway for the biogenesis of PSI. Taken together, our results provide in vivo evidence supporting the hypothesis that SUFBC2 D is the major, and possibly sole scaffold in plastids.
Collapse
Affiliation(s)
- Xueyun Hu
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang City, Sichuan, 621010, China
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Akihiro Sumida
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| |
Collapse
|
16
|
Bujaldon S, Kodama N, Rappaport F, Subramanyam R, de Vitry C, Takahashi Y, Wollman FA. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:115-130. [PMID: 27742488 DOI: 10.1016/j.molp.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 05/29/2023]
Abstract
The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.
Collapse
Affiliation(s)
- Sandrine Bujaldon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Natsumi Kodama
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|
17
|
Jia T, Ito H, Tanaka A. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. PLANTA 2016; 244:1041-1053. [PMID: 27394155 DOI: 10.1007/s00425-016-2568-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 05/10/2023]
Abstract
The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b-less mutants, ch1-1, to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b, the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
18
|
Yokoyama R, Yamamoto H, Kondo M, Takeda S, Ifuku K, Fukao Y, Kamei Y, Nishimura M, Shikanai T. Grana-Localized Proteins, RIQ1 and RIQ2, Affect the Organization of Light-Harvesting Complex II and Grana Stacking in Arabidopsis. THE PLANT CELL 2016; 28:2261-2275. [PMID: 27600538 PMCID: PMC5059800 DOI: 10.1105/tpc.16.00296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/01/2016] [Accepted: 09/03/2016] [Indexed: 05/18/2023]
Abstract
Grana are stacked thylakoid membrane structures in land plants that contain PSII and light-harvesting complex II proteins (LHCIIs). We isolated two Arabidopsis thaliana mutants, reduced induction of non-photochemical quenching1 (riq1) and riq2, in which stacking of grana was enhanced. The curvature thylakoid 1a (curt1a) mutant was previously shown to lack grana structure. In riq1 curt1a, the grana were enlarged with more stacking, and in riq2 curt1a, the thylakoids were abnormally stacked and aggregated. Despite having different phenotypes in thylakoid structure, riq1, riq2, and curt1a showed a similar defect in the level of nonphotochemical quenching of chlorophyll fluorescence (NPQ). In riq curt1a double mutants, NPQ induction was more severely affected than in either single mutant. In riq mutants, state transitions were inhibited and the PSII antennae were smaller than in wild-type plants. The riq defects did not affect NPQ induction in the chlorophyll b-less mutant. RIQ1 and RIQ2 are paralogous and encode uncharacterized grana thylakoid proteins, but despite the high level of identity of the sequence, the functions of RIQ1 and RIQ2 were not redundant. RIQ1 is required for RIQ2 accumulation, and the wild-type level of RIQ2 did not complement the NPQ and thylakoid phenotypes in riq1 We propose that RIQ proteins link the grana structure and organization of LHCIIs.
Collapse
Affiliation(s)
- Ryo Yokoyama
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Satomi Takeda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502 Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
19
|
Direct interaction with ACR11 is necessary for post-transcriptional control of GLU1-encoded ferredoxin-dependent glutamate synthase in leaves. Sci Rep 2016; 6:29668. [PMID: 27411448 PMCID: PMC4944146 DOI: 10.1038/srep29668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022] Open
Abstract
Because it plays an essential role in nitrogen (N) assimilation and photorespiration, the glutamine synthetase (GS)/glutamate synthase (GOGAT) system is widely accepted as occupying a central position in leaf N metabolism. However, the regulation of GOGAT at the post-transcriptional level is poorly understood. Here, we show that ACR11, an ACT (acronym for aspartate kinase, chorismate mutase, and TyrA) domain-containing family protein, interacts with Glu1-encoded ferredoxin (Fd)-GOGAT in Arabidopsis chloroplasts. In addition, Arabidopsis acr11 mutants have lost the capability to control Fd-GOGAT levels in response to light/dark diurnal cycles, nitrogen inputs, and changes in photorespiratory activity. Considering that ACR11 has putative glutamine-binding domains, our results indicate that ACR11 is necessary for post-transcriptional control of leaf Glu1-encoded Fd-GOGAT. This regulation takes place through direct interaction of ACR11 and Fd-GOGAT, possibly in an allosteric manner.
Collapse
|
20
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
21
|
Jahan MS, Nozulaidi M, Khairi M, Mat N. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:1-8. [PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
Collapse
Affiliation(s)
- Md Sarwar Jahan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia.
| | - Mohd Nozulaidi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Mohd Khairi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Nashriyah Mat
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| |
Collapse
|
22
|
Voitsekhovskaja OV, Tyutereva EV. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:51-64. [PMID: 26513460 DOI: 10.1016/j.jplph.2015.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 05/22/2023]
Abstract
Chlorophyll b (Chlb) is an antenna chlorophyll. The binding of Chlb by antenna proteins is crucial for the correct assembly of the antenna complexes in thylakoid membranes. Since the levels of the proteins of major and minor antenna are affected to different extents by Chlb binding, the availability of Chlb influences the composition and the size of antenna complexes which in turn determine the supramolecular organization of the thylakoid membranes in grana. Therefore, Chlb synthesis levels have a major impact on lateral mobility and diffusion of membrane molecules, and thus affect not only light harvesting and thermal energy dissipation processes, but also linear electron transport and repair processes in grana. Furthermore, in angiosperms Chlb synthesis affects plant functions beyond chloroplasts. First, the stability of pigment-protein complexes in the antennae, which depends on Chlb, is an important factor in the regulation of plant ontogenesis, and Chlb levels were recently shown to influence plant ontogenetic signaling. Second, the amounts of minor antenna proteins in chloroplasts, which depend on the availability of Chlb, were recently shown to affect ABA levels and signaling in plants. These mechanisms can be examined in mutants where Chlb synthesis is reduced or abolished. The dramatic effects caused by the lack of Chlb on plant productivity are interpreted in this review in light of the pleiotropic effects on photosynthesis and signaling, and the potential to manipulate Chlb biosynthesis for the improvement of crop production is discussed.
Collapse
Affiliation(s)
- O V Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia.
| | - E V Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia
| |
Collapse
|
23
|
A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 2015; 6:6675. [PMID: 25809225 DOI: 10.1038/ncomms7675] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/19/2015] [Indexed: 11/08/2022] Open
Abstract
Throughout the history of oxygen evolution, two types of photosystem reaction centres (PSI and PSII) have worked in a coordinated manner. The oxygen evolving centre is an integral part of PSII, and extracts an electron from water. PSI accepts the electron, and accumulates reducing power. Traditionally, PSI and PSII are thought to be spatially dispersed. Here, we show that about half of PSIIs are physically connected to PSIs in Arabidopsis thaliana. In the PSI-PSII complex, excitation energy is transferred efficiently between the two closely interacting reaction centres. PSII diverts excitation energy to PSI when PSII becomes closed-state in the PSI-PSII complex. The formation of PSI-PSII complexes is regulated by light conditions. Quenching of excess energy by PSI might be one of the physiological functions of PSI-PSII complexes.
Collapse
|
24
|
Pale-green phenotype of atl31atl6 double mutant leaves is caused by disruption of 5-aminolevulinic acid biosynthesis in Arabidopsis thaliana. PLoS One 2015; 10:e0117662. [PMID: 25706562 PMCID: PMC4338271 DOI: 10.1371/journal.pone.0117662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/atl6 mutant showed normal Fv/Fm. In the pale-green leaves of the atl31/atl6, the expression of HEMA1, which encodes the key enzyme for 5-aminolevulinic acid synthesis, the rate-limiting step in chlorophyll biosynthesis, was markedly down-regulated. The expression of key transcription factor GLK1, which directly promotes HEMA1 transcription, was also significantly decreased in atl31/atl6 mutant. Finally, application of 5-aminolevulinic acid to the atl31/atl6 mutants resulted in recovery to a green phenotype. Taken together, these findings indicate that the 5-aminolevulinic acid biosynthesis step was inhibited through the down-regulation of chlorophyll biosynthesis-related genes in the pale-green leaves of atl31/atl6 mutant.
Collapse
|
25
|
Jia T, Ito H, Hu X, Tanaka A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:586-596. [PMID: 25557327 DOI: 10.1111/tpj.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Chlorophyll a and chlorophyll b are interconverted in the chlorophyll cycle. The initial step in the conversion of chlorophyll b to chlorophyll a is catalyzed by the chlorophyll b reductases NON-YELLOW COLORING 1 (NYC1) and NYC1-like (NOL), which convert chlorophyll b to 7-hydroxymethyl chlorophyll a. This step is also the first stage in the degradation of the light-harvesting chlorophyll a/b protein complex (LHC). In this study, we examined the effect of chlorophyll b on the level of NYC1. NYC1 mRNA and NYC1 protein were in low abundance in green leaves, but their levels increased in response to dark-induced senescence. When the level of chlorophyll b was enhanced by the introduction of a truncated chlorophyllide a oxygenase gene and the leaves were incubated in the dark, the amount of NYC1 was greatly increased compared with that of the wild type; however, the amount of NYC1 mRNA was the same as in the wild type. In contrast, NYC1 did not accumulate in the mutant without chlorophyll b, even though the NYC1 mRNA level was high after incubation in the dark. Quantification of the LHC protein showed no strong correlation between the levels of NYC1 and LHC proteins. However, the level of chlorophyll fluorescence of the dark adapted plant (Fo ) was closely related to the accumulation of NYC1, suggesting that the NYC1 level is related to the energetically uncoupled LHC. These results and previous reports on the degradation of chlorophyllide a oxygenase suggest that the a feedforward and feedback network is included in chlorophyll cycle.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | | | | | | |
Collapse
|
26
|
Laloi C, Havaux M. Key players of singlet oxygen-induced cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:39. [PMID: 25699067 PMCID: PMC4316694 DOI: 10.3389/fpls.2015.00039] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/15/2015] [Indexed: 05/03/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.
Collapse
Affiliation(s)
- Christophe Laloi
- Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesMarseille, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| | - Michel Havaux
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesSaint-Paul-lez-Durance, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| |
Collapse
|
27
|
Takabayashi A, Kadoya R, Kuwano M, Kurihara K, Ito H, Tanaka R, Tanaka A. Protein co-migration database (PCoM -DB) for Arabidopsis thylakoids and Synechocystis cells. SPRINGERPLUS 2013; 2:148. [PMID: 23667806 PMCID: PMC3647082 DOI: 10.1186/2193-1801-2-148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
Abstract
Protein-protein interactions are critical for most cellular processes; however, many remain to be identified. Here, to comprehensively identify protein complexes in photosynthetic organisms, we applied the recently developed approach of blue native PAGE (BN-PAGE) coupled with LC-MS/MS to the thylakoid proteins of Arabidopsis thaliana and the whole cell proteins of whole cell proteins of Synechocystis sp. PCC 6803. We identified 245 proteins from the purified Arabidopsis thylakoid membranes and 1,458 proteins from the whole cells of Synechocystis using the method. Next, we generated protein migration profiles that were assessed by plotting the label-free estimations of protein abundances versus migration distance in BN-PAGE. Comparisons between the migration profiles of the major photosynthetic complexes and their band patterns showed that the protein migration profiles were well correlated. Thus, the protein migration profiles allowed us to estimate the molecular size of each protein complex and to identify co-migrated proteins with the proteins of interest by determining the protein pairs that contained peaks in the same gel slice. Finally, we built the protein co-migration database for photosynthetic organisms (PCoM-DB: http://pcomdb.lowtem.hokudai.ac.jp/proteins/top) to make our data publicly accessible online, which stores the analyzed data with a user-friendly interface to compare the migration profiles of proteins of interest. It helps users to find unidentified protein complexes in Arabidopsis thylakoids and Synechocystis cells. The accumulation of the data from the BN-PAGE coupled with LC-MS/MS should reveal unidentified protein complexes and should aid in understanding the adaptation and the evolution of photosynthetic organisms.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ryosuke Kadoya
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Masayoshi Kuwano
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Katsunori Kurihara
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| |
Collapse
|
28
|
Kunugi M, Takabayashi A, Tanaka A. Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas. J Biol Chem 2013; 288:19330-41. [PMID: 23677999 DOI: 10.1074/jbc.m113.462663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Japan
| | | | | |
Collapse
|