1
|
Lim CJ, Seo HJ, Yin H, Cho NH, Yang HW, Park TH, Kim YJ, Kim WT, Seo DH. MpPUB9, a U-box E3 ubiquitin ligase, acts as a positive regulator by promoting the turnover of MpEXO70.1 under high salinity in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:2343-2363. [PMID: 39387122 PMCID: PMC11579444 DOI: 10.1111/nph.20169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Marchantia polymorpha, occupying a basal position in the monophyletic assemblage of land plants, displays a notable expansion of plant U-box (PUB) proteins compared with those in animals. We elucidated the roles of MpPUB9 in regulating salt stress tolerance in M. polymorpha. MpPUB9 expression was rapidly induced by high salinity and dehydration. MpPUB9 possessed an intact U-box domain in the N-terminus. MpPUB9-Citrine localized to punctate structures and was peripherally associated with microsomal membranes. Phenotypic analyses demonstrate that the hyponastic and epinastic thallus growth phenotypes, which were induced by the overexpression and suppression of MpPUB9, may provoke salt stress-resistant and -susceptible phenotypes, respectively. MpPUB9 was also found to directly interact with the exocyst protein MpEXO70.1, leading to its ubiquitination. Under high-salinity conditions, though the stability of MpPUB9 was dramatically increased, MpEXO70.1 showed slightly faster turnover rates. Transcriptome analyses showed that salt treatment and the overexpression of MpPUB9 co-upregulated the genes related to the modulation of H2O2 and cell wall organization. Overall, our results suggest that MpPUB9 plays a crucial role in the positive regulation of salt stress tolerance, resulting from its interaction with MpEXO70.1 and modulating turnover of the protein under high-salt conditions via the coordination of UPS with autophagy.
Collapse
Affiliation(s)
- Cheol Jin Lim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hyeon Ji Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Haijing Yin
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hee Woong Yang
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Tae Hyeon Park
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Yun Ju Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Dong Hye Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| |
Collapse
|
2
|
Sanmartín M, Rojo E, Kurenda A, Larruy-García B, Zamarreño ÁM, Delgadillo MO, Brito-Gutiérrez P, García-Mina JM, Farmer EE, Sánchez-Serrano JJ. GLR-dependent calcium and electrical signals are not coupled to systemic, oxylipin-based wound-induced gene expression in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:870-882. [PMID: 38725409 DOI: 10.1111/nph.19803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 10/04/2024]
Abstract
In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.
Collapse
Affiliation(s)
- Maite Sanmartín
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - Enrique Rojo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Beatriz Larruy-García
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - M Otilia Delgadillo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Pavel Brito-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jose J Sánchez-Serrano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| |
Collapse
|
3
|
Jibran R, Hill SJ, Lampugnani ER, Hao P, Doblin MS, Bacic A, Vaidya AA, O'Donoghue EM, McGhie TK, Albert NW, Zhou Y, Raymond LG, Schwinn KE, Jordan BR, Bowman JL, Davies KM, Brummell DA. The auronidin flavonoid pigments of the liverwort Marchantia polymorpha form polymers that modify cell wall properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1159-1175. [PMID: 39331793 DOI: 10.1111/tpj.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Plant adaptation from aquatic to terrestrial environments required modifications to cell wall structure and function to provide tolerance to new abiotic and biotic stressors. Here, we investigate the nature and function of red auronidin pigment accumulation in the cell wall of the liverwort Marchantia polymorpha. Transgenic plants with auronidin production either constitutive or absent were analysed for their cell wall properties, including fractionation of polysaccharide and phenolic components. While small amounts of auronidin and other flavonoids were loosely associated with the cell wall, the majority of the pigments were tightly associated, similar to what is observed in angiosperms for polyphenolics such as lignin. No evidence of covalent binding to a polysaccharide component was found: we propose auronidin is present in the wall as a physically entrapped large molecular weight polymer. The results suggested auronidin is a dual function molecule that can both screen excess light and increase wall strength, hydrophobicity and resistance to enzymatic degradation by pathogens. Thus, liverworts have expanded the core phenylpropanoid toolkit that was present in the ancestor of all land plants, to deliver a lineage-specific solution to some of the environmental stresses faced from a terrestrial lifestyle.
Collapse
Affiliation(s)
- Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | | | - Edwin R Lampugnani
- School of Health Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7001, Australia
- AirHealth Pty Limited, Parkville, Victoria, 3052, Australia
| | - Pengfei Hao
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Monika S Doblin
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | | | - Erin M O'Donoghue
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Laura G Raymond
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand
- Te Uru Rākau - New Zealand Forest Service, Ministry for Primary Industries, PO Box 1340, Rotorua, 3040, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L Bowman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, 3800, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
4
|
Berger F. Meiosis as a mechanism for epigenetic reprogramming and cellular rejuvenation. Development 2024; 151:dev203046. [PMID: 39399899 DOI: 10.1242/dev.203046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meiosis is a hallmark of sexual reproduction because it represents the transition from one life cycle to the next and, in animals, meiosis produces gametes. Why meiosis evolved has been debated and most studies have focused on recombination of the parental alleles as the main function of meiosis. However, 40 years ago, Robin Holliday proposed that an essential function of meiosis is to oppose the consequence of successive mitoses that cause cellular aging. Cellular aging results from accumulated defective organelles and proteins and modifications of chromatin in the form of DNA methylation and histone modifications referred to collectively as epigenetic marks. Here, recent findings supporting the hypothesis that meiosis opposes cellular aging are reviewed and placed in the context of the diversity of the life cycles of eukaryotes, including animals, yeast, flowering plants and the bryophyte Marchantia.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
5
|
Wallner ES, Dolan L. Reproducibly oriented cell divisions pattern the prothallus to set up dorsoventrality and de novo meristem formation in Marchantia polymorpha. Curr Biol 2024; 34:4357-4367.e4. [PMID: 39191253 PMCID: PMC11466075 DOI: 10.1016/j.cub.2024.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Land plant bodies develop from stem cells located in meristems. However, we know little about how meristems initiate from non-meristematic cells. The haploid body of bryophytes develops from unicellular spores in isolation from the parental plant, which allows all stages of development to be observed. We discovered that the Marchantia spore undergoes a series of reproducibly oriented cell divisions to generate a flat prothallus on which a meristem later develops de novo. The young sporeling comprises an early cell mass. One cell of the early cell mass elongates and undergoes a formative division that produces the prothalloblast, which initiates prothallus formation. A symmetric division of the prothalloblast followed by two transverse divisions generates a four-celled plate that expands into a flat disc through oblique divisions in three of the four plate-cell-derived quadrants. One quadrant gives rise to a flat flabellum. A notch with a meristem and apical stem cell develops at the margin of the flabellum. The transcription factor Marchantia class III homeodomain-leucine-zipper (MpC3HDZ) is a marker of the first flat prothallus structure and polarizes to the dorsal tissues of flabella and meristems. Mpc3hdz mutants are defective in setting up dorsoventrality and thallus body flatness. We report how a regular set of cell divisions forms the prothallus-the first dorsoventral structure-and how cells on the margin of the prothallus develop a dorsoventralized meristem de novo.
Collapse
Affiliation(s)
| | - Liam Dolan
- Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
6
|
Duckett JG. Plant biology: Mapping meristem morphogenesis in Marchantia. Curr Biol 2024; 34:R909-R910. [PMID: 39378852 DOI: 10.1016/j.cub.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The use of state-of-the-art imaging, underpinned by molecular data, for the first time provides a clear understanding of two fundamental processes in liverworts - the establishment of dorsoventrality and origin of apical meristems. This work opens the door to exploring many new facets of plant morphogenesis.
Collapse
Affiliation(s)
- Jeffrey G Duckett
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
7
|
Zhong R, Adams ER, Ye ZH. Ancient Origin of Acetyltransferases Catalyzing O-acetylation of Plant Cell Wall Polysaccharides. PLANT & CELL PHYSIOLOGY 2024; 65:1388-1398. [PMID: 38915186 DOI: 10.1093/pcp/pcae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Members of the domain of unknown function 231/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases catalyzing the acetylation of plant cell wall polysaccharides, including pectins, mannan, xyloglucan and xylan. However, little is known about the origin and evolution of plant cell wall polysaccharide acetyltransferases. Here, we investigated the biochemical functions of TBL homologs from Klebsormidium nitens, a representative of an early divergent class of charophyte green algae that are considered to be the closest living relatives of land plants, and Marchantia polymorpha, a liverwort that is an extant representative of an ancient lineage of land plants. The genomes of K. nitens and Marchantia polymorpha harbor two and six TBL homologs, respectively. Biochemical characterization of their recombinant proteins expressed in human embryonic kidney 293 cells demonstrated that the two K. nitens TBLs exhibited acetyltransferase activities acetylating the pectin homogalacturonan (HG) and hence were named KnPOAT1 and KnPOAT2. Among the six M. polymorpha TBLs, five (MpPOAT1 to 5) possessed acetyltransferase activities toward pectins and the remaining one (MpMOAT1) catalyzed 2-O- and 3-O-acetylation of mannan. While MpPOAT1,2 specifically acetylated HG, MpPOAT3,4,5 could acetylate both HG and rhamnogalacturonan-I. Consistent with the acetyltransferase activities of these TBLs, pectins isolated from K. nitens and both pectins and mannan from M. polymorpha were shown to be acetylated. These findings indicate that the TBL genes were recruited as cell wall polysaccharide O-acetyltransferases as early as in charophyte green algae with activities toward pectins and they underwent expansion and functional diversification to acetylate various cell wall polysaccharides during evolution of land plants.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Golubova D, Tansley C, Su H, Patron NJ. Engineering Nicotiana benthamiana as a platform for natural product biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102611. [PMID: 39098308 DOI: 10.1016/j.pbi.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Nicotiana benthamiana is a model plant, widely used for research. The susceptibility of young plants to Agrobacterium tumefaciens has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of N. benthamiana for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.
Collapse
Affiliation(s)
- D Golubova
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C Tansley
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - H Su
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - N J Patron
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
9
|
Guerrero S, Roces V, García-Campa L, Valledor L, Meijón M. Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2226-2241. [PMID: 39109947 DOI: 10.1111/jipb.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Recent studies have documented plant responses to climate change extensively, particularly to single-stress exposures. However, critical factors for stress survival, such as sexual differentiation, are not often considered. The dioicous Marchantia polymorpha stands as an evolutionary milestone, potentially preserving ancestral traits from the early colonizers. In this study, we employed proteomic analyses complemented with physiological monitoring to investigate combined heat and drought responses in Tak-1 (male) and Tak-2 (female) accessions of this liverwort. Additionally, targeted transcriptomics was conducted using different natural populations from contrasting environments. Our findings revealed sex-biased dynamics among natural accessions, particularly evident under control conditions and during early stress responses. Although Tak-2 exhibited greater diversity than Tak-1 under control conditions, male accession demonstrated distinct and more rapid stress sensing and signaling. These differences in stress response appeared to be strongly related to sex-specific plasticity influenced by geoclimatic origin. Furthermore, we established distinct protein gene ages and genomic distribution trends, underscoring the importance of protein diversification over time. This study provides an evolutionary perspective on sexual divergence and stress emergence employing a systems biology approach, which allowed for the establishment of global and sex-specific interaction networks in the stress response.
Collapse
Affiliation(s)
- Sara Guerrero
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Víctor Roces
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Lara García-Campa
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Mónica Meijón
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| |
Collapse
|
10
|
Robinson K, Chia KS, Guyon A, Schornack S, Carella P. An efficient sulfadiazine selection scheme for stable transformation in the model liverwort Marchantia polymorpha. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5585-5591. [PMID: 38824404 PMCID: PMC11427837 DOI: 10.1093/jxb/erae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/06/2024] [Indexed: 06/03/2024]
Abstract
Plant macroevolutionary studies leverage the phylogenetic position of non-flowering model systems like the liverwort Marchantia polymorpha to investigate the origin and evolution of key plant processes. To date, most molecular genetic studies in Marchantia rely on hygromycin and/or chlorsulfuron herbicide resistance markers for the selection of stable transformants. Here, we used a sulfonamide-resistant dihydropteroate synthase (DHPS) gene to enable sulfadiazine-based transformation selection in M. polymorpha. We demonstrate the reliability of sulfadiazine selection on its own and in combination with existing hygromycin and chlorsulfuron selection schemes through transgene stacking experiments. The utility of this system is further demonstrated through confocal microscopy of a triple transgenic line carrying fluorescent proteins labelling the plasma membrane, cortical microtubules, and the nucleus. Collectively, our findings and resources broaden the capacity to genetically manipulate the increasingly popular model liverwort M. polymorpha.
Collapse
Affiliation(s)
- Kayla Robinson
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Alex Guyon
- University of Cambridge, Sainsbury Laboratory, Bateman Street, Cambridge, CB2 1LRUK
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, Bateman Street, Cambridge, CB2 1LRUK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
11
|
Yelina NE, Frangedakis E, Wang Z, Schreier TB, Rever J, Tomaselli M, Forestier ECF, Billakurthi K, Ren S, Bai Y, Stewart-Wood J, Haseloff J, Zhong S, Hibberd JM. Streamlined regulation of chloroplast development in the liverwort Marchantia polymorpha. Cell Rep 2024; 43:114696. [PMID: 39235940 DOI: 10.1016/j.celrep.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Zhemin Wang
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Sibo Ren
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yahui Bai
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Julia Stewart-Wood
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK.
| |
Collapse
|
12
|
Frangedakis E, Yelina NE, Billakurthi K, Hua L, Schreier T, Dickinson PJ, Tomaselli M, Haseloff J, Hibberd JM. MYB-related transcription factors control chloroplast biogenesis. Cell 2024; 187:4859-4876.e22. [PMID: 39047726 DOI: 10.1016/j.cell.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.
Collapse
Affiliation(s)
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
13
|
Tse SW, Annese D, Romani F, Guzman-Chavez F, Bonter I, Forestier E, Frangedakis E, Haseloff J. Optimizing Promoters and Subcellular Localization for Constitutive Transgene Expression in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1298-1309. [PMID: 38822700 PMCID: PMC11369823 DOI: 10.1093/pcp/pcae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Marchantia polymorpha has become an important model system for comparative studies and synthetic biology. The systematic characterization of genetic elements would make heterologous gene expression more predictable in this test bed for gene circuit assembly and bioproduction. Yet, the toolbox of genetic parts for Marchantia includes only a few constitutive promoters that need benchmarking to assess their utility. We compared the expression patterns of previously characterized and new constitutive promoters. We found that driving expression with the double enhancer version of the cauliflower mosaic virus 35S promoter (pro35S × 2) provided the highest yield of proteins, although it also inhibits the growth of transformants. In contrast, promoters derived from the Marchantia genes for ETHYLENE RESPONSE FACTOR 1 and the CLASS II HOMEODOMAIN-LEUCINE ZIPPER protein drove expression to higher levels across all tissues without a growth penalty and can provide intermediate levels of gene expression. In addition, we showed that the cytosol is the best subcellular compartment to target heterologous proteins for higher levels of expression without a significant growth burden. To demonstrate the potential of these promoters in Marchantia, we expressed RUBY, a polycistronic betalain synthesis cassette linked by P2A sequences, to demonstrate coordinated expression of metabolic enzymes. A heat-shock-inducible promoter was used to further mitigate growth burdens associated with high amounts of betalain accumulation. We have expanded the existing tool kit for gene expression in Marchantia and provided new resources for the Marchantia research community.
Collapse
Affiliation(s)
- Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Fernando Guzman-Chavez
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, México
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Edith Forestier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
14
|
Ren X, Zhang X, Qi X, Zhang T, Wang H, Twell D, Gong Y, Fu Y, Wang B, Kong H, Xu B. The BNB-GLID module regulates germline fate determination in Marchantia polymorpha. THE PLANT CELL 2024; 36:3824-3837. [PMID: 39041486 PMCID: PMC11371191 DOI: 10.1093/plcell/koae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.
Collapse
Affiliation(s)
- Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaotong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yu Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baichen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
15
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
17
|
Jibran R, Tahir J, Andre CM, Janssen BJ, Drummond RSM, Albert NW, Zhou Y, Davies KM, Snowden KC. DWARF27 and CAROTENOID CLEAVAGE DIOXYGENASE 7 genes regulate release, germination and growth of gemma in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2024; 15:1358745. [PMID: 38984156 PMCID: PMC11231376 DOI: 10.3389/fpls.2024.1358745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Strigolactones (SLs), a class of carotenoid-derived hormones, play a crucial role in flowering plants by regulating underground communication with symbiotic arbuscular mycorrhizal fungi (AM) and controlling shoot and root architecture. While the functions of core SL genes have been characterized in many plants, their roles in non-tracheophyte plants like liverworts require further investigation. In this study, we employed the model liverwort species Marchantia polymorpha, which lacks detectable SL production and orthologs of key SL biosynthetic genes, including CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) and MORE AXILLARY GROWTH 1 (MAX1). However, it retains some SL pathway components, including DWARF27 (D27) and CCD7. To help elucidate the function of these remaining components in M. polymorpha, knockout mutants were generated for MpD27-1, MpD27-2 and MpCCD7. Phenotypic comparisons of these mutants with the wild-type control revealed a novel role for these genes in regulating the release of gemmae from the gemma cup and the germination and growth of gemmae in the dark. Mpd27-1, Mpd27-2, and Mpccd7 mutants showed lower transcript abundance of genes involved in photosynthesis, such as EARLY LIGHT INDUCED (ELI), and stress responses such as LATE EMBRYOGENESIS ABUNDANT (LEA) but exhibited higher transcript levels of ETHYLENE RESPONSE FACTORS (ERFs) and SL and carotenoid related genes, such as TERPENE SYNTHASE (TS), CCD7 and LECITHIN-RETINAL ACYL TRANSFERASE (LRAT). Furthermore, the mutants of M. polymorpha in the SL pathway exhibited increased contents of carotenoid. This unveils a previously unrecognized role for MpD27-1, MpD27-2 and MpCCD7 in controlling release, germination, and growth of gemmae in response to varying light conditions. These discoveries enhance our comprehension of the regulatory functions of SL biosynthesis genes in non-flowering plants.
Collapse
Affiliation(s)
- Rubina Jibran
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jibran Tahir
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Christelle M Andre
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Bart J Janssen
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Revel S M Drummond
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Yanfei Zhou
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Kevin M Davies
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Kimberley C Snowden
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
18
|
Shen C, Xu H, Huang WZ, Zhao Q, Zhu RL. Is RNA editing truly absent in the complex thalloid liverworts (Marchantiopsida)? Evidence of extensive RNA editing from Cyathodium cavernarum. THE NEW PHYTOLOGIST 2024; 242:2817-2831. [PMID: 38587065 DOI: 10.1111/nph.19750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Xu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiong Zhao
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Tiantong National Station of Forest Ecosystem, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Duckett JG, Pressel S, Kowal J. The biology of Marchantia polymorpha subsp . ruderalis Bischl. & Boissel. Dub in nature. FRONTIERS IN PLANT SCIENCE 2024; 15:1339832. [PMID: 38872896 PMCID: PMC11169808 DOI: 10.3389/fpls.2024.1339832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Introduction Though used as the model liverwort in culture for several decades, the biology of Marchantia polymorpha subsp. ruderalis in nature has never been documented in detail in a single account. Methods Here we synthesize routine field observations documented with hundreds of images of M. ruderalis colonies (or groups) showing sex differentiation over 3 years on two populations of M. ruderalis after major heathland fires in 2020. Results Initial post-fire establishment is from airborne spores rather than a spore bank but thereafter spread is via gemmae which have less exacting germination requirements. Young sporelings are highly gemmiferous but gemmae production becomes less frequent after sex organ formation. Over the course of a year there are up to three waves of carpocephalum production with the overwhelming majority of antheridiophores appearing 2-3 months ahead of the archegoniophores though no differences in growth rates were apparent between male and female thalli. Spermatozoids are produced almost continuously throughout the year, whilst sporophyte maturation is restricted to the summer months. Discussion Because of the asynchrony between antheridiophore and archegoniophore production a 1:1 sex ratio is only apparent over this period. The spring months see an excess of males with more females in the summer. An almost 100% fertilization rate, with fertilization distances of up to 19 m far exceeding those in all other bryophytes, is attributed to vast spermatozoid production for most of the year, dispersal on surface oil films between thalli and highly effective intra-thallus spermatozoid transport via the pegged-rhizoid water-conducting system. Archegoniophores do develop on female-only populations but have shorter stalks than those where fertilization has occurred. Eventual disappearance post fires is attributed to a fall in topsoil nutrient levels preventing new sporeling establishment and competition from Ceratodon purpureus and Polytrichum spp. A major drought in the summer of 2022 almost wiped out the heathland Marchantia populations but all the other bryophytes survived.
Collapse
Affiliation(s)
| | - Silvia Pressel
- Research, The Natural History Museum, London, United Kingdom
| | - Jill Kowal
- Department of Ecosystem Stewardship, Royal Botanic Gardens Kew, London, United Kingdom
| |
Collapse
|
20
|
Romani F, Sauret-Güeto S, Rebmann M, Annese D, Bonter I, Tomaselli M, Dierschke T, Delmans M, Frangedakis E, Silvestri L, Rever J, Bowman JL, Romani I, Haseloff J. The landscape of transcription factor promoter activity during vegetative development in Marchantia. THE PLANT CELL 2024; 36:2140-2159. [PMID: 38391349 PMCID: PMC11132968 DOI: 10.1093/plcell/koae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024]
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.
Collapse
Affiliation(s)
- Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ignacio Romani
- Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, Bernal, Buenos Aires 1876, Argentina
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| |
Collapse
|
21
|
Lam AHC, Cooke A, Wright H, Lawson DM, Charpentier M. Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants. Curr Biol 2024; 34:2212-2220.e7. [PMID: 38642549 DOI: 10.1016/j.cub.2024.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
Collapse
Affiliation(s)
- Anson H C Lam
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Aisling Cooke
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hannah Wright
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - David M Lawson
- John Innes Centre, Biochemistry and Metabolism Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Myriam Charpentier
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
22
|
Li M, Boisson-Dernier A, Bertoldi D, Ardini F, Larcher R, Grotti M, Varotto C. Elucidation of arsenic detoxification mechanism in Marchantia polymorpha: The role of ACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134088. [PMID: 38555672 DOI: 10.1016/j.jhazmat.2024.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.
Collapse
Affiliation(s)
- Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Aurélien Boisson-Dernier
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | - Daniela Bertoldi
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Roberto Larcher
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
23
|
Furuya T, Saegusa N, Yamaoka S, Tomoita Y, Minamino N, Niwa M, Inoue K, Yamamoto C, Motomura K, Shimadzu S, Nishihama R, Ishizaki K, Ueda T, Fukaki H, Kohchi T, Fukuda H, Kasahara M, Araki T, Kondo Y. A non-canonical BZR/BES transcription factor regulates the development of haploid reproductive organs in Marchantia polymorpha. NATURE PLANTS 2024; 10:785-797. [PMID: 38605238 DOI: 10.1038/s41477-024-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Natsumi Saegusa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Tomoita
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Masaki Niwa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- GRA&GREEN Inc., Nagoya, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Kazuki Motomura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Japanese Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shunji Shimadzu
- Graduate School of Science, Kobe University, Kobe, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | | | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
24
|
Hisanaga T. Making Sense of Antisense Transcriptional Control during Sexual Differentiation of the Liverwort, Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:319-321. [PMID: 38465452 DOI: 10.1093/pcp/pcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| |
Collapse
|
25
|
Ponce de León I. Evolution of immunity networks across embryophytes. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102450. [PMID: 37704543 DOI: 10.1016/j.pbi.2023.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Land plants (embryophytes), including vascular (tracheophytes) and non-vascular plants (bryophytes), co-evolved with microorganisms since descendants of an algal ancestor colonized terrestrial habitats around 500 million years ago. To cope with microbial pathogen infections, embryophytes evolved a complex immune system for pathogen perception and activation of defenses. With the growing number of sequenced genomes and transcriptome datasets from algae, bryophytes, tracheophytes, and available plant models, comparative analyses are increasing our understanding of the evolution of molecular mechanisms underpinning immune responses in different plant lineages. In this review, recent progress on plant immunity networks is highlighted with emphasis on the identification of key components that shaped immunity against pathogens in bryophytes compared to angiosperms during plant evolution.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
26
|
Valeeva LR, Sannikova AV, Shafigullina NR, Abdulkina LR, Sharipova MR, Shakirov EV. Telomere Length Variation in Model Bryophytes. PLANTS (BASEL, SWITZERLAND) 2024; 13:387. [PMID: 38337920 PMCID: PMC10856949 DOI: 10.3390/plants13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The ends of linear chromosomes of most eukaryotes consist of protein-bound DNA arrays called telomeres, which play essential roles in protecting genome integrity. Despite general evolutionary conservation in function, telomeric DNA is known to drastically vary in length and sequence between different eukaryotic lineages. Bryophytes are a group of early diverging land plants that include mosses, liverworts, and hornworts. This group of ancient land plants recently emerged as a new model for important discoveries in genomics and evolutionary biology, as well as for understanding plant adaptations to a terrestrial lifestyle. We measured telomere length in different ecotypes of model bryophyte species, including Physcomitrium patens, Marchantia polymorpha, Ceratodon purpureus, and in Sphagnum isolates. Our data indicate that all analyzed moss and liverwort genotypes have relatively short telomeres. Furthermore, all analyzed ecotypes and isolates of model mosses and liverworts display evidence of substantial natural variation in telomere length. Interestingly, telomere length also differs between male and female strains of the dioecious liverwort M. polymorpha and dioecious moss C. purpureus. Given that bryophytes are extraordinarily well adapted to different ecological niches from polar to tropical environments, our data will contribute to understanding the impact of natural telomere length variation on evolutionary adaptations in this ancient land plant lineage.
Collapse
Affiliation(s)
- Liia R. Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Anastasia V. Sannikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Nadiya R. Shafigullina
- Institute of Environmental Sciences, Department of General Ecology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Eugene V. Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
27
|
Minamino N, Fujii H, Murata H, Hachinoda S, Kondo Y, Hotta K, Ueda T. Analysis of Plant-Specific ANTH Domain-Containing Protein in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1331-1342. [PMID: 37804254 DOI: 10.1093/pcp/pcad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Haruki Fujii
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Haruhiko Murata
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Sho Hachinoda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yohei Kondo
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
28
|
Tomizawa Y, Minamino N, Shimokawa E, Kawamura S, Komatsu A, Hiwatashi T, Nishihama R, Ueda T, Kohchi T, Kondo Y. Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1343-1355. [PMID: 37797211 DOI: 10.1093/pcp/pcad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M. polymorpha. This dioicous plant species exhibits morphological differences between male and female wild accessions at an early stage of gemmaling growth, although it remains elusive whether the differences are attributable to sex chromosomes. To isolate the effects of sex chromosomes from autosomal polymorphisms, we established a male and female set of recombinant inbred lines (RILs) from a set of male and female wild accessions. We then trained deep learning models to classify the sexes of the RILs and the wild accessions. Our results showed that the trained classifiers accurately classified male and female gemmalings of wild accessions in the first week of growth, confirming the intuition of researchers in a reproducible and objective manner. In contrast, the RILs were less distinguishable, indicating that the differences between the parental wild accessions arose from autosomal variations. Furthermore, we validated our trained models by an 'eXplainable AI' technique that highlights image regions relevant to the classification. Our findings demonstrate that the classifier-based approach provides a powerful tool for analyzing plant species that lack standardized phenotyping metrics.
Collapse
Affiliation(s)
- Yoko Tomizawa
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazak, Aichii, 444-8787 Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Eita Shimokawa
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Takuma Hiwatashi
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazak, Aichii, 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787 Japan
| |
Collapse
|
29
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
30
|
Schornack S, Kamoun S. EVO-MPMI: From fundamental science to practical applications. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102469. [PMID: 37783039 DOI: 10.1016/j.pbi.2023.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
In the unending coevolutionary dance between plants and microbes, each player impacts the evolution of the other. Here, we provide an overview of the burgeoning field of evolutionary molecular plant-microbe interactions (EVO-MPMI)-the study of mechanisms of plant-microbe interactions in the context of their evolutionary history-tracing its progression from foundational science to practical implementation. We present a snapshot of current research and delve into central concepts, such as conserved features and convergent evolution, as well as methodologies such as ancestral reconstruction. Moreover, we shed light on the practical applications of EVO-MPMI, particularly within the realm of disease control. Looking ahead, we discuss potential future trajectories for EVO-MPMI research, spotlighting the innovative tools and technologies propelling the discipline forward.
Collapse
Affiliation(s)
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
31
|
Flores JR, Bippus AC, de Ullivarri CF, Suárez GM, Hyvönen J, Tomescu AMF. Dating the evolution of the complex thalloid liverworts (Marchantiopsida): total-evidence dating analysis supports a Late Silurian-Early Devonian origin and post-Mesozoic morphological stasis. THE NEW PHYTOLOGIST 2023; 240:2137-2150. [PMID: 37697646 DOI: 10.1111/nph.19254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Divergence times based on molecular clock analyses often differ from those derived from total-evidence dating (TED) approaches. For bryophytes, fossils have been excluded from previous assessments of divergence times, and thus, their utility in dating analyses remains unexplored. Here, we conduct the first TED analyses of the complex thalloid liverworts (Marchantiopsida) that include fossils and evaluate macroevolutionary trends in morphological 'diversity' (disparity) and rates. Phylogenetic analyses were performed on a combined dataset of 130 discrete characters and 11 molecular markers (sampled from nuclear, plastid and mitochondrial genomes). Taxon sampling spanned 56 extant species - representing all the orders within Marchantiophyta and extant genera within Marchantiales - and eight fossil taxa. Total-evidence dating analyses support the radiation of Marchantiopsida during Late Silurian-Early Devonian (or Middle Ordovician when the outgroup is excluded) and that of Ricciaceae in the Middle Jurassic. Morphological change rate was high early in the history of the group, but it barely increased after Late Cretaceous. Disparity-through-time analyses support a fast increase in diversity until the Middle Triassic (c. 250 Ma), after which phenotypic evolution slows down considerably. Incorporating fossils in analyses challenges previous assumptions on the affinities of extinct taxa and indicates that complex thalloid liverworts radiated c. 125 Ma earlier than previously inferred.
Collapse
Affiliation(s)
- Jorge R Flores
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, Miguel Lillo 251, San Miguel del Tucumán, CP 4000, Tucumán, Argentina
- Instituto de Paleontología y Sedimentología, Sección Paleobotánica, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel del Tucumán, CP 4000, Tucumán, Argentina
| | - Alexander C Bippus
- Indian Natural Resource Science and Engineering Program + Diversity in STEM, 1 Harpst St, Arcata, CA, 95521, USA
| | - Carmen Fernández de Ullivarri
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, Miguel Lillo 251, San Miguel del Tucumán, CP 4000, Tucumán, Argentina
| | - Guillermo M Suárez
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, Miguel Lillo 251, San Miguel del Tucumán, CP 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 251, T4000JFE, San Miguel de Tucumán, Argentina
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany) & Organismal and Evolutionary Biology & Viikki Plant Science Centre, University of Helsinki, PO Box 7, FI-00014, Helsinki, Finland
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, CA, 95521, USA
| |
Collapse
|
32
|
McDaniel SF. Divergent outcomes of genetic conflict on the UV sex chromosomes of Marchantia polymorpha and Ceratodon purpureus. Curr Opin Genet Dev 2023; 83:102129. [PMID: 37864936 DOI: 10.1016/j.gde.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
In species with separate sexes, the genome must produce two distinct developmental programs. Sexually dimorphic development may be controlled by either sex-limited loci or biased expression of loci transmitted through both sexes. Variation in the gene content of sex-limited chromosomes demonstrates that eukaryotic species differ markedly in the roles of these two mechanisms in governing sexual dimorphism. The bryophyte model systems Marchantia polymorpha and Ceratodon purpureus provide a particularly striking contrast. Although both species possess a haploid UV sex chromosome system, in which females carry a U chromosome and males carry a V, M. polymorpha relies on biased autosomal expression, while in C. purpureus, sex-linked genes drive dimorphism. Framing these genetic architectures as divergent outcomes of genetic conflict highlights comparative genomic analyses to better understand the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, University of Florida, Gainesville, FL 32611-8525, USA.
| |
Collapse
|
33
|
Hisanaga T, Wu S, Schafran P, Axelsson E, Akimcheva S, Dolan L, Li F, Berger F. The ancestral chromatin landscape of land plants. THE NEW PHYTOLOGIST 2023; 240:2085-2101. [PMID: 37823324 PMCID: PMC10952607 DOI: 10.1111/nph.19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Shuangyang Wu
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | | | - Elin Axelsson
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Svetlana Akimcheva
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Liam Dolan
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Fay‐Wei Li
- Boyce Thompson InstituteIthacaNY14853USA
- Plant Biology SectionCornell UniversityIthacaNY14853USA
| | - Frédéric Berger
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| |
Collapse
|
34
|
Hisanaga T, Berger F. Plant reproduction: Ancient origins of male germline differentiation. Curr Biol 2023; 33:R1190-R1192. [PMID: 37989096 DOI: 10.1016/j.cub.2023.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Despite the wide diversity in male sexual development across land plants, new work reveals the conservation of a heterodimer of transcription factors as master regulators of the male germline.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
35
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Hassani D, Lu Y, Ni B, Zhu RL, Zhao Q. The endomembrane system: how does it contribute to plant secondary metabolism? TRENDS IN PLANT SCIENCE 2023; 28:1222-1236. [PMID: 37211450 DOI: 10.1016/j.tplants.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
New organelle acquisition through neofunctionalization of the endomembrane system (ES) with respect to plant secondary metabolism is a key evolutionary strategy for plant adaptation, which is overlooked due to the complexity of angiosperms. Bryophytes produce a broad range of plant secondary metabolites (PSMs), and their simple cellular structures, including unique organelles, such as oil bodies (OBs), highlight them as suitable model to investigate the contribution of the ES to PSMs. In this opinion, we review latest findings on the contribution of the ES to PSM biosynthesis, with a specific focus on OBs, and propose that the ES provides organelles and trafficking routes for PSM biosynthesis, transportation, and storage. Therefore, future research on ES-derived organelles and trafficking routes will provide essential knowledge for synthetic applications.
Collapse
Affiliation(s)
- Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
37
|
Amini S, Doyle JJ, Libault M. The evolving definition of plant cell type. FRONTIERS IN PLANT SCIENCE 2023; 14:1271070. [PMID: 37692436 PMCID: PMC10485272 DOI: 10.3389/fpls.2023.1271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Sahand Amini
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY, United States
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
38
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
39
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
40
|
Zachgo S. Nuclear redox processes in land plant development and stress adaptation. Biol Chem 2023; 404:379-384. [PMID: 36853884 DOI: 10.1515/hsz-2022-0288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Recent findings expanded our knowledge about plant redox regulation in stress responses by demonstrating that redox processes exert crucial nuclear regulatory functions in meristems and other developmental processes. Analyses of redox-modulated transcription factor functions and coregulatory ROXYs, CC-type land-plant specific glutaredoxins, reveal new insights into the redox control of plant transcription factors and participation of ROXYs in plant development. The role for ROS and redox signaling in response to low-oxygen conditions further strengthens the importance of redox processes in meristems and tissue differentiation as well as for adaptation to changing environments effecting food crop productivity.
Collapse
Affiliation(s)
- Sabine Zachgo
- Division of Botany, School of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
41
|
Liang Y, Heyman J, Lu R, De Veylder L. Evolution of wound-activated regeneration pathways in the plant kingdom. Eur J Cell Biol 2023; 102:151291. [PMID: 36709604 DOI: 10.1016/j.ejcb.2023.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Regeneration serves as a self-protective mechanism that allows a tissue or organ to recover its entire form and function after suffering damage. However, the regenerative capacity varies greatly within the plant kingdom. Primitive plants frequently display an amazing regenerative ability as they have developed a complex system and strategy for long-term survival under extreme stress conditions. The regenerative ability of dicot species is highly variable, but that of monocots often exhibits extreme recalcitrance to tissue replenishment. Recent studies have revealed key factors and signals that affect cell fate during plant regeneration, some of which are conserved among the plant lineage. Among these, several members of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors have been implicated in wound signaling, playing crucial roles in the regenerative mechanisms after different types of wounding. An understanding of plant regeneration may ultimately lead to an increased regenerative potential of recalcitrant species, producing more high-yielding, multi-resistant and environmentally friendly crops and ensuring the long-term development of global agriculture.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
42
|
Li D, Dierschke T, Roden S, Chen K, Bowman JL, Chang C, Van de Poel B. A transporter of 1-aminocyclopropane-1-carboxylic acid affects thallus growth and fertility in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 236:2103-2114. [PMID: 36151927 DOI: 10.1111/nph.18510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - Tom Dierschke
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - John L Bowman
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, 3001, Leuven, Belgium
| |
Collapse
|
43
|
Kanazawa T, Nishihama R, Ueda T. Normal oil body formation in Marchantia polymorpha requires functional coat protein complex I proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:979066. [PMID: 36046592 PMCID: PMC9420845 DOI: 10.3389/fpls.2022.979066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 05/13/2023]
Abstract
Eukaryotic cells possess endomembrane organelles equipped with specific sets of proteins, lipids, and polysaccharides that are fundamental for realizing each organelle's specific function and shape. A tightly regulated membrane trafficking system mediates the transportation and localization of these substances. Generally, the secretory/exocytic pathway is responsible for transporting cargo to the plasma membrane and/or the extracellular space. However, in the case of oil body cells in the liverwort Marchantia polymorpha, the oil body, a liverwort-unique organelle, is thought to be formed by secretory vesicle fusion through redirection of the secretory pathway inside the cell. Although their formation mechanism remains largely unclear, oil bodies exhibit a complex and bumpy surface structure. In this study, we isolated a mutant with spherical oil bodies through visual screening of mutants with abnormally shaped oil bodies. This mutant harbored a mutation in a coat protein complex I (COPI) subunit MpSEC28, and a similar effect on oil body morphology was also detected in knockdown mutants of other COPI subunits. Fluorescently tagged MpSEC28 was localized to the periphery of the Golgi apparatus together with other subunits, suggesting that it is involved in retrograde transport from and/or in the Golgi apparatus as a component of the COPI coat. The Mpsec28 mutants also exhibited weakened stiffness of the thalli, suggesting impaired cell-cell adhesion and cell wall integrity. These findings suggest that the mechanism of cell wall biosynthesis is also involved in shaping the oil body in M. polymorpha, supporting the redirection of the secretory pathway inward the cell during oil body formation.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|