1
|
Zhou Y, Osborne CP. Stomatal dynamics in Alloteropsis semialata arise from the evolving interplay between photosynthetic physiology, stomatal size and biochemistry. PLANT, CELL & ENVIRONMENT 2024; 47:4586-4598. [PMID: 39037305 DOI: 10.1111/pce.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
C4 plants are expected to have faster stomatal movements than C3 species because they tend to have smaller guard cells. However, little is known about how the evolution of C4 photosynthesis influences stomatal dynamics in relation to guard cell size and environmental factors. We studied photosynthetically diverse populations of the grass Alloteropsis semialata, showing that the origin of C4 photosynthesis in this species was associated with a shortening of stomatal guard and subsidiary cells. However, for a given cell size, C4 and C3-C4 intermediate individuals had similar or slower light-induced stomatal opening speeds than C3 individuals. Conversely, when exposed to decreasing light, stomata in C4 plants closed as fast as those in non-C4 plants. Polyploid formation in some C4 plants led to larger stomatal cells and was associated with slower stomatal opening. Conversely, diversification of C4 diploid plants into wetter environments was associated with an acceleration of stomatal opening. Overall, there was significant relationship between light-saturated photosynthesis and stomatal opening speed in the C4 plants, implying that photosynthetic energy production was limiting for stomatal opening. Stomatal dynamics in this wild grass therefore arise from the evolving interplay between photosynthetic physiology and the size and biochemical function of stomatal complexes.
Collapse
Affiliation(s)
- Yanmin Zhou
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Ding H, Shi X, Yuan Z, Chen X, Zhang D, Chen F. Does vegetation greening have a positive effect on global vegetation carbon and water use efficiency? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175589. [PMID: 39173764 DOI: 10.1016/j.scitotenv.2024.175589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Terrestrial ecosystems have undergone significant changes as a result of climate change, profoundly affecting global carbon and water cycling processes. Notably, the synergistic changes in vegetation carbon use efficiency (CUE) and water use efficiency (WUE) and their response to patterns of climate change over the last 40 years are unknown. Therefore, in this study, global vegetation WUE and CUE were inverted using Gross primary productivity (GPP), Net primary productivity (NPP) and total evaporation (ET) data from 1981 to 2019 to reveal their temporal and spatial patterns of change through trend analysis and stability analysis. A stepwise regression algorithm was used to reveal the potential driving law of environmental factors on vegetation WUE and CUE. The results shows that (1) From 1981 to 2019, the global vegetation WUE and CUE showed in a relatively stable state, and the trends of WUE and CUE were -0.00004/year and 0.006 g C m-2 mm-1/year, respectively; (2) the greening of vegetation was the most important cause of the changes in WUE and CUE, and the driving force of rain and heat conditions on the CUE of vegetation was smaller than that of solar radiation and soil water, the regions where CO2 is the dominant factor affecting CUE and WUE are mainly in the north temperate zone; (3) the region of synergistic growth of WUE and CUE accounts for about 31.38 % of the global terrestrial area, and this pattern of change suggests that the global vegetation carbon sink potential is huge, and the popularization of vegetation planting patterns under the synergistic growth of CUE and WUE should be strengthened. The research has shown that vegetation greening is a key factor influencing changes in the WUE and CUE of vegetation, therefore, the implementation of ecological engineering will be an important step in combating climate change.
Collapse
Affiliation(s)
- Hao Ding
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaoliang Shi
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zhe Yuan
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission of the Ministry of Water Resources of China, Wuhan 430010, China; Hubei Key Laboratory of Water Resources & Eco-Environmental Sciences, Wuhan 430010, China.
| | - Xi Chen
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dan Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fei Chen
- Shaanxi Information Engineering Research Institute, Xi'an 710054, China
| |
Collapse
|
3
|
Takaragawa H, Wakayama M. Responses of leaf gas exchange and metabolites to drought stress in different organs of sugarcane and its closely related species Erianthus arundinaceus. PLANTA 2024; 260:90. [PMID: 39256219 PMCID: PMC11387454 DOI: 10.1007/s00425-024-04508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
MAIN CONCLUSION The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.
Collapse
Affiliation(s)
- Hiroo Takaragawa
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Maezato Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan.
| | - Masataka Wakayama
- Integrated Medical and Agricultural School for Public Health, Ehime University, Tōon, Ehime, 791-0295, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
4
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39177373 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
5
|
Wu XP, Gao X, Zhang R, Luan J, Wang Y, Liu S. Nitrogen addition alleviates water loss of Moso bamboo (Phyllostachys edulis) under drought by affecting light-induced stomatal responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173615. [PMID: 38815830 DOI: 10.1016/j.scitotenv.2024.173615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The combined climate-change-evoked drought and nitrogen (N) deposition have severely affected plant carbon and water relations governed by stomata. However, the interplay between steady-state and dynamic stomatal behavior responses to light remains unclear regarding its impact on plant water and carbon relations. The objective here was to investigate whether light-induced stomatal dynamics could mitigate the adverse effects of steady-state gas exchange on water conservation or photosynthesis under drought and N addition conditions. We conducted a manipulative experiment to investigate the impacts of throughfall reduction, N addition, and their combination on light-induced stomatal and photosynthetic dynamics in a Moso bamboo (Phyllostachys edulis) forest. We determined the influence of stomal response rate on water loss and photosynthesis, and further assessed whether it mitigated the effects of steady-state gas exchange (gs). We found that Moso bamboo decreased gs under throughfall reduction, while accelerated stomatal opening and biochemical activation when irradiance increased, which reduced the lag in photosynthesis during the induction period. In contrast, under the combined throughfall reduction and N addition condition, Moso bamboo increased gs but showed faster stomatal closure, which decreased the percentage of transpiration following a decrease in light intensity. Our findings indicate that stomatal dynamic behavior may depend on the effects of steady-state gas exchange on water conservation and carbon uptake under different soil water and N conditions. These discoveries contribute to our understanding of the coupling mechanisms of plant water use and carbon uptake in the context of global changes.
Collapse
Affiliation(s)
- Xi-Pin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruichang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China
| | - Junwei Luan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Yi Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Tanigawa K, Yuchen Q, Katsuhama N, Sakoda K, Wakabayashi Y, Tanaka Y, Sage R, Lawson T, Yamori W. C 4 monocots and C 4 dicots exhibit rapid photosynthetic induction response in contrast to C 3 plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14431. [PMID: 39041649 DOI: 10.1111/ppl.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Considering the prevalence of ever-changing conditions in the natural world, investigation of photosynthetic responses in C4 plants under fluctuating light is needed. Here, we studied the effect of dynamic illumination on photosynthesis in totally 10 C3, C3-C4 intermediate, C4-like and C4 dicots and monocots at CO2 concentrations of 400 and 800 μmol mol-1. C4 and C4-like plants had faster photosynthetic induction and light-induced stomatal dynamics than C3 plants at 400 μmol mol-1, but not at 800 μmol mol-1 CO2, at which the CO2 supply rarely limits photosynthesis. C4 and C4-like plants had a higher water use efficiency than C3 plants at both CO2 concentrations. There were positive correlations between photosynthetic induction and light-induced stomatal response, together with CO2 compensation point, which was a parameter of the CO2-concentrating mechanism of C4 photosynthesis. These results clearly show that C4 photosynthesis in both monocots and dicots adapts to fluctuating light conditions more efficiently than C3 photosynthesis. The rapid photosynthetic induction response in C4 plants can be attributed to the rapid stomatal dynamics, the CO2-concentrating mechanism or both.
Collapse
Affiliation(s)
- Keiichiro Tanigawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Qu Yuchen
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoya Katsuhama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo, Japan
| | - Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Rui M, Chen R, Jing Y, Wu F, Chen ZH, Tissue D, Jiang H, Wang Y. Guard cell and subsidiary cell sizes are key determinants for stomatal kinetics and drought adaptation in cereal crops. THE NEW PHYTOLOGIST 2024; 242:2479-2494. [PMID: 38622763 DOI: 10.1111/nph.19757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Climate change-induced drought is a major threat to agriculture. C4 crops have a higher water use efficiency (WUE) and better adaptability to drought than C3 crops due to their smaller stomatal morphology and faster response. However, our understanding of stomatal behaviours in both C3 and C4 Poaceae crops is limited by knowledge gaps in physical traits of guard cell (GC) and subsidiary cell (SC). We employed infrared gas exchange analysis and a stomatal assay to explore the relationship between GC/SC sizes and stomatal kinetics across diverse drought conditions in two C3 (wheat and barley) and three C4 (maize, sorghum and foxtail millet) upland Poaceae crops. Through statistical analyses, we proposed a GCSC-τ model to demonstrate how morphological differences affect stomatal kinetics in C4 Poaceae crops. Our findings reveal that morphological variations specifically correlate with stomatal kinetics in C4 Poaceae crops, but not in C3 ones. Subsequent modelling and experimental validation provide further evidence that GC/SC sizes significantly impact stomatal kinetics, which affects stomatal responses to different drought conditions and thereby WUE in C4 Poaceae crops. These findings emphasize the crucial advantage of GC/SC morphological characteristics and stomatal kinetics for the drought adaptability of C4 Poaceae crops, highlighting their potential as future climate-resilient crops.
Collapse
Affiliation(s)
- Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rongjia Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Jing
- BGI-Sanya, Sanya, 572025, China
| | - Feibo Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, 310058, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Silva‐Alvim FAL, Alvim JC, Harvey A, Blatt MR. Speedy stomata of a C 4 plant correlate with enhanced K + channel gating. PLANT, CELL & ENVIRONMENT 2024; 47:817-831. [PMID: 38013592 PMCID: PMC10953386 DOI: 10.1111/pce.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Stomata are microscopic pores at the surface of plant leaves that facilitate gaseous diffusion to support photosynthesis. The guard cells around each stoma regulate the pore aperture. Plants that carry out C4 photosynthesis are usually more resilient than C3 plants to stress, and their stomata operate over a lower dynamic range of CO2 within the leaf. What makes guard cells of C4 plants more responsive than those of C3 plants? We used gas exchange and electrophysiology, comparing stomatal kinetics of the C4 plant Gynandropsis gynandra and the phylogenetically related C3 plant Arabidopsis thaliana. We found, with varying CO2 and light, that Gynandropsis showed faster changes in stomata conductance and greater water use efficiency when compared with Arabidopsis. Electrophysiological analysis of the dominant K+ channels showed that the outward-rectifying channels, responsible for K+ loss during stomatal closing, were characterised by a greater maximum conductance and substantial negative shift in the voltage dependence of gating, indicating a reduced inhibition by extracellular K+ and enhanced capacity for K+ flux. These differences correlated with the accelerated stomata kinetics of Gynandropsis, suggesting that subtle changes in the biophysical properties of a key transporter may prove a target for future efforts to engineer C4 stomatal kinetics.
Collapse
Affiliation(s)
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Andy Harvey
- Physics & AstronomyUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| |
Collapse
|
9
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Suwannarut W, Vialet-Chabrand S, Kaiser E. Diurnal decline in photosynthesis and stomatal conductance in several tropical species. FRONTIERS IN PLANT SCIENCE 2023; 14:1273802. [PMID: 37941668 PMCID: PMC10628437 DOI: 10.3389/fpls.2023.1273802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Photosynthesis (A) and stomatal conductance (gs) change diurnally due to internal signals, but the effects of diurnal rhythms on dynamic photosynthetic behavior are understudied. We examined diurnal changes in A and gs in ten tropical species: across species, there was a tendency for A and gs to decline diurnally when these were repeatedly measured under either steady-state or fluctuating irradiance conditions. We then examined in more detail the irradiance-induced kinetics of gas exchange in a C3 and C4 crop species each, namely fig (Ficus carica) and sugarcane (Saccharum officinarum). During the day, fig showed significantly slower photosynthetic induction and lower gs, as well as a slower gs increase, in the afternoon than in the morning and noon. Sugarcane showed a reduction in steady-state A reached under high irradiance and slower gs increase as well as lower gs reached under high irradiance, but no changes in the rate of photosynthetic induction, in the afternoon, compared to morning and noon. These reductions in the afternoon were not reverted by a dark treatment in the middle of the day, suggesting that the decrease was not proportional to diurnal time-integrated carbon fixation. Repeated exposure to light- and shadeflecks (1000 and 50 μmol m-2 s-1, lasting 20 min each) revealed fundamental differences in stomatal regulation between species: in fig, stomata opened and closed slowly, and their opening became progressively slower under a series of lightflecks, whereas sugarcane showed much faster stomatal opening than closure that was unchanged during the course of the day. Our results highlight that steady-state rates and irradiance-induced kinetics of photosynthesis and stomatal movement change diurnally in most species studied, and that they do so differently in fig and sugarcane.
Collapse
Affiliation(s)
| | | | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
12
|
Ozawa Y, Tanaka A, Suzuki T, Sugiura D. Sink-source imbalance triggers delayed photosynthetic induction: Transcriptomic and physiological evidence. PHYSIOLOGIA PLANTARUM 2023; 175:e14000. [PMID: 37882282 DOI: 10.1111/ppl.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 10/27/2023]
Abstract
Sink-source imbalance causes accumulation of nonstructural carbohydrates (NSCs) and photosynthetic downregulation. However, despite numerous studies, it remains unclear whether NSC accumulation or N deficiency more directly decreases steady-state maximum photosynthesis and photosynthetic induction, as well as underlying gene expression profiles. We evaluated the relationship between photosynthetic capacity and NSC accumulation induced by cold girdling, sucrose feeding, and low nitrogen treatment in Glycine max and Phaseolus vulgaris. In G. max, changes in transcriptome profiles were further investigated, focusing on the physiological processes of photosynthesis and NSC accumulation. NSC accumulation decreased the maximum photosynthetic capacity and delayed photosynthetic induction in both species. In G. max, such photosynthetic downregulation was explained by coordinated downregulation of photosynthetic genes involved in the Calvin cycle, Rubisco activase, photochemical reactions, and stomatal opening. Furthermore, sink-source imbalance may have triggered a change in the balance of sugar-phosphate translocators in chloroplast membranes, which may have promoted starch accumulation in chloroplasts. Our findings provide an overall picture of photosynthetic downregulation and NSC accumulation in G. max, demonstrating that photosynthetic downregulation is triggered by NSC accumulation and cannot be explained solely by N deficiency.
Collapse
Affiliation(s)
- Yui Ozawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Arce Cubas L, Vath RL, Bernardo EL, Sales CRG, Burnett AC, Kromdijk J. Activation of CO 2 assimilation during photosynthetic induction is slower in C 4 than in C 3 photosynthesis in three phylogenetically controlled experiments. FRONTIERS IN PLANT SCIENCE 2023; 13:1091115. [PMID: 36684779 PMCID: PMC9848656 DOI: 10.3389/fpls.2022.1091115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Despite their importance for the global carbon cycle and crop production, species with C4 photosynthesis are still somewhat understudied relative to C3 species. Although the benefits of the C4 carbon concentrating mechanism are readily observable under optimal steady state conditions, it is less clear how the presence of C4 affects activation of CO2 assimilation during photosynthetic induction. METHODS In this study we aimed to characterise differences between C4 and C3 photosynthetic induction responses by analysing steady state photosynthesis and photosynthetic induction in three phylogenetically linked pairs of C3 and C4 species from Alloteropsis, Flaveria, and Cleome genera. Experiments were conducted both at 21% and 2% O2 to evaluate the role of photorespiration during photosynthetic induction. RESULTS Our results confirm C4 species have slower activation of CO2 assimilation during photosynthetic induction than C3 species, but the apparent mechanism behind these differences varied between genera. Incomplete suppression of photorespiration was found to impact photosynthetic induction significantly in C4 Flaveria bidentis, whereas in the Cleome and Alloteropsis C4 species, delayed activation of the C3 cycle appeared to limit induction and a potentially supporting role for photorespiration was also identified. DISCUSSION The sheer variation in photosynthetic induction responses observed in our limited sample of species highlights the importance of controlling for evolutionary distance when comparing C3 and C4 photosynthetic pathways.
Collapse
Affiliation(s)
- Lucía Arce Cubas
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Richard L. Vath
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Emmanuel L. Bernardo
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
- University of the Philippines Los Baños, Institute of Crop Science, College of Agriculture and Food Science, College, Laguna, Philippines
| | | | - Angela C. Burnett
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Johannes Kromdijk
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wang Y, Stutz SS, Bernacchi CJ, Boyd RA, Ort DR, Long SP. Increased bundle-sheath leakiness of CO 2 during photosynthetic induction shows a lack of coordination between the C 4 and C 3 cycles. THE NEW PHYTOLOGIST 2022; 236:1661-1675. [PMID: 36098668 PMCID: PMC9827928 DOI: 10.1111/nph.18485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/25/2022] [Indexed: 05/31/2023]
Abstract
Use of a complete dynamic model of NADP-malic enzyme C4 photosynthesis indicated that, during transitions from dark or shade to high light, induction of the C4 pathway was more rapid than that of C3 , resulting in a predicted transient increase in bundle-sheath CO2 leakiness (ϕ). Previously, ϕ has been measured at steady state; here we developed a new method, coupling a tunable diode laser absorption spectroscope with a gas-exchange system to track ϕ in sorghum and maize through the nonsteady-state condition of photosynthetic induction. In both species, ϕ showed a transient increase to > 0.35 before declining to a steady state of 0.2 by 1500 s after illumination. Average ϕ was 60% higher than at steady state over the first 600 s of induction and 30% higher over the first 1500 s. The transient increase in ϕ, which was consistent with model prediction, indicated that capacity to assimilate CO2 into the C3 cycle in the bundle sheath failed to keep pace with the rate of dicarboxylate delivery by the C4 cycle. Because nonsteady-state light conditions are the norm in field canopies, the results suggest that ϕ in these major crops in the field is significantly higher and energy conversion efficiency lower than previous measured values under steady-state conditions.
Collapse
Affiliation(s)
- Yu Wang
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Samantha S. Stutz
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
| | - Carl J. Bernacchi
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- USDA‐ARS Global Change and Photosynthesis Research UnitUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ryan A. Boyd
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
| | - Donald R. Ort
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Stephen P. Long
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐Champaign1206 W Gregory DrUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
15
|
Sakoda K, Adachi S, Yamori W, Tanaka Y. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3109-3121. [PMID: 35298629 DOI: 10.1093/jxb/erac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Japan Society for the Promotion of Science, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Charrier G. The hare and the tortoise: stomatal kinetics under light change in Poaceae crops. PLANT PHYSIOLOGY 2022; 189:7-9. [PMID: 35188199 PMCID: PMC9070794 DOI: 10.1093/plphys/kiac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
|