1
|
Pedinotti L, Teyssendier de la Serve J, Roudaire T, San Clemente H, Aguilar M, Kohlen W, Frugier F, Frei Dit Frey N. The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. Curr Biol 2024:S0960-9822(24)01326-5. [PMID: 39437785 DOI: 10.1016/j.cub.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.1 In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).2,3,4 Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.5 We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action2 decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.
Collapse
Affiliation(s)
- Léa Pedinotti
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Juliette Teyssendier de la Serve
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France; Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Thibault Roudaire
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France.
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France.
| |
Collapse
|
2
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Chaulagain D, Schnabel E, Kappes M, Lin EX, Müller LM, Frugoli JA. TML1 AND TML2 SYNERGISTICALLY REGULATE NODULATION AND AFFECT ARBUSCULAR MYCORRHIZA IN MEDICAGO TRUNCATULA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570674. [PMID: 38106087 PMCID: PMC10723381 DOI: 10.1101/2023.12.07.570674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of Nodulation (AON) and Autoregulation of Mycorrhization (AOM) both negatively regulate their respective processes and share multiple components - plants that make too many nodules usually have higher AM fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in Lotus japonicus . M. truncatula has two sequence homologs: Mt TML1 and Mt TML2. We report the generation of stable single and double mutants harboring multiple allelic variations in MtTML1 and MtTML2 using CRISPR-Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations in Mt TML1 or Mt TML2 produced 2-3 times the nodules of wild-type plants whereas plants containing mutations in both genes displayed a synergistic effect, forming 20x more nodules compared to wild type plants. Examination of expression and heterozygote effects suggest genetic compensation may play a role in the observed synergy. Plants with mutations in both TMLs only showed mild increases in AM fungal root colonization at later timepoints in our experiments, suggesting these genes may also play a minor role in AM symbiosis regulation. The mutants created will be useful tools to dissect the mechanism of synergistic action of Mt TML1 and Mt TML2 in M. truncatula symbiosis with beneficial microbes.
Collapse
|
4
|
Soyano T, Akamatsu A, Takeda N, Watahiki MK, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara H, Nakajima K, Kawaguchi M. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development. Science 2024; 385:288-294. [PMID: 39024445 DOI: 10.1126/science.adk5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Masaaki K Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Tatsuaki Goh
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Thomas J, Frugoli J. Mutation of BAM2 rescues the sunn hypernodulation phenotype in Medicago truncatula, suggesting that a signaling pathway like CLV1/BAM in Arabidopsis affects nodule number. FRONTIERS IN PLANT SCIENCE 2024; 14:1334190. [PMID: 38273950 PMCID: PMC10808729 DOI: 10.3389/fpls.2023.1334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatula is SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors in Arabidopsis involved in regulating stem cell populations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAM1 and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supernodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdn1-2 or crn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaling; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. truncatula.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
6
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
7
|
Sexauer M, Bhasin H, Schön M, Roitsch E, Wall C, Herzog U, Markmann K. A micro RNA mediates shoot control of root branching. Nat Commun 2023; 14:8083. [PMID: 38057302 DOI: 10.1038/s41467-023-43738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Plants extract mineral nutrients from the soil, or from interactions with mutualistic soil microbes via their root systems. Adapting root architecture to nutrient availability enables efficient resource utilization, particularly in patchy and dynamic environments. Root growth responses to soil nitrogen levels are shoot-mediated, but the identity of shoot-derived mobile signals regulating root growth responses has remained enigmatic. Here we show that a shoot-derived micro RNA, miR2111, systemically steers lateral root initiation and nitrogen responsiveness through its root target TML (TOO MUCH LOVE) in the legume Lotus japonicus, where miR2111 and TML were previously shown to regulate symbiotic infections with nitrogen fixing bacteria. Intriguingly, systemic control of lateral root initiation by miR2111 and TML/HOLT (HOMOLOGUE OF LEGUME TML) was conserved in the nonsymbiotic ruderal Arabidopsis thaliana, which follows a distinct ecological strategy. Thus, the miR2111-TML/HOLT regulon emerges as an essential, conserved factor in adaptive shoot control of root architecture in dicots.
Collapse
Affiliation(s)
- Moritz Sexauer
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany
| | - Hemal Bhasin
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- University of Toronto - Scarborough, Department of Biological Sciences, Toronto, ON, Canada
| | - Maria Schön
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Elena Roitsch
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany
| | - Caroline Wall
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Ulrike Herzog
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Katharina Markmann
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany.
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany.
| |
Collapse
|
8
|
Sportes A, Hériché M, Mounier A, Durney C, van Tuinen D, Trouvelot S, Wipf D, Courty PE. Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis. MYCORRHIZA 2023; 33:369-385. [PMID: 37561219 DOI: 10.1007/s00572-023-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Célien Durney
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sophie Trouvelot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
9
|
Rahmat Z, Sohail MN, Perrine-Walker F, Kaiser BN. Balancing nitrate acquisition strategies in symbiotic legumes. PLANTA 2023; 258:12. [PMID: 37296318 PMCID: PMC10256645 DOI: 10.1007/s00425-023-04175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.
Collapse
Affiliation(s)
- Zainab Rahmat
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Muhammad N Sohail
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Francine Perrine-Walker
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
10
|
Abstract
Plants associate with nitrogen-fixing bacteria to secure nitrogen, which is generally the most limiting nutrient for plant growth. Endosymbiotic nitrogen-fixing associations are widespread among diverse plant lineages, ranging from microalgae to angiosperms, and are primarily one of three types: cyanobacterial, actinorhizal or rhizobial. The large overlap in the signaling pathways and infection components of arbuscular mycorrhizal, actinorhizal and rhizobial symbioses reflects their evolutionary relatedness. These beneficial associations are influenced by environmental factors and other microorganisms in the rhizosphere. In this review, we summarize the diversity of nitrogen-fixing symbioses, key signal transduction pathways and colonization mechanisms relevant to such interactions, and compare and contrast these interactions with arbuscular mycorrhizal associations from an evolutionary standpoint. Additionally, we highlight recent studies on environmental factors regulating nitrogen-fixing symbioses to provide insights into the adaptation of symbiotic plants to complex environments.
Collapse
Affiliation(s)
- Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
11
|
Wang J, Sun Z, Liu H, Yue L, Wang F, Liu S, Su B, Liu B, Kong F, Fang C. Genome-Wide Identification and Characterization of the Soybean Snf2 Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2023; 24:ijms24087250. [PMID: 37108411 PMCID: PMC10138738 DOI: 10.3390/ijms24087250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins are the core component of chromatin remodeling complexes that can alter chromatin structure and nucleosome position by utilizing the energy of ATP, playing a vital role in transcription regulation, DNA replication, and DNA damage repair. Snf2 family proteins have been characterized in various species including plants, and they have been found to regulate development and stress responses in Arabidopsis. Soybean (Glycine max) is an important food and economic crop worldwide, unlike other non-leguminous crops, soybeans can form a symbiotic relationship with rhizobia for biological nitrogen fixation. However, little is known about Snf2 family proteins in soybean. In this study, we identified 66 Snf2 family genes in soybean that could be classified into six groups like Arabidopsis, unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis with Arabidopsis revealed that these 66 Snf2 family genes could be divided into 18 subfamilies. Collinear analysis showed that segmental duplication was the main mechanism for expansion of Snf2 genes rather than tandem repeats. Further evolutionary analysis indicated that the duplicated gene pairs had undergone purifying selection. All Snf2 proteins contained seven domains, and each Snf2 protein had at least one SNF2_N domain and one Helicase_C domain. Promoter analysis revealed that most Snf2 genes had cis-elements associated with jasmonic acid, abscisic acid, and nodule specificity in their promoter regions. Microarray data and real-time quantitative PCR (qPCR) analysis revealed that the expression profiles of most Snf2 family genes were detected in both root and nodule tissues, and some of them were found to be significantly downregulated after rhizobial infection. In this study, we conducted a comprehensive analysis of the soybean Snf2 family genes and demonstrated their responsiveness to Rhizobia infection. This provides insight into the potential roles of Snf2 family genes in soybean symbiotic nodulation.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huan Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuangrong Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Fang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
12
|
Solís-Miranda J, Juárez-Verdayes MA, Nava N, Rosas P, Leija-Salas A, Cárdenas L, Quinto C. The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability. Int J Mol Sci 2023; 24:ijms24065230. [PMID: 36982308 PMCID: PMC10049175 DOI: 10.3390/ijms24065230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Legumes associate with Gram-negative soil bacteria called rhizobia, resulting in the formation of a nitrogen-fixing organ, the nodule. Nodules are an important sink for photosynthates for legumes, so these plants have developed a systemic regulation mechanism that controls their optimal number of nodules, the so-called autoregulation of nodulation (AON) pathway, to balance energy costs with the benefits of nitrogen fixation. In addition, soil nitrate inhibits nodulation in a dose-dependent manner, through systemic and local mechanisms. The CLE family of peptides and their receptors are key to tightly controlling these inhibitory responses. In the present study, a functional analysis revealed that PvFER1, PvRALF1, and PvRALF6 act as positive regulators of the nodule number in growth medium containing 0 mM of nitrate but as negative regulators in medium with 2 and 5 mM of nitrate. Furthermore, the effect on nodule number was found to be consistent with changes in the expression levels of genes associated with the AON pathway and with the nitrate-mediated regulation of nodulation (NRN). Collectively, these data suggest that PvFER1, PvRALF1, and PvRALF6 regulate the optimal number of nodules as a function of nitrate availability.
Collapse
Affiliation(s)
- Jorge Solís-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Marco A. Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
- Departamento de Docencia, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Paul Rosas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
- Correspondence:
| |
Collapse
|
13
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
14
|
Singh J, Valdés‐López O. Discovering the genetic modules controlling root nodule symbiosis under abiotic stresses: salinity as a case study. THE NEW PHYTOLOGIST 2023; 237:1082-1085. [PMID: 36401792 PMCID: PMC10107258 DOI: 10.1111/nph.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Legumes form a symbiotic association with rhizobia and fix atmospheric nitrogen in specialized root organs known as nodules. It is well known that salt stress inhibits root nodule symbiosis by decreasing rhizobial growth, rhizobial infection, nodule number, and nitrogenase activity in diverse legumes. Despite this knowledge, the genetic and molecular mechanisms governing salt stress's inhibition of nodulation and nitrogen fixation are still elusive. In this Viewpoint, we summarize the most recent knowledge of the genetic mechanisms that shape this symbiosis according to the salt levels in the soil. We emphasize the relevance of modulating the activity of the transcription factor Nodule Inception to properly shape the symbiosis with rhizobia accordingly. We also highlight the knowledge gaps that are critical for gaining a deeper understanding of the molecular mechanisms underlying the adaptation of the root nodule symbiosis to salt-stress conditions. We consider that filling these gaps can help to improve legume nodulation and harness its ecological benefits even under salt-stress conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| | - Oswaldo Valdés‐López
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| |
Collapse
|
15
|
Lebedeva MA, Dobychkina DA, Yashenkova YS, Romanyuk DA, Lutova LA. Local and systemic targets of the MtCLE35-SUNN pathway in the roots of Medicago truncatula. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153922. [PMID: 36669364 DOI: 10.1016/j.jplph.2023.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION-related) peptides are systemic regulators of legume-rhizobium symbiosis that negatively control the number of nitrogen-fixing nodules. CLE peptides are produced in the root in response to rhizobia inoculation and/or nitrate treatment and are transported to the shoot where they are recognized by the CLV1-like (CLAVATA1-like) receptor kinase. As a result, a shoot-derived signaling pathway is activated that inhibits subsequent nodule development in the root. In Medicago truncatula, MtCLE35 is activated in response to rhizobia and nitrate treatment and the overexpression of this gene systemically inhibits nodulation. The inhibitory effect of MtCLE35 overexpression is dependent on the CLV1-like receptor kinase MtSUNN (SUPER NUMERIC NODULES), suggesting that MtSUNN could be involved in the reception of the MtCLE35 peptide. Yet little is known about the downstream genes regulated by a MtCLE35-activated response in the root. In order to identify genes whose expression levels could be regulated by the MtCLE35-MtSUNN pathway, we performed a MACE-Seq (Massive Analysis of cDNA Ends) transcriptomic analysis of MtCLE35-overexpressing roots. Among upregulated genes, the gene MtSUNN that encodes a putative receptor of MtCLE35 was detected. Moreover, we found that MtSUNN, as well as several other differentially expressed genes, were upregulated locally in MtCLE35-overexpressing roots whereas the MtTML1 and MtTML2 genes were upregulated systemically. Our data suggest that MtCLE35 has both local and systemic effects on target genes in the root.
Collapse
Affiliation(s)
- M A Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia.
| | - D A Dobychkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia
| | - Ya S Yashenkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia
| | - D A Romanyuk
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky Sh. 3, 196608, Saint-Petersburg, Russia
| | - L A Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia; Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
16
|
Valmas MI, Sexauer M, Markmann K, Tsikou D. Plants Recruit Peptides and Micro RNAs to Regulate Nutrient Acquisition from Soil and Symbiosis. PLANTS (BASEL, SWITZERLAND) 2023; 12:187. [PMID: 36616316 PMCID: PMC9824779 DOI: 10.3390/plants12010187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plants engage in symbiotic relationships with soil microorganisms to overcome nutrient limitations in their environment. Among the best studied endosymbiotic interactions in plants are those with arbuscular mycorrhizal (AM) fungi and N-fixing bacteria called rhizobia. The mechanisms regulating plant nutrient homeostasis and acquisition involve small mobile molecules such as peptides and micro RNAs (miRNAs). A large number of CLE (CLAVATA3/EMBRYO SURROUNDING REGION-RELATED) and CEP (C-TERMINALLY ENCODED PEPTIDE) peptide hormones as well as certain miRNAs have been reported to differentially respond to the availability of essential nutrients such as nitrogen (N) and phosphorus (P). Interestingly, a partially overlapping pool of these molecules is involved in plant responses to root colonization by rhizobia and AM fungi, as well as mineral nutrition. The crosstalk between root endosymbiosis and nutrient availability has been subject of intense investigations, and new insights in locally or systemically mobile molecules in nutrient- as well as symbiosis-related signaling continue to arise. Focusing on the key roles of peptides and miRNAs, we review the mechanisms that shape plant responses to nutrient limitation and regulate the establishment of symbiotic associations with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Marios I. Valmas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Moritz Sexauer
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Katharina Markmann
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
17
|
Chen J, Wang Z, Wang L, Hu Y, Yan Q, Lu J, Ren Z, Hong Y, Ji H, Wang H, Wu X, Lin Y, Su C, Ott T, Li X. The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation. Nat Commun 2022; 13:7661. [PMID: 36496426 PMCID: PMC9741591 DOI: 10.1038/s41467-022-35360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Key to the success of legumes is the ability to form and maintain optimal symbiotic nodules that enable them to balance the trade-off between symbiosis and plant growth. Cytokinin is essential for homeostatic regulation of nodulation, but the mechanism remains incompletely understood. Here, we show that a B-type response regulator GmRR11d mediates systemic inhibition of nodulation. GmRR11d is induced by rhizobia and low level cytokinin, and GmRR11d can suppress the transcriptional activity of GmNSP1 on GmNIN1a to inhibit soybean nodulation. GmRR11d positively regulates cytokinin response and its binding on the GmNIN1a promoter is enhanced by cytokinin. Intriguingly, rhizobial induction of GmRR11d and its function are dependent upon GmNARK that is a CLV1-like receptor kinase and inhibits nodule number in shoots. Thus, GmRR11d governs a transcriptional program associated with nodulation attenuation and cytokinin response activation essential for systemic regulation of nodulation.
Collapse
Affiliation(s)
- Jiahuan Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijuan Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixiang Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.412545.30000 0004 1798 1300College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yangyang Hu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiqi Yan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Lu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyin Ren
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yujie Hong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongtao Ji
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinying Wu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanru Lin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Su
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany
| | - Thomas Ott
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany ,grid.5963.9CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xia Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, Guangdong, PR China
| |
Collapse
|
18
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
20
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
21
|
Hayashi-Tsugane M, Kawaguchi M. Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. PLANTA 2022; 255:95. [PMID: 35348891 DOI: 10.1007/s00425-022-03873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The local and long-distance signaling pathways mediated by the leucine-rich repeat receptor kinase HAR1 suppress root branching and promote primary root length in response to nitrate supply. The root morphology of higher plants changes plastically to effectively absorb nutrients and water from the soil. In particular, legumes develop root organ nodules, in which symbiotic rhizobia fix atmospheric nitrogen in nitrogen-poor environments. The number of nodules formed in roots is negatively regulated by a long-distance signaling pathway that travels through shoots called autoregulation of nodulation (AON). In the model plant Lotus japonicus, defects in AON genes, such as a leucine-rich repeat receptor kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1), an orthologue of CLAVATA1, and the F-box protein TOO MUCH LOVE (TML), induce the formation of an excess number of nodules. The loss-of-function mutant of HAR1 exhibits a short and bushy root phenotype in the absence of rhizobia. We show that the har1 mutant exhibits high nitrate sensitivity during root development. The uninfected har1 mutant significantly increased lateral root number and reduced primary root length in the presence of 3 mM nitrate, compared with the wild-type and tml mutant. Grafting experiments indicated that local and long-distance signaling pathways via root- and shoot-acting HAR1 additively regulated root morphology under the moderate nitrate concentrations. These findings allow us to propose that HAR1-mediated signaling pathways control the root system architecture by suppressing lateral root branching and promoting primary root elongation in response to nitrate availability.
Collapse
Affiliation(s)
- Mika Hayashi-Tsugane
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
22
|
Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus. Proc Natl Acad Sci U S A 2022; 119:e2116549119. [PMID: 35235457 PMCID: PMC8915983 DOI: 10.1073/pnas.2116549119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance IAA carboxyl methyltransferase 1 (IAMT1) converts auxin (IAA) into its methyl ester (MeIAA). IAMT1 is reportedly critical for shoot development of the nonsymbiotic plant Arabidopsis. On the other hand, the function of IAMT1 in roots is unknown. Here, we found that IAMT1 is duplicated in the legume lineage, which evolved root nodule symbiosis. In the model legume Lotus japonicus, one of two paralogs (named IAMT1a) was mainly expressed in root epidermis, but its function is required in the adjacent cell layer, root cortex, where it promotes nodule development. Application of MeIAA, but not IAA, significantly induced NIN, a master regulator of nodule development, without rhizobia. These findings illuminate our understanding of intertissue communication acquired during evolution of root nodule symbiosis.
Collapse
|
23
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
24
|
Lebedeva M, Azarakhsh M, Sadikova D, Lutova L. At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2654. [PMID: 34961125 PMCID: PMC8705049 DOI: 10.3390/plants10122654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/13/2023]
Abstract
The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.
Collapse
Affiliation(s)
- Maria Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Mahboobeh Azarakhsh
- Cell and Molecular Biology Department, Kosar University of Bojnord, 9415615458 Bojnord, Iran;
| | - Darina Sadikova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
25
|
Krönauer C, Radutoiu S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102026. [PMID: 33684882 DOI: 10.1016/j.pbi.2021.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 05/06/2023]
Abstract
Legumes evolved LysM receptors for recognition of rhizobial Nod factors and initiation of signalling pathways for nodule organogenesis and infection. Intracellularly hosted bacteria are supplied with carbon resources in exchange for fixed nitrogen. Nod factor recognition is crucial for initial signalling, but is reiterated in growing roots initiating novel symbiotic events, and in developing primordia until symbiosis is well-established. Understanding how this signalling coordinates the entire process from cellular to plant level is key for de novo engineering in non-legumes and for improved efficiency in legumes. Here we discuss how recent studies bring new insights into molecular determinants of specificity and sensitivity in Nod factor signalling in legumes, and present some of the unknowns and challenges for engineering.
Collapse
Affiliation(s)
- Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
26
|
Wei C, Zhao W, Fan R, Meng Y, Yang Y, Wang X, Foroud NA, Liu D, Yu X. Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS One 2021; 16:e0250479. [PMID: 34293801 PMCID: PMC8298115 DOI: 10.1371/journal.pone.0250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins play critical roles in plant responses to biotic/abiotic stresses. In the present study, a total of 68 wheat F-box/Kelch (TaFBK) genes, unevenly distributed across 21 chromosomes and encoding 74 proteins, were identified in EnsemblPlants. Protein sequences were compared with those of Arabidopsis and three cereal species by phylogenetic and domain analyses, where the wheat sequences were resolved into 6 clades. In silico analysis of a digital PCR dataset revealed that TaFBKs were expressed at multiple developmental stages and tissues, and in response to drought and/or heat stresses. The TaFBK19 gene, a homolog of the Attenuated Far-Red Response (AFR) genes in other plant species, and hence named TaAFR, was selected for further analysis. Reverse-transcription quantitative real-time PCR (RT-qPCR) was carried out to determine tissue-specific, hormone and stress (abiotic/biotic) responsive expression patterns. Of interest, TaAFR was expressed most abundantly in the leaves, and its expression in response to leaf rust variants suggests a potential role in compatible vs incompatible rust responses. The protein was predicted to localize in cytosol, but it was shown experimentally to localize in both the cytosol and the nucleus of tobacco. A series of protein interaction studies, starting with a yeast-2-hybrid (Y2H) library screen (wheat leaf infected with incompatible leaf rust pathogens), led to the identification of three TaAFR interacting proteins. Skp1/ASK1-like protein (Skp1) was found to interact with the F-box domain of TaAFR, while ADP-ribosylation factor 2-like isoform X1 (ARL2) and phenylalanine ammonia-lyase (PAL) were shown to interact with its Kelch domain. The data presented herein provides a solid foundation from which the function and metabolic network of TaAFR and other wheat FBKs can be further explored.
Collapse
Affiliation(s)
- Chunru Wei
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Weiquan Zhao
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Runqiao Fan
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuyu Meng
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiming Yang
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Daqun Liu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
27
|
Ayra L, Reyero-Saavedra MDR, Isidra-Arellano MC, Lozano L, Ramírez M, Leija A, Fuentes SI, Girard L, Valdés-López O, Hernández G. Control of the Rhizobia Nitrogen-Fixing Symbiosis by Common Bean MADS-Domain/AGL Transcription Factors. FRONTIERS IN PLANT SCIENCE 2021; 12:679463. [PMID: 34163511 PMCID: PMC8216239 DOI: 10.3389/fpls.2021.679463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/25/2023]
Abstract
Plants MADS-domain/AGL proteins constitute a large transcription factor (TF) family that controls the development of almost every plant organ. We performed a phylogeny of (ca. 500) MADS-domain proteins from Arabidopsis and four legume species. We identified clades with Arabidopsis MADS-domain proteins known to participate in root development that grouped legume MADS-proteins with similar high expression in roots and nodules. In this work, we analyzed the role of AGL transcription factors in the common bean (Phaseolus vulgaris) - Rhizobium etli N-fixing symbiosis. Sixteen P. vulgaris AGL genes (PvAGL), out of 93 family members, are expressed - at different levels - in roots and nodules. From there, we selected the PvAGL gene denominated PvFUL-like for overexpression or silencing in composite plants, with transgenic roots and nodules, that were used for phenotypic analysis upon inoculation with Rhizobium etli. Because of sequence identity in the DNA sequence used for RNAi-FUL-like construct, roots, and nodules expressing this construct -referred to as RNAi_AGL- showed lower expression of other five PvAGL genes highly expressed in roots/nodules. Contrasting with PvFUL-like overexpressing plants, rhizobia-inoculated plants expressing the RNAi_AGL silencing construct presented affection in the generation and growth of transgenic roots from composite plants, both under non-inoculated or rhizobia-inoculated condition. Furthermore, the rhizobia-inoculated plants showed decreased rhizobial infection concomitant with the lower expression level of early symbiotic genes and increased number of small, ineffective nodules that indicate an alteration in the autoregulation of the nodulation symbiotic process. We propose that the positive effects of PvAGL TF in the rhizobia symbiotic processes result from its potential interplay with NIN, the master symbiotic TF regulator, that showed a CArG-box consensus DNA sequence recognized for DNA binding of AGL TF and presented an increased or decreased expression level in roots from non-inoculated plants transformed with OE_FUL or RNAi_AGL construct, respectively. Our work contributes to defining novel transcriptional regulators for the common bean - rhizobia N-fixing symbiosis, a relevant process for sustainable agriculture.
Collapse
Affiliation(s)
- Litzy Ayra
- Programa de Genómica Funcional de Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - María del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Luis Lozano
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Ramírez
- Programa de Genómica Funcional de Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfonso Leija
- Programa de Genómica Funcional de Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara-Isabel Fuentes
- Programa de Genómica Funcional de Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Georgina Hernández
- Programa de Genómica Funcional de Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
28
|
Zhang M, Su H, Gresshoff PM, Ferguson BJ. Shoot-derived miR2111 controls legume root and nodule development. PLANT, CELL & ENVIRONMENT 2021; 44:1627-1641. [PMID: 33386621 DOI: 10.1111/pce.13992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
Legumes control their nodule numbers through the autoregulation of nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development and also acts to shape root system architecture.
Collapse
Affiliation(s)
- Mengbai Zhang
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Huanan Su
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- National Navel Orange Engineering Research Centre, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Peter M Gresshoff
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Moreau C, Gautrat P, Frugier F. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. PLANT PHYSIOLOGY 2021; 185:1216-1228. [PMID: 33793938 PMCID: PMC8133669 DOI: 10.1093/plphys/kiaa094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
Legume plants form nitrogen (N)-fixing symbiotic nodules when mineral N is limiting in soils. As N fixation is energetically costly compared to mineral N acquisition, these N sources, and in particular nitrate, inhibit nodule formation and N fixation. Here, in the model legume Medicago truncatula, we characterized a CLAVATA3-like (CLE) signaling peptide, MtCLE35, the expression of which is upregulated locally by high-N environments and relies on the Nodule Inception-Like Protein (NLP) MtNLP1. MtCLE35 inhibits nodule formation by affecting rhizobial infections, depending on the Super Numeric Nodules (MtSUNN) receptor. In addition, high N or the ectopic expression of MtCLE35 represses the expression and accumulation of the miR2111 shoot-to-root systemic effector, thus inhibiting its positive effect on nodulation. Conversely, ectopic expression of miR2111 or downregulation of MtCLE35 by RNA interference increased miR2111 accumulation independently of the N environment, and thus partially bypasses the nodulation inhibitory action of nitrate. Overall, these results demonstrate that the MtNLP1-dependent, N-induced MtCLE35 signaling peptide acts through the MtSUNN receptor and the miR2111 systemic effector to inhibit nodulation.
Collapse
Affiliation(s)
- Corentin Moreau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Gautrat
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Gautrat P, Laffont C, Frugier F, Ruffel S. Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. TRENDS IN PLANT SCIENCE 2021; 26:392-406. [PMID: 33358560 DOI: 10.1016/j.tplants.2020.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 05/27/2023]
Abstract
Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the root import of mineral N and, in legume plants, through atmospheric N fixation by symbiotic bacteria inside dedicated root nodules. We explore features conserved between systemic pathways repressing or enhancing symbiotic N fixation and the regulation of mineral N acquisition by roots, as well as their integration with other environmental factors, such as phosphate, light, and CO2 availability.
Collapse
Affiliation(s)
- Pierre Gautrat
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Carole Laffont
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAe, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
31
|
Xu H, Li Y, Zhang K, Li M, Fu S, Tian Y, Qin T, Li X, Zhong Y, Liao H. miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. THE NEW PHYTOLOGIST 2021; 229:3377-3392. [PMID: 33245793 DOI: 10.1111/nph.17115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/12/2020] [Indexed: 05/29/2023]
Abstract
Legume crops contribute a great portion of clean nitrogen (N) to agro-ecosystems through symbiotic N2 fixation in the nodule; however, the nodulation is always inhibited by high N availability which is known as the N inhibitory effect through largely unknown mechanisms. We functionally investigated miR169c-GmNFYA-C-GmENOD40 under multiple N conditions in soybean (Glycine max) (ENOD, Early Nodulin; NFYA, Nuclear Factor-Y Subunit A). We elucidated their regulatory roles in soybean nodulation through analyzing expression patterns, micro-messenger RNA (miRNA-mRNA) interactions, phenotypes of transgenic soybean plants and genetic interactions. We found that miR169c expression was induced by high N, whereas its target GmNFYA-C was preferentially expressed in nodules and induced by rhizobium inoculation. Overexpression of miR169c inhibited nodulation through targeting 3'-UTR of GmNFYA-C, whereas knockout miR169c through CRISPR-cas9 promoted nodulation. However, overexpression of GmNFYA-C promoted soybean nodulation through facilitating rhizobium infection and increasing the expression of symbiotic signaling gene GmENOD40. Besides, GmNFYA-C directly induced the expression of GmENOD40. In addition, overexpression of GmNFYA-C without the target site of miR169c partially attenuated the inhibitory effect of high N on soybean nodulation. We discovered a new regulatory pathway involving the miR169c-NFYA-C-ENOD40 module that regulates soybean nodulation in response to N availability. This pathway provides substantial new insights into the mechanisms underlying the N inhibitory effect on nodulation.
Collapse
Affiliation(s)
- Hanyu Xu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Fu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingzhe Tian
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tongfei Qin
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
32
|
Mens C, Hastwell AH, Su H, Gresshoff PM, Mathesius U, Ferguson BJ. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. THE NEW PHYTOLOGIST 2021; 229:2525-2534. [PMID: 33067828 DOI: 10.1111/nph.17010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 05/25/2023]
Abstract
Legumes form a symbiosis with atmospheric nitrogen (N2 )-fixing soil rhizobia, resulting in new root organs called nodules that enable N2 -fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.
Collapse
Affiliation(s)
- Celine Mens
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Huanan Su
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
- National Navel Orange Engineering Research Center, School of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Peter M Gresshoff
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| |
Collapse
|
33
|
Wang C, Velandia K, Kwon CT, Wulf KE, Nichols DS, Reid JB, Foo E. The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1702-1713. [PMID: 33186449 DOI: 10.1093/jxb/eraa539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
Plants form mutualistic nutrient-acquiring symbioses with microbes, including arbuscular mycorrhizal fungi. The formation of these symbioses is costly, and plants employ a negative feedback loop termed autoregulation of mycorrhizae (AOM) to limit formation of arbuscular mycorrhizae (AM). We provide evidence for the role of one leucine-rich repeat receptor-like kinase (FAB), a hydroxyproline O-arabinosyltransferase enzyme (FIN), and additional evidence for one receptor-like protein (SlCLV2) in the negative regulation of AM formation in tomato. Reciprocal grafting experiments suggest that the FAB gene acts locally in the root, while the SlCLV2 gene may act in both the root and the shoot. External nutrients including phosphate and nitrate can also strongly suppress AM formation. We found that FAB and FIN are required for nitrate suppression of AM but are not required for the powerful suppression of AM colonization by phosphate. This parallels some of the roles of legume homologues in the autoregulation of the more recently evolved symbioses with nitrogen-fixing bacteria leading to nodulation. This deep homology in the symbiotic role of these genes suggests that in addition to the early signalling events that lead to the establishment of AM and nodulation, the autoregulation pathway might also be considered part of the common symbiotic toolkit that enabled plants to form beneficial symbioses.
Collapse
Affiliation(s)
- Chenglei Wang
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Choon-Tak Kwon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kate E Wulf
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - David S Nichols
- Central Science Laboratories, University of Tasmania, Hobart, Tasmania, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
34
|
Chaulagain D, Frugoli J. The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways. Int J Mol Sci 2021; 22:1117. [PMID: 33498783 PMCID: PMC7866212 DOI: 10.3390/ijms22031117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant's response to rhizobia.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
35
|
Okuma N, Kawaguchi M. Systemic Optimization of Legume Nodulation: A Shoot-Derived Regulator, miR2111. FRONTIERS IN PLANT SCIENCE 2021; 12:682486. [PMID: 34335652 PMCID: PMC8321092 DOI: 10.3389/fpls.2021.682486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
Long-distance signaling between the shoot and roots of land plants plays a crucial role in ensuring their growth and development in a fluctuating environment, such as with soil nutrient deficiencies. MicroRNAs (miRNAs) are considered to contribute to such environmental adaptation via long-distance signaling since several miRNAs are transported between the shoot and roots in response to various soil nutrient changes. Leguminous plants adopt a shoot-mediated long-distance signaling system to maintain their mutualism with symbiotic nitrogen-fixing rhizobia by optimizing the number of symbiotic organs and root nodules. Recently, the involvement and importance of shoot-derived miR2111 in regulating nodule numbers have become evident. Shoot-derived miR2111 can systemically enhance rhizobial infection, and its accumulation is quickly suppressed in response to rhizobial inoculation and high-concentration nitrate application. In this mini-review, we briefly summarize the recent progress on the systemic optimization of nodulation in response to external environments, with a focus on systemic regulation via miR2111.
Collapse
Affiliation(s)
- Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- *Correspondence: Nao Okuma,
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
36
|
Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. PLANTS 2020; 9:plants9111505. [PMID: 33172149 PMCID: PMC7694783 DOI: 10.3390/plants9111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023]
Abstract
E107 and E132 are pea mutants that nodulate poorly. Because they have a shoot-controlled nodulation phenotype, we asked if their mutated genes were implicated in the autoregulation of nodulation (AON), a mechanism which consists of two systemic circuits, the positive CEP/CRA2 and the negative CLE/SUNN, coordinated via NIN and miR2111. We further characterized the mutants’ phenotype by studying nodule distribution and nodulation efficiency. E107 was similar to wild-type (WT) in its nodule distribution, but E132 had an extended nodulation zone with nodules forming distally on its lateral roots. Moreover, we tested whether their shoots produced a compound inhibitory to nodulation. We made ethyl-acetate extracts of roots and shoots of both mutants and WT, which we applied to rhizobia-inoculated WT seedlings and to pure rhizobial cultures. Whereas free-living bacteria were unaffected by any of the extracts, WT treated with shoot extracts from either inoculated mutant had fewer nodules than that of control. E107 and E132 shoot extracts led to a 50% and a 35% reduction in nodule number, respectively. We propose that E107 and E132 belong to a new sub-class of AON mutants, i.e., hypo-nodulators, and that their respective gene products are acting in the AON descending branch, upstream of TML signaling.
Collapse
|
37
|
MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nat Commun 2020; 11:5192. [PMID: 33060582 PMCID: PMC7562733 DOI: 10.1038/s41467-020-19037-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
Legumes utilize a shoot-mediated signaling system to maintain a mutualistic relationship with nitrogen-fixing bacteria in root nodules. In Lotus japonicus, shoot-to-root transfer of microRNA miR2111 that targets TOO MUCH LOVE, a nodulation suppressor in roots, has been proposed to explain the mechanism underlying nodulation control from shoots. However, the role of shoot-accumulating miR2111s for the systemic regulation of nodulation was not clearly shown. Here, we find L. japonicus has seven miR2111 loci, including those mapped through RNA-seq. MIR2111-5 expression in leaves is the highest among miR2111 loci and repressed after rhizobial infection depending on a shoot-acting HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor. MIR2111-5 knockout mutants show significantly decreased nodule numbers and miR2111 levels. Furthermore, grafting experiments using transformants demonstrate scions with altered miR2111 levels influence nodule numbers in rootstocks in a dose-dependent manner. Therefore, miR2111 accumulation in leaves through MIR2111-5 expression is required for HAR1-dependent systemic optimization of nodule number.
Collapse
|
38
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
39
|
Venkatesh J, Kang MY, Liu L, Kwon JK, Kang BC. F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-Temperature Stress Tolerance in Pepper ( Capsicum chinense). PLANTS 2020; 9:plants9091186. [PMID: 32933000 PMCID: PMC7570372 DOI: 10.3390/plants9091186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar ‘sy-2’. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive ‘sy-2’ line. Protein–protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Min-Young Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
- Correspondence: ; Tel.: +82-2-880-4563; Fax: +82-2-873-2056
| |
Collapse
|
40
|
Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J, Mysore KS, Dai X, Zhao PX, de Bang TC. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4972-4984. [PMID: 32309861 PMCID: PMC7410177 DOI: 10.1093/jxb/eraa193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/17/2020] [Indexed: 05/13/2023]
Abstract
Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.
Collapse
Affiliation(s)
- Magda Karlo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Katrine Gram Landerslev
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Gonzalo Sancho Blanco
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Xinbin Dai
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Thomas C de Bang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
41
|
Isidra-Arellano MC, Pozas-Rodríguez EA, Del Rocío Reyero-Saavedra M, Arroyo-Canales J, Ferrer-Orgaz S, Del Socorro Sánchez-Correa M, Cardenas L, Covarrubias AA, Valdés-López O. Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1125-1139. [PMID: 32344464 DOI: 10.1111/tpj.14789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Inhibition of nodule development is one of the main adverse effects of phosphate (Pi) deficiency in legumes. Despite all of the efforts made over the last decades to understand how root nodules cope with Pi deficiency, the molecular mechanisms leading to the reduction in nodule number under Pi deficiency remain elusive. In the present study, we provide experimental evidence indicating that Pi deficiency activates the autoregulation of nodulation (AON) pathway, leading to a reduction in nodule numbers in both common bean and soybean. A transcriptional profile analysis revealed that the expression of the AON-related genes PvNIN, PvRIC1, PvRIC2, and PvTML is upregulated under Pi deficiency conditions. The downregulation of the MYB transcription factor PvPHR1 in common bean roots significantly reduced the expression of these four AON-related genes. Physiological analyses indicated that Pi deficiency does not affect the establishment of the root nodule symbiosis in the supernodulation mutant lines Pvnark and Gmnark. Reciprocal grafting and split-roots analyses determined that the activation of the AON pathway was required for the inhibitory effect of Pi deficiency. Altogether, these data improve our understanding of the genetic mechanisms controlling the establishment of the root nodule symbiosis under Pi deficiency.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico City, 04510, Mexico
| | - Eithan A Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - María Del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Jazmin Arroyo-Canales
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Susana Ferrer-Orgaz
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - María Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Luis Cardenas
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| |
Collapse
|
42
|
Zanetti ME, Blanco F, Reynoso M, Crespi M. To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:109-117. [PMID: 32569975 DOI: 10.1016/j.pbi.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/15/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Post-transcriptional control of gene expression allows plants to rapidly adapt to changes in their environment. Under low nitrogen conditions, legume plants engage into a symbiosis with soil bacteria that results in the formation of root nodules, where bacteria are allocated and fix atmospheric nitrogen for the plant's benefit. Recent studies highlighted the importance of small RNA-mediated mechanisms in the control of bacterial infection, nodule organogenesis, and the long-distance signaling that balances plant growth and nodulation. Examples of such mechanisms are shoot-to-root mobile microRNAs and small RNA fragments derived from degradation of bacterial transfer RNAs that repress complementary mRNAs in the host plant. Mechanisms of selective mRNA translation also contribute to rapidly modulate the expression of nodulation genes in a cell-specific manner during symbiosis. Here, the most recent advances made on the regulation of mRNA stability and translatability, and the emerging roles of long non-coding RNAs in symbiosis are summarized.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina.
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Mauricio Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Saclay, Evry and de Paris, Batiment 630, 91405 Orsay, France
| |
Collapse
|
43
|
Hoang NT, Tóth K, Stacey G. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1668-1680. [PMID: 32163588 DOI: 10.1093/jxb/eraa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen starvation, most legume plants form a nitrogen-fixing symbiosis with Rhizobium bacteria. The bacteria induce the formation of a novel organ called the nodule in which rhizobia reside as intracellular symbionts and convert atmospheric nitrogen into ammonia. During this symbiosis, miRNAs are essential for coordinating the various plant processes required for nodule formation and function. miRNAs are non-coding, endogenous RNA molecules, typically 20-24 nucleotides long, that negatively regulate the expression of their target mRNAs. Some miRNAs can move systemically within plant tissues through the vascular system, which mediates, for example, communication between the stem/leaf tissues and the roots. In this review, we summarize the growing number of miRNAs that function during legume nodulation focusing on two model legumes, Lotus japonicus and Medicago truncatula, and two important legume crops, soybean (Glycine max) and common bean (Phaseolus vulgaris). This regulation impacts a variety of physiological processes including hormone signaling and spatial regulation of gene expression. The role of mobile miRNAs in regulating legume nodule number is also highlighted.
Collapse
Affiliation(s)
- Nhung T Hoang
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Katalin Tóth
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Gary Stacey
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| |
Collapse
|
44
|
Nishida H, Ito M, Miura K, Kawaguchi M, Suzaki T. Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. PLANT SIGNALING & BEHAVIOR 2020; 15:1733814. [PMID: 32100606 PMCID: PMC7194392 DOI: 10.1080/15592324.2020.1733814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Legumes possess the autoregulation of nodulation (AON) pathway which is responsible for maintaining optimal root nodule number. In Lotus japonicus, AON comprises the CLE-HAR1-TML module, which plays an essential role in transmitting signals via root-to-shoot-to-root long-distance signaling. In addition to AON's principal role of negatively regulating nodule number, a recent study revealed another in the systemic control of rhizobial infection. Nitrate also negatively regulates the pleiotropic phases of legume-Rhizobium symbioses, including rhizobial infection and nodule number. Nitrate signaling has recently been shown to use AON components such as CLE-RS2 and HAR1 to control nodule number. Here we consider the role of a loss-of-function mutation in CLE-RS1, -RS2 and TML in rhizobial infection in relation to nitrate. Our results agree with previous findings and support the hypothesis that AON is required for the control of rhizobial infection but not for its nitrate-induced control. Furthermore, we confirm that the tml mutants exhibit nitrate sensitivity that differs from that of cle-rs2 and har1. Hence, while the nitrate-induced control mechanism of nodule number uses AON components, an unknown pathway specific to nitrate may exist downstream of HAR1, acting in parallel with the HAR1> TML pathway.
Collapse
Affiliation(s)
- Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Momoyo Ito
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kenji Miura
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Takuya Suzaki
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- CONTACT Takuya Suzaki Graduate School of Life and Environmental Sciences,University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Tsukuba, Japan
| |
Collapse
|
45
|
Gautrat P, Laffont C, Frugier F. Compact Root Architecture 2 Promotes Root Competence for Nodulation through the miR2111 Systemic Effector. Curr Biol 2020; 30:1339-1345.e3. [PMID: 32109394 DOI: 10.1016/j.cub.2020.01.084] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Nitrogen-deprived legume plants form new root organs, the nodules, following a symbiosis with nitrogen-fixing rhizobial bacteria [1]. Because this interaction is beneficial for the plant but has a high energetic cost, nodulation is tightly controlled by host plants through systemic pathways (acting at long distance) to promote or limit rhizobial infections and nodulation depending on earlier infections and on nitrogen availability [2]. In the Medicago truncatula model legume, CLE12 (Clavata3/Embryo surrounding region 12) and CLE13 signaling peptides produced in nodulated roots act in shoots through the SUNN (Super Numeric Nodule) receptor to negatively regulate nodulation and therefore autoregulate nodule number [3-5]. Conversely, CEP (C-terminally Encoded Peptide) signaling peptides produced in nitrogen-starved roots act in shoots through the CRA2 (Compact Root Architecture 2) receptor to promote nodulation already in the absence of rhizobia [6-9]. We show in this study that a downstream shoot-to-root signaling effector of these systemic pathways is the shoot-produced miR2111 microRNA [10] that negatively regulates TML1 (Too Much Love 1) and TML2 [11] transcripts accumulation in roots, ultimately promoting nodulation. Low nitrogen conditions and CEP1 signaling peptides induce in the absence of rhizobia the production of miR2111 depending on CRA2 activity in shoots, thus favoring root competence for nodulation. Together with the SUNN pathway negatively regulating the same miR2111 systemic effector when roots are nodulated, this allows a dynamic fine-tuning of the nodulation capacity of legume roots by nitrogen availability and rhizobial cues.
Collapse
Affiliation(s)
- Pierre Gautrat
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
46
|
Yoro E, Suzaki T, Kawaguchi M. CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:320-327. [PMID: 31880983 DOI: 10.1094/mpmi-08-19-0223-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
47
|
Abstract
In the past four decades, tremendous progress has been made in understanding how plants respond to microbial colonization and how microbial pathogens and symbionts reprogram plant cellular processes. In contrast, our knowledge of how environmental conditions impact plant-microbe interactions is less understood at the mechanistic level, as most molecular studies are performed under simple and static laboratory conditions. In this review, we highlight research that begins to shed light on the mechanisms by which environmental conditions influence diverse plant-pathogen, plant-symbiont, and plant-microbiota interactions. There is a great need to increase efforts in this important area of research in order to reach a systems-level understanding of plant-microbe interactions that are more reflective of what occurs in nature.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Li Zhang
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Sheng Yang He
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilient Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
48
|
Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 2019; 17:99. [PMID: 31796086 PMCID: PMC6889567 DOI: 10.1186/s12915-019-0710-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.
Collapse
Affiliation(s)
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
49
|
Schwember AR, Schulze J, Del Pozo A, Cabeza RA. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. PLANTS (BASEL, SWITZERLAND) 2019; 8:E333. [PMID: 31489914 PMCID: PMC6784058 DOI: 10.3390/plants8090333] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.
Collapse
Affiliation(s)
- Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 306-22, Chile.
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| | - Ricardo A Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| |
Collapse
|
50
|
Wang L, Sun Z, Su C, Wang Y, Yan Q, Chen J, Ott T, Li X. A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation of Nodulation Pathways in Soybean. MOLECULAR PLANT 2019; 12:1211-1226. [PMID: 31201867 DOI: 10.1016/j.molp.2019.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Symbiotic root nodules are root lateral organs of plants in which nitrogen-fixing bacteria (rhizobia) convert atmospheric nitrogen to ammonia. The formation and number of nodules in legumes are precisely controlled by a rhizobia-induced signal cascade and host-controlled autoregulation of nodulation (AON). However, how these pathways are integrated and their underlying mechanisms are unclear. Here, we report that microRNA172c (miR172c) activates soybean (Glycine max) Rhizobia-Induced CLE1 (GmRIC1) and GmRIC2 by removing the transcriptional repression of these genes by Nodule Number Control 1 (NNC1), leading to the activation of the AON pathway. NNC1 interacts with GmNINa, the soybean ortholog of Lotus NODULE INCEPTION (NIN), and hampers its transcriptional activation of GmRIC1 and GmRIC2. Importantly, GmNINa acts as a transcriptional activator of miR172c. Intriguingly, NNC1 can transcriptionally repress miR172c expression, adding a negative feedback loop into the NNC1 regulatory network. Moreover, GmNINa interacts with NNC1 and can relieve the NNC1-mediated repression of miR172c transcription. Thus, the GmNINa-miR172c-NNC1 network is a master switch that coordinately regulates and optimizes NF and AON signaling, supporting the balance between nodulation and AON in soybean.
Collapse
Affiliation(s)
- Lixiang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China; College of Biological Science and Engineering, Panzhihua University, No. 10 Airport Road, Eastern District, Panzhihua, Sichuan, China
| | - Zhengxi Sun
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Chao Su
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China; University of Freiburg, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yongliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Qiqi Yan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Jiahuan Chen
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China.
| |
Collapse
|