1
|
Chen H, Berg CS, Samuli M, Sotola VA, Sweigart AL, Yuan YW, Fishman L. The genetic architecture of floral trait divergence between hummingbird- and self-pollinated monkeyflower (Mimulus) species. THE NEW PHYTOLOGIST 2024. [PMID: 39697054 DOI: 10.1111/nph.20348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers, Mimulus parishii (self-pollinated) and M. cardinalis (hummingbird-pollinated). We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2 hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size. Our multi-population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits. An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Matthew Samuli
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - V Alex Sotola
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
2
|
Hu W, Chen Y, Xu Z, Liu L, Yan D, Liu M, Yan Q, Zhang Y, Yang L, Gao C, Liu R, Qin W, Miao P, Ma M, Wang P, Gao B, Li F, Yang Z. Natural variations in the Cis-elements of GhRPRS1 contributing to petal colour diversity in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3473-3488. [PMID: 39283921 PMCID: PMC11606410 DOI: 10.1111/pbi.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 11/27/2024]
Abstract
The cotton genus comprises both diploid and allotetraploid species, and the diversity in petal colour within this genus offers valuable targets for studying orthologous gene function differentiation and evolution. However, the genetic basis for this diversity in petal colour remains largely unknown. The red petal colour primarily comes from C, G, K, and D genome species, and it is likely that the common ancestor of cotton had red petals. Here, by employing a clone mapping strategy, we mapped the red petal trait to a specific region on chromosome A07 in upland cotton. Genomic comparisons and phylogenetic analyses revealed that the red petal phenotype introgressed from G. bickii. Transcriptome analysis indicated that GhRPRS1, which encodes a glutathione S-transferase, was the causative gene for the red petal colour. Knocking out GhRPRS1 resulted in white petals and the absence of red spots, while overexpression of both genotypes of GhRPRS1 led to red petals. Further analysis suggested that GhRPRS1 played a role in transporting pelargonidin-3-O-glucoside and cyanidin-3-O-glucoside. Promoter activity analysis indicated that variations in the promoter, but not in the gene body of GhRPRS1, have led to different petal colours within the genus. Our findings provide new insights into orthologous gene evolution as well as new strategies for modifying promoters in cotton breeding.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Yanli Chen
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of AgricultureNanjingChina
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Linqiang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Da Yan
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Miaoyang Liu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Qingdi Yan
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yihao Zhang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Lan Yang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Chenxu Gao
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Renju Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Pengfei Miao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Meng Ma
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Peng Wang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Baibai Gao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoen Yang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Henan Institute of Grain and Cotton ResearchZhengzhouChina
| |
Collapse
|
3
|
Yang W, Yao Y, Deng W, Li X, Cao J, Li J, Yang W, Yu Y, Liu J. PhAN2 regulated Ph3GT silencing changes the flower color and anthocyanin content in petunias. PHYSIOLOGIA PLANTARUM 2024; 176:e14633. [PMID: 39588697 DOI: 10.1111/ppl.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Anthocyanins are important secondary metabolites in plants. After the formation of anthocyanidins, Flavonoid 3-O-glucosyltransferase (3GT) mediated glycosylation first occurs at the C-3 site, forming a stable anthocyanin 3-O-glucoside. Several studies have investigated the function of 3GT using biochemical methods. However, it is necessary to provide further genetic evidence for the role of Ph3GT in petunia (Petunia hybrida). In addition, there is no information regarding the subcellular localization of Ph3GT and the regulation of transcription factors on Ph3GT. In this study, the full-length Ph3GT gene from petunia (Petunia hybrida) was isolated. We found that Ph3GT is localized in the cytoplasm. Ph3GT exhibited high expression levels in the corollas during the coloring period of petunia flowers. VIGS-mediated Ph3GT silencing resulted in a lighter corolla color and a significant decrease in the anthocyanin content in six petunia cultivars. The silencing of Ph3GT affected the expression levels of eight key genes in the anthocyanin synthesis pathway. Additionally, dual luciferase and yeast one-hybrid assays showed that R2R3-MYB transcription factor PhAN2 directly regulates the transcript of Ph3GT.
Collapse
Affiliation(s)
- Wenjie Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Yao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenqi Deng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xin Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahao Cao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jieni Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Weiyuan Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Sánchez-Cabrera M, Narbona E, Arista M, Ortiz PL, Jiménez-López FJ, Fuller A, Carter B, Whittall JB. A multiscale approach to understanding the shared blue-orange flower color polymorphism in two Lysimachia species. BMC PLANT BIOLOGY 2024; 24:905. [PMID: 39350020 PMCID: PMC11441164 DOI: 10.1186/s12870-024-05481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/02/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Polymorphisms are common in nature, but they are rarely shared among closely related species. Polymorphisms could originate through convergence, ancestral polymorphism, or introgression. Although shared neutral genomic variation across species is commonplace, few examples of shared functional traits exist. The blue-orange petal color polymorphisms in two closely related species, Lysimachia monelli and L. arvensis were investigated with UV-vis reflectance spectra, flavonoid biochemistry, and transcriptome comparisons followed by climate niche analysis. RESULTS Similar color morphs between species have nearly identical reflectance spectra, flavonoid biochemistry, and ABP gene expression patterns. Transcriptome comparisons reveal two orange-specific genes directly involved in both blue-orange color polymorphisms: DFR-2 specificity redirects flux from the malvidin to the pelargonidin while BZ1-2 stabilizes the pelargonidin with glucose, producing the orange pelargonidin 3-glucoside. Moreover, a reduction of F3'5'H expression in orange petals also favors pelargonidin production. The climate niches for each color morph are the same between the two species for three temperature characteristics but differ for four precipitation variables. CONCLUSIONS The similarities in reflectance spectra, biochemistry, and ABP genes suggest that a single shift from blue-to-orange shared by both lineages is the most plausible explanation. Our evidence suggests that this persistent flower color polymorphism may represent an ancestrally polymorphic trait that has transcended speciation, yet future analyses are necessary to confidently reject the alternative hypotheses.
Collapse
Affiliation(s)
- Mercedes Sánchez-Cabrera
- Departmento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, España.
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, 41013, España
| | - Montserrat Arista
- Departmento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, España
| | - Pedro L Ortiz
- Departmento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, España
| | - Francisco J Jiménez-López
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos (URJC), Móstoles, 28933, España
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, 28933, España
| | - Amelia Fuller
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Benjamin Carter
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95182, USA
| | - Justen B Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA
| |
Collapse
|
5
|
Majumder J, Subrahmanyeswari T, Gantait S. Natural biosynthesis, pharmacological applications, and sustainable biotechnological production of ornamental plant-derived anthocyanin: beyond colorants and aesthetics. 3 Biotech 2024; 14:175. [PMID: 38855146 PMCID: PMC11153417 DOI: 10.1007/s13205-024-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jayoti Majumder
- Department of Floriculture and Landscaping, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Tsama Subrahmanyeswari
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| |
Collapse
|
6
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
7
|
Backes A, Turchetto C, Mäder G, Segatto ALA, Bonatto SL, Freitas LB. Shades of white: The Petunia long corolla tube clade evolutionary history. Genet Mol Biol 2024; 47:e20230279. [PMID: 38385448 PMCID: PMC10882218 DOI: 10.1590/1415-4757-gmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024] Open
Abstract
Delimiting species is challenging in recently diverged species, and adaptive radiation is fundamental to understanding the evolutionary processes because it requires multiple ecological opportunities associated with adaptation to biotic and abiotic environments. The young Petunia genus (Solanaceae) is an excellent opportunity to study speciation because of its association with pollinators and unique microenvironments. This study evaluated the phylogenetic relationships among a Petunia clade species with different floral syndromes that inhabit several environments. We based our work on multiple individuals per lineage and employed nuclear and plastid phylogenetic markers and nuclear microsatellites. The phylogenetic tree revealed two main groups regarding the elevation of the distribution range, whereas microsatellites showed high polymorphism-sharing splitting lineages into three clusters. Isolation by distance, migration followed by new environment colonization, and shifts in floral syndrome were the motors for lineage differentiation, including infraspecific structuring, which suggests the need for taxonomic revision in the genus.
Collapse
Affiliation(s)
- Alice Backes
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Geraldo Mäder
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ana Lúcia A Segatto
- Universidade Federal de Santa Maria, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | - Sandro L Bonatto
- Pontifícia Universidade Católica do Rio Grande do Sul, A Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Chopy M, Cavallini-Speisser Q, Chambrier P, Morel P, Just J, Hugouvieux V, Rodrigues Bento S, Zubieta C, Vandenbussche M, Monniaux M. Cell layer-specific expression of the homeotic MADS-box transcription factor PhDEF contributes to modular petal morphogenesis in petunia. THE PLANT CELL 2024; 36:324-345. [PMID: 37804091 PMCID: PMC10827313 DOI: 10.1093/plcell/koad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.
Collapse
Affiliation(s)
- Mathilde Chopy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Quentin Cavallini-Speisser
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Pierre Chambrier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Jérémy Just
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Suzanne Rodrigues Bento
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Marie Monniaux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| |
Collapse
|
9
|
Wessinger CA. How the switch to hummingbird pollination has greatly contributed to our understanding of evolutionary processes. THE NEW PHYTOLOGIST 2024; 241:59-64. [PMID: 37853523 PMCID: PMC10843001 DOI: 10.1111/nph.19335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
The evolutionary switch to hummingbird pollination exemplifies complex adaptation, requiring evolutionary change in multiple component traits. Despite this complexity, diverse lineages have converged on hummingbird-adapted flowers on a relatively short evolutionary timescale. Here, I review how features of the genetic basis of adaptation contribute to this remarkable evolutionary lability. Large-effect substitutions, large mutational targets for adaptation, adaptive introgression, and concentrated architecture all contribute to the origin and maintenance of hummingbird-adapted flowers. The genetic features of adaptation are likely shaped by the ecological and geographic context of the switch to hummingbird pollination, with implications for future evolutionary trajectories.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
10
|
Poczai P, D’Agostino N, Deanna R, Portis E. Editorial: Solanaceae VIII: biodiversity, climate change and breeding. Front Genet 2023; 14:1348372. [PMID: 38174047 PMCID: PMC10763236 DOI: 10.3389/fgene.2023.1348372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Péter Poczai
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Museomics Research Group, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nunzio D’Agostino
- University of Naples Federico II, Department of Agricultural Sciences, Portici, Italy
| | - Rocio Deanna
- University of Colorado, Boulder, CO, United States
- Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET-UNC), Córdoba, Argentina
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Turin, Grugliasco, Italy
| |
Collapse
|
11
|
Li G, Michaelis DF, Huang J, Serek M, Gehl C. New insights into the genetic manipulation of the R2R3-MYB and CHI gene families on anthocyanin pigmentation in Petunia hybrida. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108000. [PMID: 37683585 DOI: 10.1016/j.plaphy.2023.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Several R2R3-MYB genes control anthocyanin pigmentation in petunia, and ANTHOCYANIN-2 (AN2) is treated as the main player in petal limbs. However, the actual roles of R2R3-MYBs in the coloration of different floral tissues in the so called "darkly-veined" petunias are still not clear. The genetic background and expression of AN2 paralogs from various petunias with different color patterns were identified. All "darkly-veined" genotypes have the identical mutation in the AN2 gene, but express a different functional paralog - ANTHOCYANIN-4 (AN4) - abundantly in flowers. Constitutive overexpression of PhAN4 in this petunia resulted not only in a fully colored flower but also in a clearly visible pigmentation in the green tissue and roots, which can be rapidly increased by stress conditions. Suppression of AN4 gene resulted in discolored petals and whitish anthers. Interestingly, when a similar white flower phenotype was achieved by knockout of an essential structural gene of anthocyanin biosynthesis - CHALCONE ISOMERASE-A (CHI-A) - the plant responded directly by upregulating of another paralogs - DEEP PURPLE (DPL) and PURPLE HAZE (PHZ). Moreover, we also found that CHI-B can partially substitute for CHI-A in anthers, but not in vegetative tissues. Further, no significant effects on the longevity of white or enhanced colored flowers were observed compared with the wild type. We concluded that endogenous up-regulation of AN4 leads to the restoration of petal color in the "darkly-veined" phenotypes as a result of the breeding process under human selection, and CHI-B is a backup for CHI-A acitvity in some floral tissues.
Collapse
Affiliation(s)
- Guo Li
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Dietz Felix Michaelis
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Junjie Huang
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Margrethe Serek
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Christian Gehl
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
12
|
Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, Rodde N, Baldwin IT. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. Proc Natl Acad Sci U S A 2023; 120:e2308500120. [PMID: 37607232 PMCID: PMC10466192 DOI: 10.1073/pnas.2308500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Meredith C. Schuman
- Department of Geography, University of Zurich, 8006Zurich, Switzerland
- Department of Chemistry, University of Zurich, 8006Zurich, Switzerland
| | - Nathalie Rodde
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre National de Resources Génomiques Végétales, French Plant Genomic Resource Center, Castanet TolosanF-31326, France
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| |
Collapse
|
13
|
Vainio J, Mattila S, Abdou SM, Sipari N, Teeri TH. Petunia dihydroflavonol 4-reductase is only a few amino acids away from producing orange pelargonidin-based anthocyanins. FRONTIERS IN PLANT SCIENCE 2023; 14:1227219. [PMID: 37645465 PMCID: PMC10461392 DOI: 10.3389/fpls.2023.1227219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Anthocyanins are responsible for the color spectrum of both ornamental and natural flowers. However, not all plant species produce all colors. For example, roses are not blue because they do not naturally possess a hydroxylase that opens the pathway for delphinidin and its derivatives. It is more intriguing why some plants do not carry orange or scarlet red flowers with anthocyanins based on pelargonidin, because the precursor for these anthocyanins should be available if anthocyanins are made at all. The key to this is the substrate specificity of dihydroflavonol 4-reductase (DFR), an enzyme located at the branch point between flavonols and anthocyanins. The most common example is petunia, which does not bear orange flowers unless the enzyme is complemented by biotechnology. We changed a few amino acids in the active site of the enzyme and showed that the mutated petunia DFR started to favor dihydrokaempferol, the precursor to orange pelargonidin, in vitro. When transferred to petunia, it produced an orange hue and dramatically more pelargonidin-based anthocyanins in the flowers.
Collapse
Affiliation(s)
- Jere Vainio
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Saku Mattila
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sara M. Abdou
- Horticulture and Product Physiology Group, Wageningen University, Wageningen, Netherlands
| | - Nina Sipari
- Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Wu ZZ, Gan ZW, Zhang YX, Chen SB, Gan CD, Yang K, Yang JY. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. CHEMOSPHERE 2023:139222. [PMID: 37343642 DOI: 10.1016/j.chemosphere.2023.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Hitherto, the effect of vanadium on higher plant growth remains an open topic. Therefore, nontargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to 0.1 mg L-1 (B group) and 0.5 mg L-1 (C group) pentavalent vanadium [(V(V)] versus control (A group) in this study. Results revealed that vanadium exposure significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up- and down-regulated was 21 and 23 in B_vs_A, 27 and 33 in C_vs_A, and 24 and 43 in C_vs_B, respectively. The number for significantly up- and down-regulated differential metabolites was 17 and 15 in B_vs_A, 43 and 20 in C_vs_A, and 24 and 16 in C_vs_B, respectively. Metabolomics and transcriptomics co-analysis characterized three significantly enriched metabolic pathways in C_vs_A comparing group, viz., α-linolenic acid metabolism, flavonoid biosynthesis, and phenylpropanoid biosynthesis, from which some differentially expressed genes and differential metabolites participated. The metabolite of traumatic acid in α-linolenic acid metabolism and apigenin in flavonoid biosynthesis were markedly upregulated, while phenylalanine in phenylpropanoid biosynthesis was remarkably downregulated. The genes of allene oxide cyclase (AOC) and acetyl-CoA acyltransferase (fadA) in α-linolenic acid metabolism, and chalcone synthase (CHS), flavonoid 3'-monooxygenase (CYP75B1), and flavonol synthase (FLS) in flavonoid biosynthesis, and caffeoyl-CoA O-methyltransferase (CCoAOMT) in phenylpropanoid biosynthesis were significantly downregulated. While shikimate O-hydroxycinnamoyltransferase (HCT) in flavanoid and phenylpropanoid biosynthesis were conspicuously upregulated. Briefly, vanadium exposure induces a readjustment yielding in metabolite and the correlative synthetic precursors (transcripts/unigenes) in some branched metabolic pathways. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by vanadium on plant growth and development.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Wei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - You-Xian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Si-Bei Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
15
|
Liu L, Xu H, Zhang W, Xing J, Zhu M, Zhang Y, Wang Y. Genome-Wide Analysis of the BAHD Family in Welsh Onion and CER2-LIKEs Involved in Wax Metabolism. Genes (Basel) 2023; 14:1286. [PMID: 37372466 DOI: 10.3390/genes14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.
Collapse
Affiliation(s)
- Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Huanhuan Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Wanyue Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yuchen Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| |
Collapse
|
16
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
17
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
18
|
Binaghi M, Esfeld K, Mandel T, Freitas LB, Roesti M, Kuhlemeier C. Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species. BMC Biol 2023; 21:58. [PMID: 36941631 PMCID: PMC10029178 DOI: 10.1186/s12915-023-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.
Collapse
Affiliation(s)
- Marta Binaghi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marius Roesti
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland.
| |
Collapse
|
19
|
Jeje O, Ewunkem AJ, Jeffers-Francis LK, Graves JL. Serving Two Masters: Effect of Escherichia coli Dual Resistance on Antibiotic Susceptibility. Antibiotics (Basel) 2023; 12:antibiotics12030603. [PMID: 36978471 PMCID: PMC10044975 DOI: 10.3390/antibiotics12030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances.
Collapse
Affiliation(s)
- Olusola Jeje
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- Department of Biological Sciences, Winston Salem State University, 601 S Martin Luther King Jr Drive, Winston Salem, NC 27110, USA
| | - Liesl K Jeffers-Francis
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
20
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Sun L, Cao S, Zheng N, Kao TH. Analyses of Cullin1 homologs reveal functional redundancy in S-RNase-based self-incompatibility and evolutionary relationships in eudicots. THE PLANT CELL 2023; 35:673-699. [PMID: 36478090 PMCID: PMC9940881 DOI: 10.1093/plcell/koac357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1-Cullin1-F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin.
Collapse
Affiliation(s)
- Linhan Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shiyun Cao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Teh-hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Chen Z, Yuan J, Yao Y, Cao J, Yang W, Long Y, Liu J, Yang W. PhAAT1, encoding an anthocyanin acyltransferase, is transcriptionally regulated by PhAN2 in petunia. PHYSIOLOGIA PLANTARUM 2023; 175:e13851. [PMID: 36631431 DOI: 10.1111/ppl.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anthocyanins widely exist in plants and they are important pigments for color of petals and fruits. They are produced through a multi-step pathway controlled by transcription factor complexes. The anthocyanin skeleton modification is the last reaction in the anthocyanin synthesis pathway, which improves the stability of anthocyanins. Acylation modification is an important modification of anthocyanins. However, the identification and function of anthocyanin acyltransferase genes and their expression regulation are rarely reported. In this study, we identified the petunia anthocyanin acyltransferase gene, PhAAT1. PhAAT1 is located in the cytoplasm and PhAAT1 silencing changed flower color and reduced the stability of anthocyanin. Metabolomics analysis showed that PhAAT1 silencing led to the reduction of p-coumaroylated and caffeoylated anthocyanins. In addition, PhAAT1 was positively regulated by the MYB transcription factor, PhAN2, which directly interacts with the promoter of PhAAT1.
Collapse
Affiliation(s)
- Zeyu Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junwei Yuan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yi Yao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiahao Cao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wenjie Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Weiyuan Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
LaFountain AM, McMahon HE, Reid NM, Yuan YW. To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2023; 237:310-322. [PMID: 36101514 PMCID: PMC10601762 DOI: 10.1111/nph.18486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.
Collapse
Affiliation(s)
- Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Hayley E. McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Noah M. Reid
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| |
Collapse
|
24
|
Lüthi MN, Berardi AE, Mandel T, Freitas LB, Kuhlemeier C. Single gene mutation in a plant MYB transcription factor causes a major shift in pollinator preference. Curr Biol 2022; 32:5295-5308.e5. [PMID: 36473466 DOI: 10.1016/j.cub.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Understanding the molecular basis of reproductive isolation and speciation is a key goal of evolutionary genetics. In the South American genus Petunia, the R2R3-MYB transcription factor MYB-FL regulates the biosynthesis of UV-absorbing flavonol pigments, a major determinant of pollinator preference. MYB-FL is highly expressed in the hawkmoth-pollinated P. axillaris, but independent losses of its activity in sister taxa P. secreta and P. exserta led to UV-reflective flowers and associated pollinator shifts in each lineage (bees and hummingbirds, respectively). We created a myb-fl CRISPR mutant in P. axillaris and studied the effect of this single gene on innate pollinator preference. The mutation strongly reduced the expression of the two key flavonol-related biosynthetic genes but only affected the expression of few other genes. The mutant flowers were UV reflective as expected but additionally contained low levels of visible anthocyanin pigments. Hawkmoths strongly preferred the wild-type P. axillaris over the myb-fl mutant, whereas both social and solitary bee preference depended on the level of visible color of the mutants. MYB-FL, with its specific expression pattern, small number of target genes, and key position at the nexus of flavonol and anthocyanin biosynthetic pathways, provides a striking example of evolution by single mutations of large phenotypic effect.
Collapse
Affiliation(s)
- Martina N Lüthi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Andrea E Berardi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, POB 15053, Porto Alegre, 91501970 Rio Grande do Sul, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
25
|
Pereira AG, Guzmán-Rodriguez S, Freitas LB. Phylogenetic Analyses of Some Key Genes Provide Information on Pollinator Attraction in Solanaceae. Genes (Basel) 2022; 13:2278. [PMID: 36553545 PMCID: PMC9778481 DOI: 10.3390/genes13122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Floral syndromes are known by the conserved morphological traits in flowers associated with pollinator attraction, such as corolla shape and color, aroma emission and composition, and rewards, especially the nectar volume and sugar concentration. Here, we employed a phylogenetic approach to investigate sequences of genes enrolled in the biosynthetic pathways responsible for some phenotypes that are attractive to pollinators in Solanaceae genomes. We included genes involved in visible color, UV-light response, scent emission, and nectar production to test the hypothesis that these essential genes have evolved by convergence under pollinator selection. Our results refuted this hypothesis as all four studied genes recovered the species' phylogenetic relationships, even though some sites were positively selected. We found differences in protein motifs among genera in Solanaceae that were not necessarily associated with the same floral syndrome. Although it has had a crucial role in plant diversification, the plant-pollinator interaction is complex and still needs further investigation, with genes evolving not only under the influence of pollinators, but by the sum of several evolutionary forces along the speciation process in Solanaceae.
Collapse
Affiliation(s)
| | | | - Loreta B. Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
26
|
Guo H, Sun X, Wang B, Wu D, Sun H, Wang Y. The upstream regulatory mechanism of BplMYB46 and the function of upstream regulatory factors that mediate resistance to stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1030459. [PMID: 36388548 PMCID: PMC9640943 DOI: 10.3389/fpls.2022.1030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have shown that the transcription factor BplMYB46 in Betula platyphylla can enhance tolerance to salt and osmotic stress and promote secondary cell wall deposition, and we characterized its downstream regulatory mechanism. However, its upstream regulatory mechanism remains unclear. Here, the promoter activity and upstream regulatory factors of BplMYB46 were studied. Analyses of β-glucuronidase (GUS) staining and activity indicated that BplMYB46 promoter was specific temporal and spatial expression, and its expression can be induced by salt and osmotic stress. We identified three upstream regulatory factors of BplMYB46: BpDof1, BpWRKY3, and BpbZIP3. Yeast-one hybrid assays, GUS activity, chromatin immunoprecipitation, and quantitative real-time polymerase chain reaction revealed that BpDof1, BpWRKY3, and BpbZIP3 can directly regulate the expression of BplMYB46 by specifically binding to Dof, W-box, and ABRE elements in the BplMYB46 promoter, respectively. BpDof1, BpWRKY3, and BpbZIP3 were all localized to the nucleus, and their expressions can be induced by stress. Overexpression of BpDof1, BpWRKY3, and BpbZIP3 conferred the resistance of transgenic birch plants to salt and osmotic stress. Our findings provide new insights into the upstream regulatory mechanism of BplMYB46 and reveal new upstream regulatory genes that mediate resistance to adverse environments. The genes identified in our study provide novel targets for the breeding of forest tree species.
Collapse
Affiliation(s)
- Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaomeng Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Di Wu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hu Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Berardi AE. Floral color is not as simple as it once seemed. SCIENCE ADVANCES 2022; 8:eade2347. [PMID: 36103523 PMCID: PMC9473552 DOI: 10.1126/sciadv.ade2347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 05/25/2023]
Abstract
A false start mutation produces reduced protein and flower color, highlighting the role of mutations affecting protein translation in phenotypic evolution and variation.
Collapse
Affiliation(s)
- Andrea E Berardi
- Harvard University Herbaria, Department of Organismic and Evolutionary Biology, Harvard University.
| |
Collapse
|
28
|
Liang M, Foster CE, Yuan YW. Lost in translation: Molecular basis of reduced flower coloration in a self-pollinated monkeyflower ( Mimulus) species. SCIENCE ADVANCES 2022; 8:eabo1113. [PMID: 36103532 PMCID: PMC9473569 DOI: 10.1126/sciadv.abo1113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Phenotypic evolution is usually attributed to changes in protein function or gene transcription. In principle, mutations that affect protein abundance through enhancing or attenuating protein translation also could be an important source for phenotypic evolution. However, these types of mutations remain largely unexplored in the studies of phenotypic variation in nature. Through fine-scale genetic mapping and functional interrogation, we identify a single nucleotide substitution in an anthocyanin-activating R2R3-MYB gene causing flower color variation between a pair of closely related monkeyflower (Mimulus) species, the hummingbird-pollinated Mimulus cardinalis, and self-pollinated Mimulus parishii. This causal mutation is located in the 5' untranslated region and generates an upstream ATG start codon, leading to attenuated protein translation and reduced flower coloration in the self-pollinated species. Together, our results provide empirical support for the role of mutations affecting protein translation, as opposed to protein function or transcript level, in natural phenotypic variation.
Collapse
Affiliation(s)
- Mei Liang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Caitlin E. Foster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
29
|
Lin Y, Laosatit K, Liu J, Chen J, Yuan X, Somta P, Chen X. The mungbean VrP locus encoding MYB90, an R2R3-type MYB protein, regulates anthocyanin biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:895634. [PMID: 35937322 PMCID: PMC9355716 DOI: 10.3389/fpls.2022.895634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 05/30/2023]
Abstract
Anthocyanins are water-soluble pigments present in several tissues/parts of plants. The pigments provide color and are wildly known for health benefits for human, insect attraction for plant pollination, and stress resistance in plants. Anthocyanin content variations in mungbean [Vigna radiata (L.) Wilczek] were first noticed a long time ago, but the genetic mechanism controlling the anthocyanins in mungbean remains unknown. An F2 population derived from the cross between purple-hypocotyl (V2709) and green-hypocotyl (Sulv1) mungbeans was used to map the VrP locus controlling purple hypocotyl. The VrP locus was mapped to a 78.9-kb region on chromosome 4. Sequence comparison and gene expression analysis identified an R2R3-MYB gene VrMYB90 as the candidate gene for the VrP locus. Haplotype analysis using 124 mungbean accessions suggested that 10 single nucleotide polymorphisms (SNPs) in exon 3 may lead to an abolished expression of VrMYB90 and an absence of anthocyanin accumulation in the hypocotyl of Sulv1 and KPS2. The overexpression of VrMYB90 in mungbean hairy root, tobacco leaf, and Arabidopsis resulted in anthocyanin accumulation (purple color). Gene expression analysis demonstrated that VrMYB90 regulated anthocyanin accumulation in the hypocotyl, stem, petiole, and flowers, and the expression was sensitive to light. VrMYB90 protein may upregulate VrDFR encoding dihydroflavonol 4-reductase at the late biosynthesis step of anthocyanins in mungbeans. These results suggest that VrMYB90 is the dominator in the spatiotemporal regulation of anthocyanin biosynthesis. Our results provide insight into the biosynthesis mechanism of anthocyanin and a theoretical basis for breeding mungbeans.
Collapse
Affiliation(s)
- Yun Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Thailand
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingbing Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Thailand
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
30
|
Bürger M. From the archives: Where the light goes; flower color, chloroplast transport, and phytochrome A. THE PLANT CELL 2022; 34:2570-2571. [PMID: 35474545 PMCID: PMC9252466 DOI: 10.1093/plcell/koac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
|
31
|
Ornamental Flowers Grown in Human Surroundings as a Source of Anthocyanins with High Anti-Inflammatory Properties. Foods 2022; 11:foods11070948. [PMID: 35407035 PMCID: PMC8997809 DOI: 10.3390/foods11070948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Flowers have always accompanied people thanks to their manifold aesthetic properties. Some species have also become a component of the human diet. Recent years have seen an increased interest in edible flowers and, consequently, research has been undertaken to determine their chemical composition. Dyes that are abundantly contained in flowers, whose role is to attract pollinating animals, are recognized substances with health-promoting properties. Anthocyanins are a group of dyes that are very common in petals and other parts of flowers. Studies carried out in the twentieth and twenty-first century on flowers growing in temperate climates have found very strong antioxidant and anti-inflammatory properties of anthocyanins. Therefore, flowers used by humans for centuries to decorate their surroundings may become an easily available source of nutrients and health-promoting substances. This paper discusses the health-promoting properties of anthocyanins and collects literature on anthocyanin content in edible flowers commonly grown on balconies, terraces, and roofs in countries of temperate climate.
Collapse
|
32
|
Jarvis DE, Maughan PJ, DeTemple J, Mosquera V, Li Z, Barker MS, Johnson LA, Whipple CJ. Chromosome-Scale Genome Assembly of Gilia yorkii Enables Genetic Mapping of Floral Traits in an Interspecies Cross. Genome Biol Evol 2022; 14:evac017. [PMID: 35106544 PMCID: PMC8920513 DOI: 10.1093/gbe/evac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.
Collapse
Affiliation(s)
- David E Jarvis
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | - Peter J Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | | | | | - Zheng Li
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | | | |
Collapse
|
33
|
Wheeler LC, Walker JF, Ng J, Deanna R, Dunbar-Wallis A, Backes A, Pezzi PH, Palchetti MV, Robertson HM, Monaghan A, Brandão de Freitas L, Barboza GE, Moyroud E, Smith SD. Transcription factors evolve faster than their structural gene targets in the flavonoid pigment pathway. Mol Biol Evol 2022; 39:6536971. [PMID: 35212724 PMCID: PMC8911815 DOI: 10.1093/molbev/msac044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix–loop–helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Joseph F Walker
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Amy Dunbar-Wallis
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro H Pezzi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - M Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Holly M Robertson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Andrew Monaghan
- Research Computing,University of Colorado, 3100 Marine Street, 597 UCB Boulder, CO 80303
| | - Loreta Brandão de Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Nacional de Córdoba,Haya de la Torre y Medina Allende, Córdoba, Argentina
| | - Edwige Moyroud
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| |
Collapse
|
34
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.743850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flower colour is mainly due to the presence and type of pigments. Pollinator preferences impose selection on flower colour that ultimately acts on flower pigments. Knowing how pollinators perceive flowers with different pigments becomes crucial for a comprehensive understanding of plant-pollinator communication and flower colour evolution. Based on colour space models, we studied whether main groups of pollinators, specifically hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours generated by major pigment groups. We obtain reflectance data and conspicuousness to pollinators of flowers containing one of the pigment groups more frequent in flowers: chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin, delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls, carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied different regions of the colour space models of these pollinators. The four groups of anthocyanins produced a unique cluster of colour loci. Interestingly, differences in colour conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly, and bird visual space models. Aurones-chalcones showed the highest chromatic contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-absorbing flavonoids and anthocyanins presented the lowest values. In the visual model of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates higher colour conspicuousness for main functional groups of pollinators.
Collapse
|