1
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
2
|
Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. PLANT PHYSIOLOGY 2023; 193:1772-1796. [PMID: 37310689 PMCID: PMC10602608 DOI: 10.1093/plphys/kiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.
Collapse
Affiliation(s)
- Elena Kreis
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Katharina König
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Melissa Misir
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Song F, Zhou J, Quan M, Xiao L, Lu W, Qin S, Fang Y, Wang D, Li P, Du Q, El-Kassaby YA, Zhang D. Transcriptome and association mapping revealed functional genes respond to drought stress in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829888. [PMID: 35968119 PMCID: PMC9372527 DOI: 10.3389/fpls.2022.829888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Drought frequency and severity are exacerbated by global climate change, which could compromise forest ecosystems. However, there have been minimal efforts to systematically investigate the genetic basis of the response to drought stress in perennial trees. Here, we implemented a systems genetics approach that combines co-expression analysis, association genetics, and expression quantitative trait nucleotide (eQTN) mapping to construct an allelic genetic regulatory network comprising four key regulators (PtoeIF-2B, PtoABF3, PtoPSB33, and PtoLHCA4) under drought stress conditions. Furthermore, Hap_01PtoeIF-2B, a superior haplotype associated with the net photosynthesis, was revealed through allelic frequency and haplotype analysis. In total, 75 candidate genes related to drought stress were identified through transcriptome analyses of five Populus cultivars (P. tremula × P. alba, P. nigra, P. simonii, P. trichocarpa, and P. tomentosa). Through association mapping, we detected 92 unique SNPs from 38 genes and 104 epistatic gene pairs that were associated with six drought-related traits by association mapping. eQTN mapping unravels drought stress-related gene loci that were significantly associated with the expression levels of candidate genes for drought stress. In summary, we have developed an integrated strategy for dissecting a complex genetic network, which facilitates an integrated population genomics approach that can assess the effects of environmental threats.
Collapse
Affiliation(s)
- Fangyuan Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiaxuan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shitong Qin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Spaniol B, Lang J, Venn B, Schake L, Sommer F, Mustas M, Geimer S, Wollman FA, Choquet Y, Mühlhaus T, Schroda M. Complexome profiling on the Chlamydomonas lpa2 mutant reveals insights into PSII biogenesis and new PSII associated proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:245-262. [PMID: 34436580 PMCID: PMC8730698 DOI: 10.1093/jxb/erab390] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.
Collapse
Affiliation(s)
- Benjamin Spaniol
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Julia Lang
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Benedikt Venn
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Lara Schake
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Matthieu Mustas
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Francis-André Wollman
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Yves Choquet
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Nagao R, Yokono M, Kato KH, Ueno Y, Shen JR, Akimoto S. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. PHOTOSYNTHESIS RESEARCH 2021; 149:303-311. [PMID: 34037905 DOI: 10.1007/s11120-021-00849-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| |
Collapse
|
6
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
7
|
Nilsson AK, Pěnčík A, Johansson ON, Bånkestad D, Fristedt R, Suorsa M, Trotta A, Novák O, Mamedov F, Aro EM, Burmeister BL. PSB33 protein sustains photosystem II in plant chloroplasts under UV-A light. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7210-7223. [PMID: 32930769 DOI: 10.1093/jxb/eraa427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants' capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Oskar N Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Rikard Fristedt
- Chalmers University of Technology, Department of Biology and Biology Engineering, Division of Food and Nutrient Science, Gothenburg, Sweden
| | - Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, FI-20014 University of Turku, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, FI-20014 University of Turku, Turku, Finland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, FI-20014 University of Turku, Turku, Finland
| | - Björn Lundin Burmeister
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Independent researcher, Gamlestadstorget, Gothenburg, Sweden
| |
Collapse
|
8
|
Liu X, Yin C, Xiang L, Jiang W, Xu S, Mao Z. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC PLANT BIOLOGY 2020; 20:448. [PMID: 33003994 PMCID: PMC7528333 DOI: 10.1186/s12870-020-02662-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Agricultural yield is closely associated with nitrogen application. Thus, reducing the application of nitrogen without affecting agricultural production remains a challenging task. To understand the metabolic, physiological, and morphological response of wheat (Triticum aestivum) to nitrogen deficiency, it is crucial to identify the genes involved in the activated signaling pathways. RESULTS We conducted a hydroponic experiment using a complete nutrient solution (N1) and a nutrient solution without nitrogen (N0). Wheat plants under nitrogen-deficient conditions (NDC) showed decreased crop height, leaf area, root volume, photosynthetic rate, crop weight, and increased root length, root surface area, root/shoot ratio. It indicates that nitrogen deficiency altered the phenotype of wheat plants. Furthermore, we performed a comprehensive analysis of the phenotype, transcriptome, GO pathways, and KEGG pathways of DEGs identified in wheat grown under NDC. It showed up-regulation of Exp (24), and Nrt (9) gene family members, which increased the nitrogen absorption and down-regulation of Pet (3), Psb (8), Nar (3), and Nir (1) gene family members hampered photosynthesis and nitrogen metabolism. CONCLUSIONS We identified 48 candidate genes that were involved in improved photosynthesis and nitrogen metabolism in wheat plants grown under NDC. These genes may serve as molecular markers for genetic breeding of crops.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China.
- ShanDong Shofine Seed Technology Co., Ltd., Jiangxiang, 272400, Shandong, China.
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Li Xiang
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weitao Jiang
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shaozhuo Xu
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| |
Collapse
|
9
|
Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae. Gene 2020; 748:144685. [PMID: 32334024 DOI: 10.1016/j.gene.2020.144685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
Light-harvesting chlorophyll a/b-binding (Lhc) proteins comprise a plant-specific superfamily involved in photosynthesis and stress responses. Despite their importance, little is known in papaya (Carica papaya), an economically important tree fruit crop as well as a species close to the model plant arabidopsis (Arabidopsis thaliana). This study reports a first genome-wide analysis of Lhc superfamily genes in papaya, and a total of 28 members that represent four defined families or 26 orthologous groups were identified from the papaya genome. The superfamily number is comparable to 28 or 27 reported in castor (Ricinus communis) and jatropha (Jatropha curcas), respectively, two Euphorbiaceous plants also without any recent whole-genome duplication (WGD), but relatively less than 35, 34, 32, 32, 37, 30 or 32 present in cassava (Manihot esculenta), arabidopsis, A. lyrata, A. halleri, Capsella rubella, C. grandiflora, and Eutrema salsugineum, respectively, representative species having experienced one or two recent WGDs. Local duplication was shown to play a predominant role in gene expansion in papaya, castor, and jatropha, which is only confined to the Lhcb1 group. By contrast, WGD plays a relatively more important role in cassava, arabidopsis, and other Brassicaceous plants. Further comparison of Brassicaceous plants revealed that loss of the SEP6 group in arabidopsis is lineage-specific, occurring sometime after papaya-arabidopsis divergence but before the radiation of Brassicaceous plants. Transcriptional profiling revealed a leaf-preferential expression pattern of most CpLhc superfamily genes and their transcript levels were markedly regulated by three abiotic stresses, i.e., mimicking drought, cold, and high salt. These findings not only facilitate further functional studies in papaya, but also improve our knowledge on lineage-specific evolution of this special gene superfamily in Brassicaceae.
Collapse
|
10
|
Zou Z, Yang J. Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz). Gene 2019; 702:171-181. [DOI: 10.1016/j.gene.2019.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
11
|
Energy transfer and distribution in photosystem super/megacomplexes of plants. Curr Opin Biotechnol 2018; 54:50-56. [DOI: 10.1016/j.copbio.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/25/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022]
|