1
|
Kawaguchi K, Notaguchi M, Okayasu K, Sawai Y, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2331358. [PMID: 38513064 PMCID: PMC10962582 DOI: 10.1080/15592324.2024.2331358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in Nicotiana benthamiana. The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock. In addition, to try discussing the differences in the degree and speed of each event during the grafting process between intra- and inter-family grafting by determining the concentration and accumulation timing of plant hormones in the graft junctions, we performed hormonome analysis of graft junctions of intra-family grafted plants with N. benthamiana as scion and Solanum lycopersicum as rootstock (Nb/Sl) and inter-family grafted plants with N. benthamiana as scion and Arabidopsis thaliana as rootstock (Nb/At), using the ability of Nicotiana species to graft with many plant species. The results revealed that ABA and CK showed different accumulation timings; IAA, JA, and salicylic acid (SA) showed similar accumulation timings, while different accumulated concentrations in the graft junctions of Nb/Sl and Nb/At. This information is important for understanding the molecular mechanisms of plant hormones in the grafting process and the differences in molecular mechanisms between intra- and inter-family grafting.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Holland CK, Jez JM. Fidelity in plant hormone modifications catalyzed by Arabidopsis GH3 acyl acid amido synthetases. J Biol Chem 2024; 300:107421. [PMID: 38815865 PMCID: PMC11253546 DOI: 10.1016/j.jbc.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts; Department of Biology, Washington University in St Louis, St Louis, Missouri
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri.
| |
Collapse
|
4
|
Li P, He Y, Xiao L, Quan M, Gu M, Jin Z, Zhou J, Li L, Bo W, Qi W, Huang R, Lv C, Wang D, Liu Q, El-Kassaby YA, Du Q, Zhang D. Temporal dynamics of genetic architecture governing leaf development in Populus. THE NEW PHYTOLOGIST 2024; 242:1113-1130. [PMID: 38418427 DOI: 10.1111/nph.19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyue Gu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weina Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol 2024; 7:161. [PMID: 38332111 PMCID: PMC10853179 DOI: 10.1038/s42003-024-05848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xianfu Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Hao Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Weichang Xu
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Cui Wan
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
6
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
7
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang Q, De Gernier H, Duan X, Xie Y, Geelen D, Hayashi KI, Xuan W, Geisler M, Ten Tusscher K, Beeckman T, Vanneste S. GH3-mediated auxin inactivation attenuates multiple stages of lateral root development. THE NEW PHYTOLOGIST 2023; 240:1900-1912. [PMID: 37743759 DOI: 10.1111/nph.19284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/19/2023] [Indexed: 09/26/2023]
Abstract
Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Xingliang Duan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ken-Ishiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama, 700-0005, Japan
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht, 3584 CH, the Netherlands
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
9
|
Flubacher N, Baltenweck R, Hugueney P, Fischer J, Thines E, Riemann M, Nick P, Khattab IM. The fungal metabolite 4-hydroxyphenylacetic acid from Neofusicoccum parvum modulates defence responses in grapevine. PLANT, CELL & ENVIRONMENT 2023; 46:3575-3591. [PMID: 37431974 DOI: 10.1111/pce.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
In a consequence of global warming, grapevine trunk diseases (GTDs) have become a pertinent problem to viticulture, because endophytic fungi can turn necrotrophic upon host stress killing the plant. In Neofusicoccum parvum Bt-67, plant-derived ferulic acid makes the fungus release Fusicoccin aglycone triggering plant cell death. Now, we show that the absence of ferulic acid lets the fungus secrete 4-hydroxyphenylacetic acid (4-HPA), mimicking the effect of auxins on grapevine defence and facilitating fungal spread. Using Vitis suspension cells, we dissected the mode of action of 4-HPA during defence triggered by the bacterial cell-death elicitor, harpin. Early responses (cytoskeletal remodelling and calcium influx) are inhibited, as well as the expression of Stilbene Synthase 27 and phytoalexin accumulation. In contrast to other auxins, 4-HPA quells transcripts for the auxin conjugating GRETCHEN HAGEN 3. We suggest that 4-HPA is a key component of the endophytic phase of N. parvum Bt-67 preventing host cell death. Therefore, our study paves the way to understand how GTDs regulate their latent phase for successful colonisation, before turning necrotrophic and killing the vines.
Collapse
Affiliation(s)
- Noemi Flubacher
- Department of Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute of Plant Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Mainz, Germany
| | - Michael Riemann
- Department of Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute of Plant Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Department of Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute of Plant Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Islam M Khattab
- Department of Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute of Plant Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
10
|
Günther J, Halitschke R, Gershenzon J, Burow M. Heterologous expression of PtAAS1 reveals the metabolic potential of the common plant metabolite phenylacetaldehyde for auxin synthesis in planta. PHYSIOLOGIA PLANTARUM 2023; 175:e14078. [PMID: 38148231 DOI: 10.1111/ppl.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-β-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
11
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
12
|
Derevyanchuk M, Kretynin S, Bukhonska Y, Pokotylo I, Khripach V, Ruelland E, Filepova R, Dobrev PI, Martinec J, Kravets V. Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3586. [PMID: 37896049 PMCID: PMC10609748 DOI: 10.3390/plants12203586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.
Collapse
Affiliation(s)
- Michael Derevyanchuk
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Serhii Kretynin
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Yaroslava Bukhonska
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Igor Pokotylo
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Eric Ruelland
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Roberta Filepova
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Volodymyr Kravets
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| |
Collapse
|
13
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
14
|
Sims I, Jayaweera D, Swarup K, Ray RV. Molecular Characterization of Defense of Brassica napus (Oilseed Rape) to Rhizoctonia solani AG2-1 Confirmed by Functional Analysis in Arabidopsis thaliana. PHYTOPATHOLOGY 2023; 113:1525-1536. [PMID: 36935378 DOI: 10.1094/phyto-08-22-0305-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rhizoctonia solani is a necrotrophic, soilborne fungal pathogen associated with significant establishment losses in Brassica napus (oilseed rape; OSR). The anastomosis group (AG) 2-1 of R. solani is the most virulent to OSR, causing damping-off, root and hypocotyl rot, and seedling death. Resistance to R. solani AG2-1 in OSR has not been identified, and the regulation of OSR defense to its adapted pathogen, AG2-1, has not been investigated. In this work, we used confocal microscopy to visualize the progress of infection by sclerotia of AG2-1 on B. napus varieties with contrasting disease phenotypes. We defined their defense response using gene expression studies and functional analysis with Arabidopsis thaliana mutants. Our results showed existing variation in susceptibility to AG2-1 and plant growth between OSR varieties, and differential expression of genes of hormonal and defense pathways related to auxin, ethylene, jasmonic acid, abscisic acid, salicylic acid, and reactive oxygen species regulation. Auxin, abscisic acid signaling, and the MYC2 branch of jasmonate signaling contributed to the susceptibility to AG2-1, while induced systemic resistance was enhanced by NAPDH RBOHD, ethylene signaling, and the ERF/PDF branch of jasmonate signaling. These results pave the way for future research, which will lead to the development of Brassica crops that are more resistant to AG2-1 of R. solani and reduce dependence on chemical control options.
Collapse
Affiliation(s)
- Isabelle Sims
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD
| | - Dasuni Jayaweera
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD
| | - Kamal Swarup
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD
| | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD
| |
Collapse
|
15
|
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. FRONTIERS IN PLANT SCIENCE 2023; 14:1217421. [PMID: 37534287 PMCID: PMC10390838 DOI: 10.3389/fpls.2023.1217421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
Collapse
Affiliation(s)
- Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
16
|
Yang X, Wu J, Zhou Q, Zhu H, Zhang A, Sun J, Gan J. Congener-Specific Uptake and Metabolism of Bisphenols in Carrot Cells: Dissipation Kinetics, Biotransformation, and Enzyme Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1896-1906. [PMID: 36649116 DOI: 10.1021/acs.jafc.2c08197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Food consumption has been considered a key pathway of bisphenol compound (BP) exposure for humans. However, there is a lack of evidence concerning their congener-specific behavior and metabolism in plants. Herein, we examined the uptake and metabolism of five BPs in plants using carrot cells. Bisphenol S (BPS) and bisphenol AF (BPAF) exhibited substantially lower dissipation rates in the cells than the other BPs, indicating a strong selectivity in the uptake and metabolism among bisphenol congeners. For a total of 23 metabolites of BPs, the predominant biotransformation pathways were found to be glycosylation, methoxylation, and conjugation, while hydroxylation, methylation, and glutathionylation were only observed for some BPs. The changes in the mRNA expression of cytochrome P450 (P450) and the activities of glycosyltransferase and glutathione S-transferase were remarkably higher in cells exposed to bisphenol F, bisphenol A, and bisphenol B than in cells exposed to BPS and BPAF, indicating congener specificity in their effects on enzymes and the associated biotransformation processes. Consequently, the potential congener-specific differences in plant uptake, metabolism, and accumulation must be considered when assessing the environmental risks posed by these commonly used plasticizers.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Qinghua Zhou
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Haofeng Zhu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California92521, United States
| |
Collapse
|
17
|
Perez VC, Zhao H, Lin M, Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:266. [PMID: 36678978 PMCID: PMC9867223 DOI: 10.3390/plants12020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant's growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Perez VC, Dai R, Tomiczek B, Mendoza J, Wolf ESA, Grenning A, Vermerris W, Block AK, Kim J. Metabolic link between auxin production and specialized metabolites in Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:364-376. [PMID: 36300527 PMCID: PMC9786853 DOI: 10.1093/jxb/erac421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Veronica C Perez
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology & Cell Science, Gainesville, FL 32611, USA
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, FL 32611, USA
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Sakamoto Y, Kawamura A, Suzuki T, Segami S, Maeshima M, Polyn S, De Veylder L, Sugimoto K. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. THE PLANT CELL 2022; 34:4348-4365. [PMID: 35922895 PMCID: PMC9614439 DOI: 10.1093/plcell/koac218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masayoshi Maeshima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | |
Collapse
|
20
|
Danova K, Motyka V, Trendafilova A, Dobrev PI, Ivanova V, Aneva I. Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:2753. [PMID: 36297777 PMCID: PMC9609395 DOI: 10.3390/plants11202753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Shoot cultures of hypericin non-producing H. calycinum L. (primitive Ascyreia section), hypericin-producing H. perforatum L., H. tetrapterum Fries (section Hypericum) and H. richeri Vill. (the evolutionarily most advanced section Drosocarpium in our study) were developed and investigated for their growth, development, hypericin content and endogenous phytohormone levels. Hypericins in wild-growing H. richeri significantly exceeded those in H. perforatum and H. tetrapterum. H. richeri also had the highest hypericin productivity in vitro in medium supplemented with 0.2 mg/L N6-benzyladenine and 0.1 mg/L indole-3-butyric acid and H. tetrapterum-the lowest one in all media modifications. In shoot culture conditions, the evolutionarily oldest H. calycinum had the highest content of salicylic acid and total jasmonates in some of its treatments, as well as dominance of the storage form of abscisic acid (ABA-glucose ester) and lowest cytokinin ribosides and cytokinin O-glucosides as compared with the other three species. In addition, the evolutionarily youngest H. richeri was characterized by the highest total amount of cytokinin ribosides. Thus, both evolutionary development and the hypericin production capacity seemed to interact closely with the physiological parameters of the plant organism, such as endogenous phytohormones, leading to the possible hypothesis that hypericin productivity may have arisen in the evolution of Hypericum as a means to adapt to environmental changes.
Collapse
Affiliation(s)
- Kalina Danova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Vaclav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Viktorya Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
Paulsmeyer MN, Vermillion KE, Juvik JA. Assessing the diversity of anthocyanin composition in various tissues of purple corn (Zea mays L.). PHYTOCHEMISTRY 2022; 201:113263. [PMID: 35688228 DOI: 10.1016/j.phytochem.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins are natural pigments used in various foods, beverages, textiles, and nutraceuticals. Anthocyanins in the grain of purple corn (Zea mays L., Poaceae) have been a focus of many studies, but not much is known about anthocyanins in other maize tissues. In this study, purple corn variety Apache Red Cob was crossed to genetic stock 320 N, which is recessive for anthocyanin 3. The result was intense anthocyanin production in portions of the plant not normally pigmented. Anthocyanin extracts from anthers, cob glumes, husks, kernels, leaf sheaths, seedlings, silks, and tassels were assessed using UHPLC. A previously undescribed pigment produced in anthers was determined by NMR to be anthocyanidin 3-6″-phenylacetylglucoside. Multivariate analysis classified maize anthocyanins into 8 major compositional profiles. Results of this study show that maize produces anthocyanins abundantly in non-grain portions of the plant and that maize anthocyanin extracts have numerous applications due to the diversity in pigment profiles and hues.
Collapse
Affiliation(s)
- Michael N Paulsmeyer
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, United States
| | - Karl E Vermillion
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 N. University Street, Peoria, IL, 61604, United States
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, United States.
| |
Collapse
|
22
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Traiyasuk W, Komaikul J, Anantachoke N, Kitisripanya T. Establishment of Afgekia mahidolae B.L. Burtt & Chermsir in vitro culture and effect of elicitation on its bioactive compounds. Nat Prod Res 2022; 37:1829-1837. [PMID: 36047978 DOI: 10.1080/14786419.2022.2118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Afgekia mahidolae is a rare plant species that possesses antioxidant, antimicrobial, and wound healing properties. This study aimed to establish the in vitro culture of A. mahidolae and investigate the effects of elicitors on their phenolic and flavonoid production, including the antioxidant activities. The established callus was prepared in the form of cell suspension cultures to determine the effect of elicitors. After elicitation for 3 days, A. mahidolae cell suspension cultures treated by 5 µM salicylic acid or 100 mg/L yeast extract exhibited significantly higher levels of total phenolic and total flavonoid content than untreated cultures, which correlated to the antioxidant activities. In addition, the profiles of phenolic and flavonoid compounds in the callus and intact leaves of A. mahidolae were determined by LC-MS, which showed different phytochemicals. The findings of this study may encourage more sustainable development of A. mahidolae cultivation.
Collapse
Affiliation(s)
- Warangkana Traiyasuk
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
25
|
The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic and Oxidative Stress Responses in Acinetobacter. mBio 2022; 13:e0186321. [PMID: 35467424 PMCID: PMC9239106 DOI: 10.1128/mbio.01863-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii is responsible for a wide range of infections that are becoming increasingly difficult to treat due to extremely high rates of multidrug resistance. Acinetobacter's pathogenic potential is thought to rely on a "persist and resist" strategy that facilitates its remarkable ability to survive under a variety of harsh conditions. The paa operon is involved in the catabolism of phenylacetic acid (PAA), an intermediate in phenylalanine degradation, and is the most differentially regulated pathway under many environmental conditions. We found that, under subinhibitory concentrations of antibiotics, A. baumannii upregulates expression of the paa operon while simultaneously repressing chaperone-usher Csu pilus expression and biofilm formation. These phenotypes are reverted either by exogenous addition of PAA and its nonmetabolizable derivative 4-fluoro-PAA or by a mutation that blocks PAA degradation. Interference with PAA degradation increases susceptibility to antibiotics and hydrogen peroxide treatment. Transcriptomic and proteomic analyses identified a subset of genes and proteins whose expression is affected by addition of PAA or disruption of the paa pathway. Finally, we demonstrated that blocking PAA catabolism results in attenuated virulence in a murine catheter-associated urinary tract infection (CAUTI) model. We conclude that the paa operon is part of a regulatory network that responds to antibiotic and oxidative stress and is important for virulence. PAA has known regulatory functions in plants, and our experiments suggest that PAA is a cross-kingdom signaling molecule. Interference with this pathway may lead, in the future, to novel therapeutic strategies against A. baumannii infections. IMPORTANCE Acinetobacter baumannii causes a wide range of infections that are difficult to treat due to increasing rates of multidrug resistance; however, the mechanisms that this pathogen uses to respond to stress are poorly understood. Here, we describe a new mechanism of stress signaling in Acinetobacter that is mediated by the metabolite phenylacetic acid (PAA). We found that disrupting PAA catabolism interfered with A. baumannii's ability to adapt to stress, leading to decreased antibiotic tolerance and hydrogen peroxide resistance. We propose that investigating this stress response could lead to the development of novel therapeutics. In fact, PAA derivatives constitute a group of FDA-approved nonsteroidal anti-inflammatory drugs that could potentially be repurposed as antivirulence therapies to target multidrug-resistant Acinetobacter infections.
Collapse
|
26
|
Maki Y, Soejima H, Sugiyama T, Watahiki MK, Sato T, Yamaguchi J. 3-Phenyllactic acid is converted to phenylacetic acid and induces auxin-responsive root growth in Arabidopsis plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:111-117. [PMID: 35937539 PMCID: PMC9300423 DOI: 10.5511/plantbiotechnology.21.1216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
Many microorganisms have been reported to produce compounds that promote plant growth and are thought to be involved in the establishment and maintenance of symbiotic relationships. 3-Phenyllactic acid (PLA) produced by lactic acid bacteria was previously shown to promote root growth in adzuki cuttings. However, the mode of action of PLA as a root-promoting substance had not been clarified. The present study therefore investigated the relationship between PLA and auxin. PLA was found to inhibit primary root elongation and to increase lateral root density in wild-type Arabidopsis, but not in an auxin signaling mutant. In addition, PLA induced IAA19 promoter fused β-glucuronidase gene expression, suggesting that PLA exhibits auxin-like activity. The inability of PLA to promote degradation of Auxin/Indole-3-Acetic Acid protein in a yeast heterologous reconstitution system indicated that PLA may not a ligand of auxin receptor. Using of a synthetic PLA labeled with stable isotope showed that exogenously applied PLA was converted to phenylacetic acid (PAA), an endogenous auxin, in both adzuki and Arabidopsis. Taken together, these results suggest that exogenous PLA promotes auxin signaling by conversion to PAA, thereby regulating root growth in plants.
Collapse
Affiliation(s)
- Yuko Maki
- Snow Brand Seed Co. LTD., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Hiroshi Soejima
- Snow Brand Seed Co. LTD., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Tamizi Sugiyama
- Department of Agricultural Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki K. Watahiki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
27
|
Ozga JA, Jayasinghege CPA, Kaur H, Gao L, Nadeau CD, Reinecke DM. Auxin receptors as integrators of developmental and hormonal signals during reproductive development in pea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4094-4112. [PMID: 35395070 DOI: 10.1093/jxb/erac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Auxins regulate many aspects of plant growth and development. In pea, three of the five TIR1/AFB members (PsTIR1a, PsTIR1b, and PsAFB2) have been implicated in auxin-related responses during fruit/seed development; however, the roles of PsAFB4 and PsAFB6 in these processes are unknown. Using yeast two-hybrid assays, we found that all five pea TIR1/AFB receptor proteins interacted with the pea AUX/IAAs PsIAA6 and/or PsIAA7 in an auxin-dependent manner, a requirement for functional auxin receptors. All five auxin receptors are expressed in young ovaries (pericarps) and rapidly developing seeds, with overlapping and unique developmental and hormone-regulated gene expression patterns. Pericarp PsAFB6 expression was suppressed by seeds and increased in response to deseeding, and exogenous hormone treatments suggest that seed-derived auxin and deseeding-induced ethylene are involved in these responses, respectively. Ethylene-induced elevation of pericarp PsAFB6 expression was associated with 4-Cl-IAA-specific reduction in ethylene responsiveness. In developing seeds, expression of PsTAR2 and PsYUC10 auxin biosynthesis genes was associated with high auxin levels in seed coat and cotyledon tissues, and PsAFB2 dominated the seed tissue transcript pool. Overall, auxin receptors had overlapping and unique developmental and hormone-regulated gene expression patterns during fruit/seed development, suggesting mediation of diverse responses to auxin, with PsAFB6 linking auxin and ethylene signaling.
Collapse
Affiliation(s)
- Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Charitha P A Jayasinghege
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lingchao Gao
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Courtney D Nadeau
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
28
|
Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack MK, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2308-2319. [PMID: 35085386 PMCID: PMC7612644 DOI: 10.1093/jxb/erac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Collapse
Affiliation(s)
- Ren Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jian Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alaeddine Safi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Moritz K. Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
29
|
Jez JM. Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102194. [PMID: 35219141 DOI: 10.1016/j.pbi.2022.102194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases catalyze the ATP-dependent conjugation of phytohormones with amino acids. Traditionally, GH3 proteins are associated with synthesis of the bioactive jasmonate hormone (+)-7- iso -jasmonoyl-l-isoleucine (JA-Ile) and conjugation of indole-3-acetic acid (IAA) with amino acids that tag the hormone for degradation and/or storage. Modifications of JA and IAA by GH3 acyl acid amido synthetases help maintain phytohormones homeostasis. Recent studies broaden the roles of GH3 proteins to include the regulation of JA biosynthesis; the modification of other auxins (i.e., phenylacetic acid and indole-3-butyric acid); the conjugation of auxinic herbicides, such as 4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, and dicamba; and the missing step in the isochorismate pathway for the biosynthesis of salicylic acid. The GH3 protein family joins the growing number of versatile enzyme families that blur the line between primary and specialized metabolism for an increasing range of biology functions.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA.
| |
Collapse
|
30
|
Iwase A, Takebayashi A, Aoi Y, Favero DS, Watanabe S, Seo M, Kasahara H, Sugimoto K. 4-Phenylbutyric acid promotes plant regeneration as an auxin by being converted to phenylacetic acid via an IBR3-independent pathway. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:51-58. [PMID: 35601015 PMCID: PMC9080989 DOI: 10.5511/plantbiotechnology.21.1224b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 05/07/2023]
Abstract
4-Phenylbutyric acid (4PBA) is utilized as a drug to treat urea cycle disorders and is also being studied as a potential anticancer drug that acts via its histone deacetylase (HDAC) inhibitor activity. During a search to find small molecules that affect plant regeneration in Arabidopsis, we found that 4PBA treatment promotes this process by mimicking the effect of exogenous auxin. Specifically, plant tissue culture experiments revealed that a medium containing 4PBA enhances callus formation and subsequent shoot regeneration. Analyses with auxin-responsive or cytokinin-responsive marker lines demonstrated that 4PBA specifically enhances AUXIN RESPONSE FACTOR (ARF)-dependent auxin responses. Our western blot analyses showed that 4PBA treatment does not enhance histone acetylation in Arabidopsis, in contrast to butyric acid and trichostatin A, other chemicals often used as HDAC inhibitors, suggesting this mechanism of action does not explain the observed effect of 4PBA on regeneration. Finally, mass spectroscopic analysis and genetic approaches uncovered that 4PBA in Arabidopsis plants is converted to phenylacetic acid (PAA), a known natural auxin, in a manner independent of peroxisomal IBR3-related β-oxidation. This study demonstrates that 4PBA application promotes regeneration in explants via its auxin activity and has potential applications to not only plant tissue culture engineering but also research on the plant β-oxidation pathway.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- E-mail: Tel: +81-45-503-9570 Fax: +81-45-503-9591
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- E-mail: Tel: +81-45-503-9570 Fax: +81-45-503-9591
| |
Collapse
|
31
|
Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin. BIOLOGY 2022; 11:biology11010067. [PMID: 35053065 PMCID: PMC8772907 DOI: 10.3390/biology11010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
SGT1 (suppressor of the skp1 G2 allele) is an important plant disease resistance-related protein, which plays an important role in plant resistance to pathogens and regulates signal transduction during the process of plant disease resistance. In this study, we analyzed the expression profile of SbSGT1 in sorghum under phytohormones treatment. Quantitative real-time PCR results showed that SbSGT1 was most expressed in sorghum leaves, and could respond to plant hormones such as auxin, abscisic acid, salicylic acid, and brassinolide. Subsequently, we determined the optimal soluble prokaryotic expression conditions for SbSGT1 and purified it using a protein purification system in order to evaluate its potential interactions with plant hormones. Microscale thermophoretic analysis showed that SbSGT1 exhibited significant interactions with indole-3-acetic acid (IAA), with a Kd value of 1.5934. Furthermore, the transient expression of SbSGT1 in Nicotiana benthamiana indicated that treatment with exogenous auxin could inhibit SbSGT1 expression, both at the transcriptional and translational level, demonstrating that there exists an interaction between SbSGT1 and auxin.
Collapse
|
32
|
Kawai T, Akahoshi R, Shelley IJ, Kojima T, Sato M, Tsuji H, Inukai Y. Auxin Distribution in Lateral Root Primordium Development Affects the Size and Lateral Root Diameter of Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:834378. [PMID: 35498720 PMCID: PMC9043952 DOI: 10.3389/fpls.2022.834378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 05/11/2023]
Abstract
Lateral roots (LRs) occupy a large part of the root system and play a central role in plant water and nutrient uptake. Monocot plants, such as rice, produce two types of LRs: the S-type (short and thin) and the L-type (long, thick, and capable of further branching). Because of the ability to produce higher-order branches, the L-type LR formation contributes to efficient root system expansion. Auxin plays a major role in regulating the root system development, but its involvement in developing different types of LRs is largely unknown. Here, we show that auxin distribution is involved in regulating LR diameter. Dynamin-related protein (DRP) genes were isolated as causative genes of the mutants with increased L-type LR number and diameter than wild-type (WT). In the drp mutants, reduced endocytic activity was detected in rice protoplast and LRs with a decreased OsPIN1b-GFP endocytosis in the protoplast. Analysis of auxin distribution using auxin-responsive promoter DR5 revealed the upregulated auxin signaling in L-type LR primordia (LRP) of the WT and the mutants. The application of polar auxin transport inhibitors enhanced the effect of exogenous auxin to increase LR diameter with upregulated auxin signaling in the basal part of LRP. Inducible repression of auxin signaling in the mOsIAA3-GR system suppressed the increase in LR diameter after root tip excision, suggesting a positive role of auxin signaling in LR diameter increase. A positive regulator of LR diameter, OsWOX10, was auxin-inducible and upregulated in the drp mutants more than the WT, and revealed as a potential target of ARF transcriptional activator. Therefore, auxin signaling upregulation in LRP, especially at the basal part, induces OsWOX10 expression, increasing LR diameter.
Collapse
Affiliation(s)
- Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Ryosuke Akahoshi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Israt J. Shelley
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshiaki Inukai,
| |
Collapse
|
33
|
Mishev K, Dobrev PI, Lacek J, Filepová R, Yuperlieva-Mateeva B, Kostadinova A, Hristeva T. Hormonomic Changes Driving the Negative Impact of Broomrape on Plant Host Interactions with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2021; 22:13677. [PMID: 34948474 PMCID: PMC8708155 DOI: 10.3390/ijms222413677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/02/2022] Open
Abstract
Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.
Collapse
Affiliation(s)
- Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.Y.-M.); (A.K.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.)
| | - Bistra Yuperlieva-Mateeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.Y.-M.); (A.K.)
| | - Anelia Kostadinova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.Y.-M.); (A.K.)
| | - Tsveta Hristeva
- Tobacco and Tobacco Products Institute, Agricultural Academy, 4108 Plovdiv, Bulgaria
| |
Collapse
|
34
|
Ohishi N, Hoshika N, Takeda M, Shibata K, Yamane H, Yokota T, Asahina M. Involvement of Auxin Biosynthesis and Transport in the Antheridium and Prothalli Formation in Lygodium japonicum. PLANTS (BASEL, SWITZERLAND) 2021; 10:2709. [PMID: 34961180 PMCID: PMC8706445 DOI: 10.3390/plants10122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
The spores of Lygodium japonicum, cultured in the dark, form a filamentous structure called protonema. Earlier studies have shown that gibberellin (GA) induces protonema elongation, along with antheridium formation, on the protonema. In this study, we have performed detailed morphological analyses to investigate the roles of multiple phytohormones in antheridium formation, protonema elongation, and prothallus formation in L. japonicum. GA4 methyl ester is a potent GA that stimulates both protonema elongation and antheridium formation. We found that these effects were inhibited by simultaneous application of abscisic acid (ABA). On the other hand, IAA (indole-3-acetic acid) promoted protonema elongation but reduced antheridium formation, while these effects were partially recovered by transferring to an IAA-free medium. An auxin biosynthesis inhibitor, PPBo (4-phenoxyphenylboronic acid), and a transport inhibitor, TIBA (2,3,5-triiodobenzoic acid), both inhibited protonema elongation and antheridium formation. L. japonicum prothalli are induced from germinating spores under continuous white light. Such development was negatively affected by PPBo, which induced smaller-sized prothalli, and TIBA, which induced aberrantly shaped prothalli. The evidence suggests that the crosstalk between these plant hormones might regulate protonema elongation and antheridium formation in L. japonicum. Furthermore, the possible involvement of auxin in the prothalli development of L. japonicum is suggested.
Collapse
Affiliation(s)
- Natsumi Ohishi
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.O.); (H.Y.); (T.Y.)
| | - Nanami Hoshika
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
| | - Mizuho Takeda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
| | - Hisakazu Yamane
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.O.); (H.Y.); (T.Y.)
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
| | - Takao Yokota
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.O.); (H.Y.); (T.Y.)
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
| | - Masashi Asahina
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.O.); (H.Y.); (T.Y.)
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (N.H.); (M.T.); (K.S.)
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan
| |
Collapse
|
35
|
Ghodhbane-Gtari F, D’Angelo T, Gueddou A, Ghazouani S, Gtari M, Tisa LS. Alone Yet Not Alone: Frankia Lives Under the Same Roof With Other Bacteria in Actinorhizal Nodules. Front Microbiol 2021; 12:749760. [PMID: 34925263 PMCID: PMC8674757 DOI: 10.3389/fmicb.2021.749760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Actinorhizal plants host mutualistic symbionts of the nitrogen-fixing actinobacterial genus Frankia within nodule structures formed on their roots. Several plant-growth-promoting bacteria have also been isolated from actinorhizal root nodules, but little is known about them. We were interested investigating the in planta microbial community composition of actinorhizal root nodules using culture-independent techniques. To address this knowledge gap, 16S rRNA gene amplicon and shotgun metagenomic sequencing was performed on DNA from the nodules of Casuarina glauca. DNA was extracted from C. glauca nodules collected in three different sampling sites in Tunisia, along a gradient of aridity ranging from humid to arid. Sequencing libraries were prepared using Illumina NextEra technology and the Illumina HiSeq 2500 platform. Genome bins extracted from the metagenome were taxonomically and functionally profiled. Community structure based off preliminary 16S rRNA gene amplicon data was analyzed via the QIIME pipeline. Reconstructed genomes were comprised of members of Frankia, Micromonospora, Bacillus, Paenibacillus, Phyllobacterium, and Afipia. Frankia dominated the nodule community at the humid sampling site, while the absolute and relative prevalence of Frankia decreased at the semi-arid and arid sampling locations. Actinorhizal plants harbor similar non-Frankia plant-growth-promoting-bacteria as legumes and other plants. The data suggests that the prevalence of Frankia in the nodule community is influenced by environmental factors, with being less abundant under more arid environments.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université de la Manouba, Sidi Thabet, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Timothy D’Angelo
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Abdellatif Gueddou
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Sabrine Ghazouani
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
36
|
Hayashi KI, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 2021; 12:6752. [PMID: 34811366 PMCID: PMC8608799 DOI: 10.1038/s41467-021-27020-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan.
| | - Kazushi Arai
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuka Tanaka
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hayao Hira
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Ruipan Guo
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yun Hu
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|
37
|
Jablonski B, Bajguz A, Bocian J, Orczyk W, Nadolska-Orczyk A. Genotype-Dependent Effect of Silencing of TaCKX1 and TaCKX2 on Phytohormone Crosstalk and Yield-Related Traits in Wheat. Int J Mol Sci 2021; 22:ijms222111494. [PMID: 34768924 PMCID: PMC8584060 DOI: 10.3390/ijms222111494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
The influence of silenced TaCKX1 and TaCKX2 on coexpression of other TaCKX gene family members (GFMs), phytohormone regulation and yield-related traits was tested in awned-spike cultivar. We documented a strong feedback mechanism of regulation of TaCKX GFM expression in which silencing of TaCKX1 upregulated expression of TaCKX2 genes and vice versa. Additionally, downregulation of TaCKX2 highly upregulated the expression of TaCKX5 and TaNAC2-5A. In contrast, expression of these genes in silenced TaCKX1 was downregulated. Silenced TaCKX1 T2 lines with expression decreased by 47% had significantly higher thousand grain weight (TGW) and seedling root mass. Silenced TaCKX2 T2 lines with expression of TaCKX2.2.1 and TaCKX2.2.2 decreased by 33% and 30%, respectively, had significantly higher chlorophyll content in flag leaves. TaCKX GFM expression, phytohormone metabolism and phenotype were additionally modified by Agrobacterium-mediated transformation. Two novel phytohormones, phenylacetic acid (PAA) and topolins, lack of gibberellic acid (GA) and changed phytohormone contents in the 7 days after pollination (DAP) spikes of the awned-spike cultivar compared to a previously tested, awnless one, were detected. We documented that major mechanisms of coregulation of the expression of TaCKX GFMs were similar in different spring wheat cultivars, but, depending on content and composition of phytohormones, regulation of yield-related traits was variously impacted.
Collapse
Affiliation(s)
- Bartosz Jablonski
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (B.J.); (J.B.)
| | - Andrzej Bajguz
- Laboratory of Plant Biochemistry, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Joanna Bocian
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (B.J.); (J.B.)
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland;
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (B.J.); (J.B.)
- Correspondence:
| |
Collapse
|
38
|
Ang MCY, Dhar N, Khong DT, Lew TTS, Park M, Sarangapani S, Cui J, Dehadrai A, Singh GP, Chan-Park MB, Sarojam R, Strano M. Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition. ACS Sens 2021; 6:3032-3046. [PMID: 34375072 DOI: 10.1021/acssensors.1c01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic auxins such as 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) have been extensively used in plant tissue cultures and as herbicides because they are chemically more stable and potent than most endogenous auxins. A tool for rapid in planta detection of these compounds will enhance our knowledge about hormone distribution and signaling and facilitate more efficient usage of synthetic auxins in agriculture. In this work, we show the development of real-time and nondestructive in planta NAA and 2,4-D nanosensors based on the concept of corona phase molecular recognition (CoPhMoRe), to replace the current state-of-the-art sensing methods that are destructive and laborious. By designing a library of cationic polymers wrapped around single-walled carbon nanotubes with general affinity for chemical moieties displayed on auxins and its derivatives, we developed selective sensors for these synthetic auxins, with a particularly large quenching response to NAA (46%) and a turn-on response to 2,4-D (51%). The NAA and 2,4-D nanosensors are demonstrated in planta across several plant species including spinach, Arabidopsis thaliana (A. thaliana), Brassica rapa subsp. chinensis (pak choi), and Oryza sativa (rice) grown in various media, including soil, hydroponic, and plant tissue culture media. After 5 h of 2,4-D supplementation to the hydroponic medium, 2,4-D is seen to accumulate in susceptible dicotyledon pak choi leaves, while no uptake is observed in tolerant monocotyledon rice leaves. As such, the 2,4-D nanosensor had demonstrated its capability for rapid testing of herbicide susceptibility and could help elucidate the mechanisms of 2,4-D transport and the basis for herbicide resistance in crops. The success of the CoPhMoRe technique for measuring these challenging plant hormones holds tremendous potential to advance the plant biology study.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Niha Dhar
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore 117604, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Aniket Dehadrai
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Mary B. Chan-Park
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore 117604, Singapore
| | - Michael Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Perez VC, Dai R, Bai B, Tomiczek B, Askey BC, Zhang Y, Rubin GM, Ding Y, Grenning A, Block AK, Kim J. Aldoximes are precursors of auxins in Arabidopsis and maize. THE NEW PHYTOLOGIST 2021; 231:1449-1461. [PMID: 33959967 PMCID: PMC8282758 DOI: 10.1111/nph.17447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 05/03/2023]
Abstract
Two natural auxins, phenylacetic acid (PAA) and indole-3-acetic acid (IAA), play crucial roles in plant growth and development. One route of IAA biosynthesis uses the glucosinolate intermediate indole-3-acetaldoxime (IAOx) as a precursor, which is thought to occur only in glucosinolate-producing plants in Brassicales. A recent study showed that overproducing phenylacetaldoxime (PAOx) in Arabidopsis increases PAA production. However, it remains unknown whether this increased PAA resulted from hydrolysis of PAOx-derived benzyl glucosinolate or, like IAOx-derived IAA, is directly converted from PAOx. If glucosinolate hydrolysis is not required, aldoxime-derived auxin biosynthesis may occur beyond Brassicales. To better understand aldoxime-derived auxin biosynthesis, we conducted an isotope-labelled aldoxime feeding assay using an Arabidopsis glucosinolate-deficient mutant sur1 and maize, and transcriptomics analysis. Our study demonstrated that the conversion of PAOx to PAA does not require glucosinolates in Arabidopsis. Furthermore, maize produces PAA and IAA from PAOx and IAOx, respectively, indicating that aldoxime-derived auxin biosynthesis also occurs in maize. Considering that aldoxime production occurs widely in the plant kingdom, aldoxime-derived auxin biosynthesis is likely to be more widespread than originally believed. A genome-wide transcriptomics study using PAOx-overproduction plants identified complex metabolic networks among IAA, PAA, phenylpropanoid and tryptophan metabolism.
Collapse
Affiliation(s)
- Veronica C. Perez
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Bing Bai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL, 32611
| | - Bryce C. Askey
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Yi Zhang
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | - Garret M. Rubin
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | | | - Anna K. Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
41
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
42
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
43
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
44
|
Desmet S, Saeys Y, Verstaen K, Dauwe R, Kim H, Niculaes C, Fukushima A, Goeminne G, Vanholme R, Ralph J, Boerjan W, Morreel K. Maize specialized metabolome networks reveal organ-preferential mixed glycosides. Comput Struct Biotechnol J 2021; 19:1127-1144. [PMID: 33680356 PMCID: PMC7890092 DOI: 10.1016/j.csbj.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the scientific and economic importance of maize, little is known about its specialized metabolism. Here, five maize organs were profiled using different reversed-phase liquid chromatography-mass spectrometry methods. The resulting spectral metadata, combined with candidate substrate-product pair (CSPP) networks, allowed the structural characterization of 427 of the 5,420 profiled compounds, including phenylpropanoids, flavonoids, benzoxazinoids, and auxin-related compounds, among others. Only 75 of the 427 compounds were already described in maize. Analysis of the CSPP networks showed that phenylpropanoids are present in all organs, whereas other metabolic classes are rather organ-enriched. Frequently occurring CSPP mass differences often corresponded with glycosyl- and acyltransferase reactions. The interplay of glycosylations and acylations yields a wide variety of mixed glycosides, bearing substructures corresponding to the different biochemical classes. For example, in the tassel, many phenylpropanoid and flavonoid-bearing glycosides also contain auxin-derived moieties. The characterized compounds and mass differences are an important step forward in metabolic pathway discovery and systems biology research. The spectral metadata of the 5,420 compounds is publicly available (DynLib spectral database, https://bioit3.irc.ugent.be/dynlib/).
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, B-9052 Gent, Belgium.,Data Mining and Modelling for Biomedicine, Center for Inflammation Research, VIB, B-9052 Gent, Belgium
| | - Kevin Verstaen
- Data Mining and Modelling for Biomedicine, Center for Inflammation Research, VIB, B-9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche BIOPI EA3900, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Hoon Kim
- Department of Biochemistry and the U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, United States
| | - Claudiu Niculaes
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,VIB Metabolomics Core Ghent, VIB, B-9052 Gent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - John Ralph
- Department of Biochemistry and the U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| |
Collapse
|
45
|
Fadiji AE, Ayangbenro AS, Babalola OO. Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. J Appl Genet 2021; 62:339-351. [PMID: 33486715 DOI: 10.1007/s13353-021-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
To ensure food security for the ever-increasing world's population, it is important to explore other alternatives for enhancing plant productivity. This study is aimed at identifying the putative plant growth-promoting (PGP) and endophytic gene clusters in root-associated endophytic microbes from maize root and to also verify if their abundance is affected by different farming practices. To achieve this, we characterize endophytic microbiome genes involved in PGP and endophytic lifestyle inside maize root using the shotgun metagenomic approach. Our results revealed the presence of genes involved in PGP activities such as nitrogen fixation, HCN biosynthesis, siderophore, 4-hydroxybenzoate, ACC deaminase, phenazine, phosphate solubilization, butanediol, methanol utilization, acetoin, nitrogen metabolism, and IAA biosynthesis. We also identify genes involved in stress resistance such as glutathione, catalase, and peroxidase. Our results further revealed the presence of putative genes involved in endophytic behaviors such as aerotaxis, regulator proteins, motility mechanisms, flagellum biosynthesis, nitrogen regulation, regulation of carbon storage, formation of biofilm, reduction of nitric oxide, regulation of beta-lactamase resistance, type III secretion, type IV conjugal DNA, type I pilus assembly, phosphotransferase system (PTS), and ATP-binding cassette (ABC). Our study suggests a high possibility in the utilization of endophytic microbial community for plant growth promotion, biocontrol activities, and stress mitigation. Further studies in ascertaining this claim through culturing of the beneficial isolates as well as pot and field experiments are necessary.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa.
| |
Collapse
|
46
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
47
|
Wu JJ, Huang JW, Deng WL. Phenylacetic Acid and Methylphenyl Acetate From the Biocontrol Bacterium Bacillus mycoides BM02 Suppress Spore Germination in Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2020; 11:569263. [PMID: 33329425 PMCID: PMC7728801 DOI: 10.3389/fmicb.2020.569263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Bacillus mycoides strain BM02 originally isolated from the tomato rhizosphere was found to have beneficial functions in tomato by promoting plant growth and reducing the severity of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Cytological experiments demonstrated B. mycoides BM02 reduced Fol invasion by reducing spore attachment and increasing hyphal deformation in hydroponics-grown tomato root tissues. Two volatile antifungal compounds, phenylacetic acid (PAA) and methylphenyl acetate (MPA), were identified from the culture filtrates of B. mycoides BM02 by GC-MS analysis. Chemically synthesized PAA, and to a lower extent MPA, suppressed spore germination but have no effects on the hyphal growth of Fol. Our results indicated that the biocontrol agent B. mycoides BM02 produced an array of bioactive compounds including PAA and MPA to suppress plant diseases caused by Fol and other pathogenic microorganisms.
Collapse
Affiliation(s)
- Je-Jia Wu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan.,Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan
| | - Jenn-Wen Huang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan.,Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan
| | - Wen-Ling Deng
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan.,Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
48
|
Aoi Y, Hira H, Hayakawa Y, Liu H, Fukui K, Dai X, Tanaka K, Hayashi KI, Zhao Y, Kasahara H. UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochem Biophys Res Commun 2020; 532:244-250. [PMID: 32868079 PMCID: PMC7641881 DOI: 10.1016/j.bbrc.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
Abstract
Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hayao Hira
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuya Hayakawa
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hongquan Liu
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Keita Tanaka
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
49
|
Kaneko S, Cook SD, Aoi Y, Watanabe A, Hayashi KI, Kasahara H. An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2020; 61:1724-1732. [PMID: 32697828 DOI: 10.1093/pcp/pcaa098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Auxin is a key regulator of plant growth and development. Indole-3-acetic acid (IAA), a plant auxin, is mainly produced from tryptophan via indole-3-pyruvate (IPA) in both bryophytes and angiosperms. Angiosperms have multiple, well-documented IAA inactivation pathways, involving conjugation to IAA-aspartate (IAA-Asp)/glutamate by the GH3 auxin-amido synthetases, and oxidation to 2-oxindole-3-acetic acid (oxIAA) by the DAO proteins. However, IAA biosynthesis and inactivation processes remain elusive in lycophytes, an early lineage of spore-producing vascular plants. In this article, we studied IAA biosynthesis and inactivation in the lycophyte Selaginella moellendorffii. We demonstrate that S. moellendorffii mainly produces IAA from the IPA pathway for the regulation of root growth and response to high temperature, similar to the angiosperm Arabidopsis. However, S. moellendorffii exhibits a unique IAA metabolite profile with high IAA-Asp and low oxIAA levels, distinct from Arabidopsis and the bryophyte Marchantia polymorpha, suggesting that the GH3 family is integral for IAA homeostasis in the lycophytes. The DAO homologs in S. moellendorffii share only limited similarity to the well-characterized rice and Arabidopsis DAO proteins. We therefore suggest that these enzymes may have a limited role in IAA homeostasis in S. moellendorffii compared to angiosperms. We provide new insights into the functional diversification of auxin metabolic genes in the evolution of land plants.
Collapse
Affiliation(s)
- Shutaro Kaneko
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Sam David Cook
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- JSPS International Research Fellow, The Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Akie Watanabe
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
50
|
Matsuura Y, Fukasawa N, Ogita K, Sasabe M, Kakimoto T, Tanaka H. Early Endosomal Trafficking Component BEN2/VPS45 Plays a Crucial Role in Internal Tissues in Regulating Root Growth and Meristem Size in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1027. [PMID: 32754181 PMCID: PMC7366029 DOI: 10.3389/fpls.2020.01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Polar auxin transport is involved in multiple aspects of plant development, including root growth, lateral root branching, embryogenesis, and vasculature development. PIN-FORMED (PIN) auxin efflux proteins exhibit asymmetric distribution at the plasma membrane (PM) and collectively play pivotal roles in generating local auxin accumulation, which underlies various auxin-dependent developmental processes. In previous research, it has been revealed that endosomal trafficking components BEN1/BIG5 (ARF GEF) and BEN2/VPS45 (Sec1/Munc 18 protein) function in intracellular trafficking of PIN proteins in Arabidopsis. Mutations in both BEN1 and BEN2 resulted in defects in polar PIN localization, auxin response gradients, and in root architecture. In this study, we have attempted to gain insight into the developmental roles of these trafficking components. We showed that while genetic or pharmacological disturbances of auxin distribution reduced dividing cells in the root tips and resulted in reduced root growth, the same manipulations had only moderate impact on ben1; ben2 double mutants. In addition, we established transgenic lines in which BEN2/VPS45 is expressed under control of tissue-specific promoters and demonstrated that BEN2/VPS45 regulates the intracellular traffic of PIN proteins in cell-autonomous manner, at least in stele and epidermal cells. Furthermore, BEN2/VPS45 rescued the root architecture defects when expressed in internal tissues of ben1; ben2 double mutants. These results corroborate the roles of the endosomal trafficking component BEN2/VPS45 in regulation of auxin-dependent developmental processes, and suggest that BEN2/VPS45 is required for sustainable root growth, most likely through regulation of tip-ward auxin transport through the internal tissues of root.
Collapse
Affiliation(s)
- Yuki Matsuura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Narumi Fukasawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kosuke Ogita
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hirokazu Tanaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|