1
|
Aljabali SM, Pai S, Teperino R. Paternal impact on the developmental programming of sexual dimorphism. Front Cell Dev Biol 2024; 12:1520783. [PMID: 39712575 PMCID: PMC11659275 DOI: 10.3389/fcell.2024.1520783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Sexual dimorphism involves distinct anatomical, physiological, behavioral, and developmental differences between males and females of the same species, influenced by factors prior to conception and during early development. These sex-specific traits contribute to varied phenotypes and individual disease risks within and across generations and understanding them is essential in mammalian studies. Hormones, sex chromosomes, and imprinted genes drive this dimorphism, with over half of quantitative traits in wildtype mice showing sex-based variation. This review focuses on the impact of paternal non-genetic factors on sexual dimorphism. We synthesize current research on how paternal health before conception affects offspring phenotypes in a sex-specific manner, examining mechanisms such as DNA methylation, paternally imprinted genes, sperm RNA, and seminal plasma. Additionally, we explore how paternal influences indirectly shape offspring through maternal behavior, uterine environment, and placental changes, affecting males and females differently. We propose mechanisms modulating sexual dimorphism during development, underscoring the need for sex-specific documentation in animal studies.
Collapse
Affiliation(s)
- Shefa’ M. Aljabali
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Shruta Pai
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
2
|
Gardner M, Shinohara RT, Bethlehem RAI, Romero-Garcia R, Warrier V, Dorfschmidt L, Shanmugan S, Thompson P, Seidlitz J, Alexander-Bloch AF, Chen AA. ComBatLS: A location- and scale-preserving method for multi-site image harmonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599875. [PMID: 39131292 PMCID: PMC11312440 DOI: 10.1101/2024.06.21.599875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Recent work has leveraged massive datasets and advanced harmonization methods to construct normative models of neuroanatomical features and benchmark individuals' morphology. However, current harmonization tools do not preserve the effects of biological covariates including sex and age on features' variances; this failure may induce error in normative scores, particularly when such factors are distributed unequally across sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that preserves biological variance in features' locations and scales. We use UK Biobank data to show that ComBatLS robustly replicates individuals' normative scores better than other ComBat methods when subjects are assigned to sex-imbalanced synthetic "sites". Additionally, we demonstrate that ComBatLS significantly reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is available at https://github.com/andy1764/ComBatFamily.
Collapse
Affiliation(s)
- Margaret Gardner
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Imaging Computing and Analytics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Seville, ES
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lena Dorfschmidt
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila Shanmugan
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jakob Seidlitz
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron F Alexander-Bloch
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew A Chen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Reda GK, Ndunguru SF, Csernus B, Knop R, Lugata JK, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction reveals sex-specific expression of the mTOR pathway genes in Japanese quails. Sci Rep 2024; 14:8314. [PMID: 38594358 PMCID: PMC11004124 DOI: 10.1038/s41598-024-58487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Limited resources affect an organism's physiology through the conserved metabolic pathway, the mechanistic target of rapamycin (mTOR). Males and females often react differently to nutritional limitation, but whether it leads to differential mTOR pathway expression remains unknown. Recently, we found that dietary restriction (DR) induced significant changes in the expression of mTOR pathway genes in female Japanese quails (Coturnix japonica). We simultaneously exposed 32 male and female Japanese quails to either 20%, 30%, 40% restriction or ad libitum feeding for 14 days and determined the expression of six key genes of the mTOR pathway in the liver to investigate sex differences in the expression patterns. We found that DR significantly reduced body mass, albeit the effect was milder in males compared to females. We observed sex-specific liver gene expression. DR downregulated mTOR expression more in females than in males. Under moderate DR, ATG9A and RPS6K1 expressions were increased more in males than in females. Like females, body mass in males was correlated positively with mTOR and IGF1, but negatively with ATG9A and RS6K1 expressions. Our findings highlight that sexes may cope with nutritional deficits differently and emphasise the importance of considering sexual differences in studies of dietary restriction.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| |
Collapse
|
4
|
Legault LM, Breton-Larrivée M, Langford-Avelar A, Lemieux A, McGraw S. Sex-based disparities in DNA methylation and gene expression in late-gestation mouse placentas. Biol Sex Differ 2024; 15:2. [PMID: 38183126 PMCID: PMC10770955 DOI: 10.1186/s13293-023-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown. METHODS We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation. RESULTS Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development. CONCLUSION Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Anthony Lemieux
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Serge McGraw
- CHU Ste-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
5
|
Burrowes KS, Ruppage M, Lowry A, Zhao D. Sex matters: the frequently overlooked importance of considering sex in computational models. Front Physiol 2023; 14:1186646. [PMID: 37520817 PMCID: PMC10374267 DOI: 10.3389/fphys.2023.1186646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Personalised medicine and the development of a virtual human or a digital twin comprises visions of the future of medicine. To realise these innovations, an understanding of the biology and physiology of all people are required if we wish to apply these technologies at a population level. Sex differences in health and biology is one aspect that has frequently been overlooked, with young white males being seen as the "average" human being. This has not been helped by the lack of inclusion of female cells and animals in biomedical research and preclinical studies or the historic exclusion, and still low in proportion, of women in clinical trials. However, there are many known differences in health between the sexes across all scales of biology which can manifest in differences in susceptibility to diseases, symptoms in a given disease, and outcomes to a given treatment. Neglecting these important differences in the development of any health technologies could lead to adverse outcomes for both males and females. Here we highlight just some of the sex differences in the cardio-respiratory systems with the goal of raising awareness that these differences exist. We discuss modelling studies that have considered sex differences and touch on how and when to create sex-specific models. Scientific studies should ensure sex differences are included right from the study planning phase and results reported using sex as a biological variable. Computational models must have sex-specific versions to ensure a movement towards personalised medicine is realised.
Collapse
Affiliation(s)
- K. S. Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - M. Ruppage
- Department of Nursing, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A. Lowry
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - D. Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|