1
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. THE NEW PHYTOLOGIST 2024; 244:798-810. [PMID: 39155726 PMCID: PMC11449641 DOI: 10.1111/nph.20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Arabidopsis PSEUDORESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 abundance is unknown. We used mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions at low temperatures. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR1 (CBF1) and COLD-REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. HOS15 mediates PRR7 turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoters of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated degradation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways that lead to increased freezing tolerance.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
3
|
Denyer T, Wu PJ, Colt K, Abramson BW, Pang Z, Solansky P, Mamerto A, Nobori T, Ecker JR, Lam E, Michael TP, Timmermans MCP. Streamlined spatial and environmental expression signatures characterize the minimalist duckweed Wolffia australiana. Genome Res 2024; 34:1106-1120. [PMID: 38951025 PMCID: PMC11368201 DOI: 10.1101/gr.279091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.
Collapse
Affiliation(s)
- Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Pin-Jou Wu
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Applied Sciences and Life Sciences Laboratory, Noblis, Reston, Virginia 20191, USA
| | - Zhili Pang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Pavel Solansky
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Allen Mamerto
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA;
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany;
| |
Collapse
|
4
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599783. [PMID: 38979283 PMCID: PMC11230174 DOI: 10.1101/2024.06.20.599783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Arabidopsis PSEUDO RESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its transcriptional repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 protein activity is unknown. We used double mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR (CBF) and COLD REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. We establish that HOS15 mediates PRR7 protein turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoter regions of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated regulation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways leading to freezing tolerance through upregulation of CBF1 and COR15A.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Zhu X, Wang H. Revisiting the role and mechanism of ELF3 in circadian clock modulation. Gene 2024; 913:148378. [PMID: 38490512 DOI: 10.1016/j.gene.2024.148378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.
Collapse
Affiliation(s)
- Xingzun Zhu
- College of Landscape Architecture, Changchun University, No.1 Weixinglu Changchun, Jilin, China.
| | - Hongtao Wang
- College of Life Sciences, Tonghua Normal University, Tonghua, 950, Yucai Road, China.
| |
Collapse
|
6
|
Mehta D, Scandola S, Kennedy C, Lummer C, Gallo MCR, Grubb LE, Tan M, Scarpella E, Uhrig RG. Twilight length alters growth and flowering time in Arabidopsis via LHY/ CCA1. SCIENCE ADVANCES 2024; 10:eadl3199. [PMID: 38941453 PMCID: PMC11212724 DOI: 10.1126/sciadv.adl3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Leuven Plant Institute, KU Leuven, B-3001 Leuven, Belgium
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Lauren E. Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
8
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
9
|
Mitache M, Baidani A, Bencharki B, Idrissi O. Exploring genetic variability under extended photoperiod in lentil (Lens Culinaris Medik): vegetative and phenological differentiation according to genetic material's origins. PLANT METHODS 2024; 20:9. [PMID: 38218836 PMCID: PMC10787969 DOI: 10.1186/s13007-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Lentil is an important pulse that contributes to global food security and the sustainability of farming systems. Hence, it is important to increase the production of this crop, especially in the context of climate changes through plant breeding aiming at the development of high-yielding and climate-smart cultivars. However, conventional plant breeding approaches are time and resources consuming. Thus, speed breeding techniques enabling rapid generation turnover could help to accelerate the development of new varieties. The application of extended photoperiod prolonging the duration of the plant's exposure to light and shortening the duration of the dark phase is among the simplest speed breeding techniques. In this study, genetic variability response under extended photoperiod (22 h of light/2 h of dark at 25 °C) of a lentil collection of 80 landraces from diverse latitudinal origins low (0°-20°), medium (21°-40°) and high (41°-60°), was investigated. Significant genetic variations were observed between accessions, for time to flowering [40 → 120 days], time of pods set [45 → 130 days], time to maturity [64 → 150 days], harvest index [0 → 0.24], green canopy cover [0.39 → 5.62], seedling vigor [2 → 5], vegetative stage length [40 → 120 days], reproduction stage length [3 → 13 days], and seed filing stage length [6 → 25 days]. Overall, the accessions from Low latitudinal origin demonstrated a favorable response to the extended photoperiod application with almost all accessions flowered, while 18% and 57% of accessions originating from medium and high latitudinal areas, respectively, did not successfully reach the flowering stage. These results enhanced our understanding lentil responses to photoperiodism under controlled conditions and are expected to play important roles in speed breeding based on the application of the described protocol for lentil breeding programs in terms of choosing appropriate initial treatments such as vernalization depending on the origin of accession.
Collapse
Affiliation(s)
- Mohammed Mitache
- Laboratory of Food Legumes Breeding, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP 415, 10090, Rabat Principale, Rabat, Morocco.
- Laboratory of Agrifood and Health, Hassan First University of Settat, Faculty of Sciences and Techniques, BP 577, 26000, Settat, Morocco.
| | - Aziz Baidani
- Laboratory of Agrifood and Health, Hassan First University of Settat, Faculty of Sciences and Techniques, BP 577, 26000, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agrifood and Health, Hassan First University of Settat, Faculty of Sciences and Techniques, BP 577, 26000, Settat, Morocco
| | - Omar Idrissi
- Laboratory of Food Legumes Breeding, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP 415, 10090, Rabat Principale, Rabat, Morocco
| |
Collapse
|
10
|
Jang J, Lee S, Kim JI, Lee S, Kim JA. The Roles of Circadian Clock Genes in Plant Temperature Stress Responses. Int J Mol Sci 2024; 25:918. [PMID: 38255990 PMCID: PMC10815334 DOI: 10.3390/ijms25020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.
Collapse
Affiliation(s)
- Juna Jang
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sora Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sichul Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| |
Collapse
|
11
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
12
|
Faehn C, Reichelt M, Mithöfer A, Hytönen T, Mølmann J, Jaakola L. Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods. BMC PLANT BIOLOGY 2023; 23:483. [PMID: 37817085 PMCID: PMC10563271 DOI: 10.1186/s12870-023-04491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Though many abiotic factors are constantly changing, the photoperiod is a predictable factor that enables plants to time many physiological responses. This timing is regulated by the circadian clock, yet little is known about how the clock adapts to the differences in photoperiod between mid-latitudes and high latitudes. The primary objective of this study was to compare how clock gene expression is modified in four woodland strawberry (Fragaria vesca L.) accessions originating from two different populations in Italy (IT1: Tenno, Italy, 45°N, IT4: Salorno, Italy, 46°N) and two in Northern Norway (NOR2: Alta, Norway, 69°N, NOR13: Indre Nordnes, Norway 69°N) when grown under simulated daylength conditions of an Arctic or mid-latitude photoperiod. The second objective was to investigate whether population origin or the difference in photoperiod influenced phytohormone accumulation. RESULTS The Arctic photoperiod induced lower expression in IT4 and NOR13 for six clock genes (FvLHY, FvRVE8, FvPRR9, FvPRR7, FvPRR5, and FvLUX), in IT1 for three genes (FvLHY, FvPRR9, and FvPRR5) and in NOR2 for one gene (FvPRR9). Free-running rhythms for FvLHY in IT1 and IT4 were higher after the Arctic photoperiod, while the free-running rhythm for FvLUX in IT4 was higher after the mid-latitude photoperiod. IT1 showed significantly higher expression of FvLHY and FvPRR9 than all other accessions, as well as significantly higher expression of the circadian regulated phytohormone, abscisic acid (ABA), but low levels of salicylic acid (SA). NOR13 had significantly higher expression of FvRVE8, FvTOC1, and FvLUX than all other accessions. NOR2 had extremely low levels of auxin (IAA) and high levels of the jasmonate catabolite, hydroxyjasmonic acid (OH-JA). CONCLUSIONS Our study shows that circadian rhythms in Fragaria vesca are driven by both the experienced photoperiod and genetic factors, while phytohormone levels are primarily determined by specific accessions' genetic factors rather than the experienced photoperiod.
Collapse
Affiliation(s)
- Corine Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790, Finland
| | - Jørgen Mølmann
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| |
Collapse
|
13
|
Graham CA, Paajanen P, Edwards KJ, Dodd AN. Genome-wide circadian gating of a cold temperature response in bread wheat. PLoS Genet 2023; 19:e1010947. [PMID: 37721961 PMCID: PMC10538658 DOI: 10.1371/journal.pgen.1010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.
Collapse
Affiliation(s)
- Calum A. Graham
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Zhu K, Ye Y. When to germinate: the talk between abscisic acid and circadian clock. PLANT PHYSIOLOGY 2023; 191:1473-1474. [PMID: 36648240 PMCID: PMC10022602 DOI: 10.1093/plphys/kiad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Kaikai Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | |
Collapse
|
15
|
Qin C, Du T, Zhang R, Wang Q, Liu Y, Wang T, Cao H, Bai Q, Zhang Y, Su S. Integrated transcriptome, metabolome and phytohormone analysis reveals developmental differences between the first and secondary flowering in Castanea mollissima. FRONTIERS IN PLANT SCIENCE 2023; 14:1145418. [PMID: 37008486 PMCID: PMC10060901 DOI: 10.3389/fpls.2023.1145418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Chestnut (Castanea mollissima BL.) is an important woody grain, and its flower formation has a significant impact on fruit yield and quality. Some chestnut species in northern China re-flower in the late summer. On the one hand, the second flowering consumes a lot of nutrients in the tree, weakening the tree and thus affecting flowering in the following year. On the other hand, the number of female flowers on a single bearing branch during the second flowering is significantly higher than that of the first flowering, which can bear fruit in bunches. Therefore, these can be used to study the sex differentiation of chestnut. METHODS In this study, the transcriptomes, metabolomes, and phytohormones of male and female chestnut flowers were determined during spring and late summer. We aimed to understand the developmental differences between the first and secondary flowering stages in chestnuts. We analysed the reasons why the number of female flowers is higher in the secondary flowering than in the first flowering and found ways to increase the number of female flowers or decrease the number of male flowers in chestnuts. RESULTS Transcriptome analysis of male and female flowers in different developmental seasons revealed that EREBP-like mainly affected the development of secondary female flowers and HSP20 mainly affected the development of secondary male flowers. KEGG enrichment analysis showed that 147 common differentially-regulated genes were mainly enriched from circadian rhythm-plant, carotenoid biosynthesis, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways. Metabolome analysis showed that the main differentially accumulated metabolites in female flowers were flavonoids and phenolic acids, whereas the main differentially accumulated metabolites in male flowers were lipids, flavonoids, and phenolic acids. These genes and their metabolites are positively correlated with secondary flower formation. Phytohormone analysis showed that abscisic and salicylic acids were negatively correlated with secondary flower formation. MYB305, a candidate gene for sex differentiation in chestnuts, promoted the synthesis of flavonoid substances and thus increased the number of female flowers. DISCUSSION We constructed a regulatory network for secondary flower development in chestnuts, which provides a theoretical basis for the reproductive development mechanism of chestnuts. This study has important practical implications for improving chestnut yield and quality.
Collapse
|
16
|
Guo L, Xu Z, Wang S, Nie Y, Ye X, Jin X, Zhu J, Wu W. Integrative multi-omics analysis of three early diverged rosid species reveals an ancient hierarchical cold-responsive regulatory network. PHYSIOLOGIA PLANTARUM 2023; 175:e13892. [PMID: 36929522 DOI: 10.1111/ppl.13892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Elucidating regulators, including transcription factors (TFs) and RNA-binding proteins (RBPs), underlying gene transcriptional and post-transcriptional co-regulatory network is key to understand plant cold responses. Previous studies were mainly conducted on single species, and whether the regulators are conserved across different species remains elusive. Here, we selected three species that diverged at the early evolution of rosids (~99-113 million years ago), performed cold-responsive phylotranscriptome experiments, and integrated chromatin immunoprecipitation- and DNA affinity purification-sequencing (ChIP/DAP-seq) analysis to explore cold-responsive regulators and their regulatory networks. First, we detected over 10,000 cold-induced differentially expressed genes (DEGs) and alternative splicing genes (DASGs) in each species. Among the DEGs, a set of TFs and RBPs were conserved in rosid cold response. Compared to TFs, RBPs displayed a delayed cold-responsive pattern, implying a hierarchical regulation of DEGs and DASGs. By integrating DEGs and DASGs, we identified 259 overlapping DE-DASG orthogroups (closely-related homologs) that were cold-regulated at both transcriptional and post-transcriptional levels in all three studied species. Notably, pathway analysis on each of the DEGs, DASGs, and DE-DASGs in the three species showed a common enrichment connected to the circadian rhythm. Evidently, 226 cold-responsive genes were directly targeted by at least two circadian rhythm components (CCA1, LHY, RV4, RVE7, and RVE8). Finally, we revealed an ancient hierarchy of cold-responsive regulatory networks at transcriptional and post-transcriptional levels launched by circadian components in rosids. Altogether, this study sheds light on conserved regulators underlying cold-responsive regulatory networks across rosid species, despite a long evolutionary history after their divergence.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhiming Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuqi Nie
- Université Paris Saclay, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Yumin Road 7, Sanya, 572025, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, 20742, USA
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
17
|
Liu Z, Liu W, Wang Z, Qi K, Xie Z, Zhang S, Wu J, Wang P. Diurnal transcriptome dynamics reveal the photoperiod response of Pyrus. PHYSIOLOGIA PLANTARUM 2023; 175:e13893. [PMID: 36929905 DOI: 10.1111/ppl.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.
Collapse
Affiliation(s)
- Zhe Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
18
|
Michael TP. Time of Day Analysis over a Field Grown Developmental Time Course in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 12:166. [PMID: 36616295 PMCID: PMC9823482 DOI: 10.3390/plants12010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Harmer SL, Fankhauser C, Webb AAR. Focus on circadian rhythms. PLANT PHYSIOLOGY 2022; 190:921-923. [PMID: 35900174 PMCID: PMC9516718 DOI: 10.1093/plphys/kiac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | - Christian Fankhauser
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|