1
|
Zhao Y, Liu Y, Zhang F, Wang ZY, Mysore KS, Wen J, Zhou C. The long noncoding RNA LAL contributes to salinity tolerance by modulating LHCB1s' expression in Medicago truncatula. Commun Biol 2024; 7:289. [PMID: 38459083 PMCID: PMC10923924 DOI: 10.1038/s42003-024-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.
Collapse
Affiliation(s)
- Yang Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Feiran Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China.
| |
Collapse
|
2
|
Cisse EHM, Jiang BH, Yin LY, Miao LF, Li DD, Zhou JJ, Yang F. Physio-biochemical and metabolomic responses of the woody plant Dalbergia odorifera to salinity and waterlogging. BMC PLANT BIOLOGY 2024; 24:49. [PMID: 38216904 PMCID: PMC10787392 DOI: 10.1186/s12870-024-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.
Collapse
Affiliation(s)
- El- Hadji Malick Cisse
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | | | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Ling-Feng Miao
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Plant Protection, Hainan University, Haikou, 570228, China
| | - Da-Dong Li
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | - Jing-Jing Zhou
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Fan Yang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
3
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Lou D, Lu S, Chen Z, Lin Y, Yu D, Yang X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice. BMC PLANT BIOLOGY 2023; 23:53. [PMID: 36694135 PMCID: PMC9872327 DOI: 10.1186/s12870-023-04071-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.
Collapse
Affiliation(s)
- Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Suping Lu
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Zhen Chen
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Yi Lin
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Feng X, Meng Q, Zeng J, Yu Q, Xu D, Dai X, Ge L, Ma W, Liu W. Genome-wide identification of sucrose non-fermenting-1-related protein kinase genes in maize and their responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1087839. [PMID: 36618673 PMCID: PMC9815513 DOI: 10.3389/fpls.2022.1087839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Introduction Protein kinases play an important role in plants in response to environmental changes through signal transduction. As a large family of protein kinases, sucrose non-fermenting-1 (SNF1)-related kinases (SnRKs) were found and functionally verified in many plants. Nevertheless, little is known about the SnRK family of Zea mays. Methods Evolutionary relationships, chromosome locations, gene structures, conserved motifs, and cis-elements in promoter regions were systematically analyzed. Besides, tissue-specific and stress-induced expression patterns of ZmSnRKs were determined. Finally, functional regulatory networks between ZmSnRKs and other proteins or miRNAs were constructed. Results and Discussion In total, 60 SnRK genes located on 10 chromosomes were discovered in maize. ZmSnRKs were classified into three subfamilies (ZmSnRK1, ZmSnRK2, and ZmSnRK3), consisting of 4, 14, and 42 genes, respectively. Gene structure analysis showed that 33 of the 42 ZmSnRK3 genes contained only one exon. Most ZmSnRK genes contained at least one ABRE, MBS, and LTR cis-element and a few ZmSnRK genes had AuxRR-core, P-box, MBSI, and SARE ciselements in their promoter regions. The Ka:Ks ratio of 22 paralogous ZmSnRK gene pairs revealed that the ZmSnRK gene family had experienced a purifying selection. Meanwhile, we analyzed the expression profiles of ZmSnRKs, and they exhibited significant differences in various tissues and abiotic stresses. In addition, A total of eight ZmPP2Cs, which can interact with ZmSnRK proteins, and 46 miRNAs, which can target 24 ZmSnRKs, were identified. Generally, these results provide valuable information for further function verification of ZmSnRKs, and improve our understanding of the role of ZmSnRKs in the climate resilience of maize.
Collapse
Affiliation(s)
- Xue Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Quan Meng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lei Ge
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
7
|
Zhang M, Liu L, Chen C, Zhao Y, Pang C, Chen M. Heterologous expression of a Fraxinus velutina SnRK2 gene in Arabidopsis increases salt tolerance by modifying root development and ion homeostasis. PLANT CELL REPORTS 2022; 41:1895-1906. [PMID: 35794394 DOI: 10.1007/s00299-022-02899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
FvSnRK2182 is involved in regulating the growth and stress response. SnRK2 family members are positive regulators of downstream signals in the abscisic acid (ABA) signaling pathway, playing key roles in the plant responses to abiotic stresses. Fraxinus velutina Torr. is a candidate phytoremediator of saline-alkali areas, and is a valuable research subject because of its adaptability in saline soil. We identified a SnRK2 gene in F. velutina (named FvSnRK2182), which was significantly upregulated under salt stress. A bioinformatics analysis showed that FvSnRK2182 has a Ser/Thr kinase domain typical of the SnRK2 subfamily. Compared with wild-type (WT) Arabidopsis, its heterologous expression in Arabidopsis resulted in higher auxin content during seed germination and seedling growth, leading to longer primary roots and more lateral roots. The transgenic lines were better able to tolerate treatments with NaCl (100 mM) and/or ABA (0.2 and 0.5 µM), producing a greater biomass than the WT plants. Under NaCl treatment, the shoots of the transgenic lines had lower Na+ contents and higher K+ contents than the WT plants, and the genes encoding the ion transport-related proteins SOS1, HKT1, NHX1, and AKT1 were significantly upregulated. In addition, the expression of the genes functioning downstream of SnRK2 in the ABA signaling pathway (Rboh, AREB4, ABF2, and ABF3) were significantly upregulated in transgenic lines under NaCl stress. These results showed that expressing FvSnRK2182 in Arabidopsis significantly increased their resistance to ABA and salt stress by regulating root development and maintaining ion homeostasis, which suggests that FvSnRK2182 may be involved in regulating the growth and stress response of F. velutina.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Li Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Chunxiao Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Pang
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
8
|
STN7 Kinase Is Essential for Arabidopsis thaliana Fitness under Prolonged Darkness but Not under Dark-Chilling Conditions. Int J Mol Sci 2022; 23:ijms23094531. [PMID: 35562922 PMCID: PMC9100030 DOI: 10.3390/ijms23094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Reversible phosphorylation of photosystem II light harvesting complexes (LHCII) is a well-established protective mechanism enabling efficient response to changing light conditions. However, changes in LHCII phosphorylation were also observed in response to abiotic stress regardless of photoperiod. This study aimed to investigate the impact of dark-chilling on LHCII phosphorylation pattern in chilling-tolerant Arabidopsis thaliana and to check whether the disturbed LHCII phosphorylation process will impact the response of Arabidopsis to the dark-chilling conditions. We analyzed the pattern of LHCII phosphorylation, the organization of chlorophyll–protein complexes, and the level of chilling tolerance by combining biochemical and spectroscopy techniques under dark-chilling and dark conditions in Arabidopsis mutants with disrupted LHCII phosphorylation. Our results show that during dark-chilling, LHCII phosphorylation decreased in all examined plant lines and that no significant differences in dark-chilling response were registered in tested lines. Interestingly, after 24 h of darkness, a high increase in LHCII phosphorylation was observed, co-occurring with a significant FV/FM parameter decrease. The highest drop of FV/FM was detected in the stn7-1 line–mutant, where the LHCII is not phosphorylated, due to the lack of STN7 kinase. Our results imply that STN7 kinase activity is important for mitigating the adverse effects of prolonged darkness.
Collapse
|