1
|
Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024; 10:e32673. [PMID: 38912509 PMCID: PMC11193041 DOI: 10.1016/j.heliyon.2024.e32673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering). However, with our current level of knowledge about protein folding and its correlation with protein conformation and activities, it is almost impossible to design proteins with specific biological and physical properties. Hence, contemporary protein engineering typically involves reprogramming existing enzymes by mutagenesis to generate new phenotypes with desired properties. These processes ensure that limitations of naturally occurring enzymes are not encountered. For example, researchers have engineered cellulases and hemicellulases to withstand harsh conditions encountered during biomass pretreatment, such as high temperatures and acidic environments. By enhancing the activity and robustness of these enzymes, biofuel production becomes more economically viable and environmentally sustainable. Recent trends in enzyme engineering have enabled the development of tailored biocatalysts for pharmaceutical applications. For instance, researchers have engineered enzymes such as cytochrome P450s and amine oxidases to catalyze challenging reactions involved in drug synthesis. In addition to conventional methods, there has been an increasing application of machine learning techniques to identify patterns in data. These patterns are then used to predict protein structures, enhance enzyme solubility, stability, and function, forecast substrate specificity, and assist in rational protein design. In this review, we discussed recent trends in enzyme engineering to optimize the biochemical properties of various biocatalysts. Using examples relevant to biotechnology in engineering enzymes, we try to expatiate the significance of enzyme engineering with how these methods could be applied to optimize the biochemical properties of a naturally occurring enzyme.
Collapse
Affiliation(s)
- Obinna Giles Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Hardebeck S, Jácobo Goebbels N, Michalski C, Schreiber S, Jose J. Identification of a potent PCNA-p15-interaction inhibitor by autodisplay-based peptide library screening. Microb Biotechnol 2024; 17:e14471. [PMID: 38646975 PMCID: PMC11033925 DOI: 10.1111/1751-7915.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor for DNA metabolism. The influence of PCNA on DNA replication and repair, combined with the high expression rate of PCNA in various tumours renders PCNA a promising target for cancer therapy. In this context, an autodisplay-based screening method was developed to identify peptidic PCNA interaction inhibitors. A 12-mer randomized peptide library consisting of 2.54 × 106 colony-forming units was constructed and displayed at the surface of Escherichia coli BL21 (DE3) cells by autodisplay. Cells exhibiting an enhanced binding to fluorescent mScarlet-I-PCNA were enriched in four sorting rounds by flow cytometry. This led to the discovery of five peptide variants with affinity to mScarlet-I-PCNA. Among these, P3 (TCPLRWITHDHP) exhibited the highest binding signal. Subsequent flow cytometric analysis revealed a dissociation constant of 0.62 μM for PCNA-P3 interaction. Furthermore, the inhibition of PCNA interactions was investigated using p15, a PIP-box containing protein involved in DNA replication and repair. P3 inhibited the PCNA-p1551-70 interaction with a half maximal inhibitory activity of 16.2 μM, characterizing P3 as a potent inhibitor of the PCNA-p15 interaction.
Collapse
Affiliation(s)
- Sarah Hardebeck
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | | | - Caroline Michalski
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Sebastian Schreiber
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Joachim Jose
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| |
Collapse
|
3
|
Parks L, Ek M, Ståhl S, Löfblom J. Investigation of an AIDA-I based expression system for display of various affinity proteins on Escherichia coli. Biochem Biophys Res Commun 2024; 696:149534. [PMID: 38241810 DOI: 10.1016/j.bbrc.2024.149534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Autotransporters constitute a large family of natural proteins that are essential for delivering many types of proteins and peptides across the outer membrane in Gram-negative bacteria. In biotechnology, autotransporters have been explored for display of recombinant proteins and peptides on the surface of Escherichia coli and have potential as tools for directed evolution of affinity proteins. Here, we investigate conditions for AIDA-I autotransporter-mediated display of recombinant proteins. A new expression vector was designed and engineered for this purpose, and a panel of proteins from different affinity-protein classes were subcloned to the vector, followed by evaluation of expression, surface display and functionality. Surface expression was explored in ten different E. coli strains together with assessment of transformation efficiencies. Furthermore, the most promising strain and expression vector combination was used in mock library selections for evaluation of magnetic-assisted cell sortings (MACS). The results demonstrated dramatically different performances depending on the type of affinity protein and choice of E. coli strain. The optimized MACS protocol showed efficient enrichment, and thus potential for the new AIDA-I display system to be used in methods for directed evolution of affinity proteins.
Collapse
Affiliation(s)
- Luke Parks
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Moira Ek
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Jeong J, Selvamani V, Maruthamuthu MK, Arulsamy K, Hong SH. Application of the surface engineered recombinant Escherichia coli to the industrial battery waste solution for lithium recovery. J Ind Microbiol Biotechnol 2024; 51:kuae012. [PMID: 38573823 PMCID: PMC11037431 DOI: 10.1093/jimb/kuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| | - Vidhya Selvamani
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| | | | - Kulandaisamy Arulsamy
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
5
|
Ming K, Hu Y, Zhu M, Xing B, Mei M, Wei Z. Development of nanobodies against Staphylococcus enterotoxin B through yeast surface display. Int J Biol Macromol 2023; 253:126822. [PMID: 37703983 DOI: 10.1016/j.ijbiomac.2023.126822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Staphylococcus enterotoxin B (SEB) is one of the primary virulence factors of Staphylococcus aureus but there is still a lack of targeted drugs. SEB activates immune cells via interacting with MHC-II on antigen-presenting cells, leading to the production of large amounts of pro-inflammatory cytokines. Blocking the interaction between SEB and MHC-II can avert the overactivation of immune cells. Nanobodies are the smallest functional antibodies that can bind stably to antigens. In this study, an ideal approach to obtain specific nanobodies without immunizing camelids was introduced. We constructed a library containing up to 5 × 108 nanobodies, and then screened those targeting SEB by using yeast surface display (YSD) technique and fluorescence-activated cell sorting (FACS). A total of 8 nanobodies with divergent complementarity-determining regions (CDRs) sequences were identified and one candidate Nb8 with high affinity to SEB was isolated. In vitro study demonstrated that Nb8 significantly inhibited SEB-induced inflammatory response. Molecular docking simulation indicated that the unique CDR3 sequence contributed to the binding of Nb8 to the MHC-II binding domain of SEB and accordingly cut off the connection between SEB and MHC-II. Our efforts contributed to the development of specific nanobodies for eliminating the threats of SEB.
Collapse
Affiliation(s)
- Ke Ming
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meijun Zhu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Banbin Xing
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meng Mei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zigong Wei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Szot-Karpińska K, Kudła P, Orzeł U, Narajczyk M, Jönsson-Niedziółka M, Pałys B, Filipek S, Ebner A, Niedziółka-Jönsson J. Investigation of Peptides for Molecular Recognition of C-Reactive Protein-Theoretical and Experimental Studies. Anal Chem 2023; 95:14475-14483. [PMID: 37695838 PMCID: PMC10535004 DOI: 10.1021/acs.analchem.3c03127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
We investigate the interactions between C-reactive protein (CRP) and new CRP-binding peptide materials using experimental (biological and physicochemical) methods with the support of theoretical simulations (computational modeling analysis). Three specific CRP-binding peptides (P2, P3, and P9) derived from an M13 bacteriophage have been identified using phage-display technology. The binding efficiency of the peptides exposed on phages toward the CRP protein was demonstrated via biological methods. Fibers of the selected phages/peptides interact differently due to different compositions of amino acid sequences on the exposed peptides, which was confirmed by transmission electron microscopy. Numerical and experimental studies consistently showed that the P3 peptide is the best CRP binder. A combination of theoretical and experimental methods demonstrates that identifying the best binder can be performed simply, cheaply, and fast. Such an approach has not been reported previously for peptide screening and demonstrates a new trend in science where calculations can replace or support laborious experimental techniques. Finally, the best CRP binder─the P3 peptide─was used for CRP recognition on silicate-modified indium tin oxide-coated glass electrodes. The obtained electrodes exhibit a wide range of operation (1.0-100 μg mL-1) with a detection limit (LOD = 3σ/S) of 0.34 μg mL-1. Moreover, the dissociation constant Kd of 4.2 ± 0.144 μg mL-1 (35 ± 1.2 nM) was evaluated from the change in the current. The selectivity of the obtained electrode was demonstrated in the presence of three interfering proteins. These results prove that the presented P3 peptide is a potential candidate as a receptor for CRP, which can replace specific antibodies.
Collapse
Affiliation(s)
- Katarzyna Szot-Karpińska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Patryk Kudła
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Urszula Orzeł
- Biological
and Chemical Research Centre, University
of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Magdalena Narajczyk
- Department
of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Barbara Pałys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Sławomir Filipek
- Biological
and Chemical Research Centre, University
of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Andreas Ebner
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | | |
Collapse
|
7
|
Foster JC, Pham B, Pham R, Kim M, Moore MD, Chen M. An Engineered OmpG Nanopore with Displayed Peptide Motifs for Single-Molecule Multiplex Protein Detection. Angew Chem Int Ed Engl 2023; 62:e202214566. [PMID: 36457283 PMCID: PMC9898208 DOI: 10.1002/anie.202214566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Molecular detection via nanopore, achieved by monitoring changes in ionic current arising from analyte interaction with the sensor pore, is a promising technology for multiplex sensing development. Outer Membrane Protein G (OmpG), a monomeric porin possessing seven functionalizable loops, has been reported as an effective sensing platform for selective protein detection. Using flow cytometry to screen unfavorable constructs, we identified two OmpG nanopores with unique peptide motifs displayed in either loop 3 or 6, which also exhibited distinct analyte signals in single-channel current recordings. We exploited these motif-displaying loops concurrently to facilitate single-molecule multiplex protein detection in a mixture. We additionally report a strategy to increase sensor sensitivity via avidity motif display. These sensing schemes may be expanded to more sophisticated designs utilizing additional loops to increase multiplicity and sensitivity.
Collapse
Affiliation(s)
- Joshua C Foster
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Current address: Department of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Minji Kim
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew D Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Kenny SE, Antaw F, Locke WJ, Howard CB, Korbie D, Trau M. Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life (Basel) 2022; 12:363. [PMID: 35330114 PMCID: PMC8950575 DOI: 10.3390/life12030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Protein and drug engineering comprises a major part of the medical and research industries, and yet approaches to discovering and understanding therapeutic molecular interactions in biological systems rely on trial and error. The general approach to molecular discovery involves screening large libraries of compounds, proteins, or antibodies, or in vivo antibody generation, which could be considered "bottom-up" approaches to therapeutic discovery. In these bottom-up approaches, a minimal amount is known about the therapeutics at the start of the process, but through meticulous and exhaustive laboratory work, the molecule is characterised in detail. In contrast, the advent of "big data" and access to extensive online databases and machine learning technologies offers promising new avenues to understanding molecular interactions. Artificial intelligence (AI) now has the potential to predict protein structure at an unprecedented accuracy using only the genetic sequence. This predictive approach to characterising molecular structure-when accompanied by high-quality experimental data for model training-has the capacity to invert the process of molecular discovery and characterisation. The process has potential to be transformed into a top-down approach, where new molecules can be designed directly based on the structure of a target and the desired function, rather than performing screening of large libraries of molecular variants. This paper will provide a brief evaluation of bottom-up approaches to discovering and characterising biological molecules and will discuss recent advances towards developing top-down approaches and the prospects of this.
Collapse
Affiliation(s)
- Sophie E. Kenny
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Fiach Antaw
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Warwick J. Locke
- Molecular Diagnostic Solutions, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Building 101, Clunies Ross Street, Canberra, ACT 2601, Australia;
| | - Christopher B. Howard
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner of College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia; (S.E.K.); (F.A.); (C.B.H.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
McLure RJ, Radford SE, Brockwell DJ. High-throughput directed evolution: a golden era for protein science. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Bacon K, Menegatti S, Rao BM. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries. Methods Mol Biol 2022; 2491:387-415. [PMID: 35482201 DOI: 10.1007/978-1-0716-2285-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
11
|
See K, Kadonosono T, Miyamoto K, Tsubaki T, Ota Y, Katsumi M, Ryo S, Aida K, Minegishi M, Isozaki T, Kuchimaru T, Kizaka-Kondoh S. Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display. Sci Rep 2021; 11:22098. [PMID: 34764369 PMCID: PMC8585965 DOI: 10.1038/s41598-021-01603-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Marina Katsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumoe Ryo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Aida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tatsuhiro Isozaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
12
|
Di Natale C, Battista E, Lettera V, Reddy N, Pitingolo G, Vecchione R, Causa F, Netti PA. Easy Surface Functionalization and Bioconjugation of Peptides as Capture Agents of a Microfluidic Biosensing Platform for Multiplex Assay in Serum. Bioconjug Chem 2021; 32:1593-1601. [PMID: 34114801 PMCID: PMC8382222 DOI: 10.1021/acs.bioconjchem.1c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The development of assays for protein biomarkers in complex matrices is a demanding task that still needs implementation of new approaches. Antibodies as capture agents have been largely used in bioassays but their low stability, low-efficiency production, and cross-reactivity in multiplex approaches impairs their larger applications. Instead, synthetic peptides, even with higher stability and easily adapted amino acid sequences, still remain largely unexplored in this field. Here, we provide a proof-of-concept of a microfluidic device for direct detection of biomarker overexpression. The multichannel microfluidic polydimethylsiloxane (PDMS) device was first derivatized with PAA (poly(acrylic acid)) solution. CRP-1, VEGF-114, and ΦG6 peptides were preliminarily tested to respectively bind the biomarkers, C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-α). Each PDMS microchannel was then respectively bioconjugated with a specific peptide (CRP-1, VEGF-114, or ΦG6) to specifically capture CRP, VEGF, and TNF-α. With such microdevices, a fluorescence bioassay has been set up with sensitivity in the nanomolar range, both in buffered solution and in human serum. The proposed multiplex assay worked with a low amount of sample (25 μL) and detected biomarker overexpression (above nM concentration), representing a noninvasive and inexpensive screening platform.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Edmondo Battista
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Lettera
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Biopox
srl, Viale Maria Bakunin
12, 80125 Naples, Italy
| | - Narayana Reddy
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Gabriele Pitingolo
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Filippo Causa
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
13
|
Pluda S, Mazzocato Y, Angelini A. Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases. Front Mol Biosci 2021; 8:703715. [PMID: 34368231 PMCID: PMC8335159 DOI: 10.3389/fmolb.2021.703715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
ADAM and ADAMTS are two large metalloproteinase families involved in numerous physiological processes, such as shedding of cell-surface protein ectodomains and extra-cellular matrix remodelling. Aberrant expression or dysregulation of ADAMs and ADAMTSs activity has been linked to several pathologies including cancer, inflammatory, neurodegenerative and cardiovascular diseases. Inhibition of ADAM and ADAMTS metalloproteinases have been attempted using various small molecules and protein-based therapeutics, each with their advantages and disadvantages. While most of these molecular formats have already been described in detail elsewhere, this mini review focuses solely on peptide-based inhibitors, an emerging class of therapeutic molecules recently applied against some ADAM and ADAMTS members. We describe both linear and cyclic peptide-based inhibitors which have been developed using different approaches ranging from traditional medicinal chemistry and rational design strategies to novel combinatorial peptide-display technologies.
Collapse
Affiliation(s)
- Stefano Pluda
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- Fidia Farmaceutici S.p.A., Abano Terme, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| |
Collapse
|
14
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
15
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Csibra E, Renders M, Pinheiro VB. Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low-Affinity Ligands and Enzymes. Chembiochem 2020; 21:2844-2853. [PMID: 32413179 PMCID: PMC7586821 DOI: 10.1002/cbic.202000203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Indexed: 12/31/2022]
Abstract
Directed evolution has been remarkably successful at expanding the chemical and functional boundaries of biology. That progress is heavily dependent on the robustness and flexibility of the available selection platforms, given the significant cost to (re)develop a given platform to target a new desired function. Bacterial cell display has a significant track record as a viable strategy for the engineering of mesophilic enzymes, as enzyme activity can be probed directly and free from interference from the cellular milieu, but its adoption has lagged behind other display-based methods. Herein, we report the development of SNAP as a quantitative reporter for bacterial cell display, which enables fast troubleshooting and the systematic development of the display-based selection platform, thus improving its robustness. In addition, we demonstrate that even weak interactions between displayed proteins and nucleic acids can be harnessed for the specific labelling of bacterial cells, allowing functional characterisation of DNA binding proteins and enzymes, thus making it a highly flexible platform for these biochemical functions. Together, this establishes bacterial display as a robust and flexible platform, ideally suited for the systematic engineering of ligands and enzymes needed for XNA molecular biology.
Collapse
Affiliation(s)
- Eszter Csibra
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Current address: Imperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Marleen Renders
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Current address: Touchlight Genetics Ltd. Morelands & Riverdale BuildingsLower Sunbury RoadHamptonTW12 2ERUK
| | - Vitor B. Pinheiro
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Institute of Structural and Molecular BiologyBirkbeck CollegeUniversity of LondonMalet StreetLondonWC1E 7HXUK
| |
Collapse
|
17
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
18
|
Stellwagen SD, Sarkes DA, Adams BL, Hunt MA, Renberg RL, Hurley MM, Stratis-Cullum DN. The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries. BMC Biotechnol 2019; 19:100. [PMID: 31864334 PMCID: PMC6925417 DOI: 10.1186/s12896-019-0577-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest. RESULTS In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity. CONCLUSIONS We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.
Collapse
Affiliation(s)
- Sarah D. Stellwagen
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, 21250 MD USA
| | - Deborah A. Sarkes
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Bryn L. Adams
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Mia A. Hunt
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Rebecca L. Renberg
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Margaret M. Hurley
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | | |
Collapse
|
19
|
Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 2019; 199:139-154. [PMID: 30851297 PMCID: PMC7112620 DOI: 10.1016/j.pharmthera.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of effective cancer therapeutic strategies relies on our ability to interfere with cellular processes that are dysregulated in tumors. Given the essential role of the ubiquitin proteasome system (UPS) in regulating a myriad of cellular processes, it is not surprising that malfunction of UPS components is implicated in numerous human diseases, including many types of cancer. The clinical success of proteasome inhibitors in treating multiple myeloma has further stimulated enthusiasm for targeting UPS proteins for pharmacological intervention in cancer treatment, particularly in the precision medicine era. Unfortunately, despite tremendous efforts, the paucity of potent and selective UPS inhibitors has severely hampered attempts to exploit the UPS for therapeutic benefits. To tackle this problem, many groups have been working on technology advancement to rapidly and effectively screen for potent and specific UPS modulators as intracellular probes or early-phase therapeutic agents. Here, we review several emerging technologies for developing chemical- and protein-based molecules to manipulate UPS enzymatic activity, with the aim of providing an overview of strategies available to target ubiquitination for cancer therapy.
Collapse
Affiliation(s)
- Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - María Carla Rosales Gerpe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
20
|
Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives. Methods Mol Biol 2019; 2016:87-104. [PMID: 31197712 DOI: 10.1007/978-1-4939-9570-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutagenizing bacterial genomes with selectable transposon insertions is an effective approach for identifying the genes underlying important phenotypes. Specific bacteria may require different tools and methods for effective transposon mutagenesis, and here we describe methods to mutagenize Vibrio fischeri using an engineered mini-Tn5 transposon with synthetic "mosaic" transposon ends. The transposon is delivered by conjugation on a plasmid that cannot replicate in V. fischeri and that encodes a hyperactive transposase outside the transposon itself. The chromosomal location of insertions can be readily identified by cloning and/or PCR-based methods described here. Although developed in V. fischeri, these tools and methods have proven effective in some other bacteria as well.
Collapse
|
21
|
Ivarsson Y, Jemth P. Affinity and specificity of motif-based protein-protein interactions. Curr Opin Struct Biol 2018; 54:26-33. [PMID: 30368054 DOI: 10.1016/j.sbi.2018.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023]
Abstract
It is becoming increasingly clear that eukaryotic cell physiology is largely controlled by protein-protein interactions involving disordered protein regions, which usually interact with globular domains in a coupled binding and folding reaction. Several protein recognition domains are part of large families where members can interact with similar peptide ligands. Because of this, much research has been devoted to understanding how specificity can be achieved. A combination of interface complementarity, interactions outside of the core binding site, avidity from multidomain architecture and spatial and temporal regulation of expression resolves the conundrum. Here, we review recent advances in molecular aspects of affinity and specificity in such protein-protein interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
22
|
Arkadash V, Radisky ES, Papo N. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget 2018; 9:32036-32053. [PMID: 30174795 PMCID: PMC6112833 DOI: 10.18632/oncotarget.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Developing selective inhibitors for proteolytic enzymes that share high sequence homology and structural similarity is important for achieving high target affinity and functional specificity. Here, we used a combination of yeast surface display and dual-color selective library screening to obtain selective inhibitors for each of the matrix metalloproteinases (MMPs) MMP14 and MMP9 by modifying the non-specific N-terminal domain of the tissue inhibitor of metalloproteinase-2 (N-TIMP2). We generated inhibitor variants with 30- to 1175-fold improved specificity to each of the proteases, respectively, relative to wild type N-TIMP2. These biochemical results accurately predicted the selectivity and specificity obtained in cell-based assays. In U87MG cells, the activation of MMP2 by MMP14 was inhibited by MMP14-selective blockers but not MMP9-specific inhibitors. Target specificity was also demonstrated in MCF-7 cells stably expressing either MMP14 or MMP9, with only the MMP14-specific inhibitors preventing the mobility of MMP14-expressing cells. Similarly, the mobility of MMP9-expressing cells was inhibited by the MMP9-specific inhibitors, yet was not altered by the MMP14-specific inhibitors. The strategy developed in this study for improving the specificity of an otherwise broad-spectrum inhibitor will likely enhance our understanding of the basis for target specificity of inhibitors to proteolytic enzymes, in general, and to MMPs, in particular. We, moreover, envision that this study could serve as a platform for the development of next-generation, target-specific therapeutic agents. Finally, our methodology can be extended to other classes of proteolytic enzymes and other important target proteins.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Maruthamuthu MK, Selvamani V, Nadarajan SP, Yun H, Oh YK, Eom GT, Hong SH. Manganese and cobalt recovery by surface display of metal binding peptide on various loops of OmpC in Escherichia coli. ACTA ACUST UNITED AC 2018; 45:31-41. [DOI: 10.1007/s10295-017-1989-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Abstract
In a cell-surface display (CSD) system, successful display of a protein or peptide is highly dependent on the anchoring motif and the position of the display in that anchoring motif. In this study, a recombinant bacterial CSD system for manganese (Mn) and cobalt (Co) recovery was developed by employing OmpC as an anchoring motif on three different external loops. A portion of Cap43 protein (TRSRSHTSEG)3 was employed as a manganese and cobalt binding peptide (MCBP), which was fused with OmpC at three different external loops. The fusions were made at the loop 2 [fusion protein-2 (FP2)], loop 6 (FP6), and loop 8 (FP8) of OmpC, respectively. The efficacy of the three recombinant strains in the recovery of Mn and Co was evaluated by varying the concentration of the respective metal. Molecular modeling studies showed that the short trimeric repeats of peptide probably form a secondary structure with OmpC, thereby giving rise to a difference in metal recovery among the three recombinant strains. Among the three recombinant strains, FP6 showed increased metal recovery with both Mn and Co, at 1235.14 (1 mM) and 379.68 (0.2 mM) µmol/g dry cell weight (DCW), respectively.
Collapse
Affiliation(s)
- Murali kannan Maruthamuthu
- 0000 0004 0533 4667 grid.267370.7 Department of Chemical Engineering University of Ulsan 44610 Ulsan Republic of Korea
| | - Vidhya Selvamani
- 0000 0004 0533 4667 grid.267370.7 Department of Chemical Engineering University of Ulsan 44610 Ulsan Republic of Korea
| | - Saravanan Prabhu Nadarajan
- 0000 0004 0532 8339 grid.258676.8 Department of Bioscience and Biotechnology Konkuk University 05029 Seoul Republic of Korea
| | - Hyungdon Yun
- 0000 0004 0532 8339 grid.258676.8 Department of Bioscience and Biotechnology Konkuk University 05029 Seoul Republic of Korea
| | - You-Kwan Oh
- 0000 0001 0691 7707 grid.418979.a Biomass and Waste Energy Laboratory Korea Institute of Energy Research 34129 Daejeon Republic of Korea
| | - Gyeong Tae Eom
- 0000 0001 2296 8192 grid.29869.3c Research Center for Bio-based Chemistry Korea Research Institute of Chemical Technology (KRICT) 44429 Ulsan Republic of Korea
- 0000 0004 1791 8264 grid.412786.e Department of Green Chemistry and Environmental Biotechnology Korea University of Science and Technology (UST) 34144 Daejeon Republic of Korea
| | - Soon Ho Hong
- 0000 0004 0533 4667 grid.267370.7 Department of Chemical Engineering University of Ulsan 44610 Ulsan Republic of Korea
| |
Collapse
|
24
|
Arai R. Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Biophys Rev 2017; 10:391-410. [PMID: 29243094 DOI: 10.1007/s12551-017-0376-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
In multiscale structural biology, synthetic approaches are important to demonstrate biophysical principles and mechanisms underlying the structure, function, and action of bio-nanomachines. A central goal of "synthetic structural biology" is the design and construction of artificial proteins and protein complexes as desired. In this paper, I review recent remarkable progress of an array of approaches for hierarchical design of artificial proteins and complexes that signpost the path forward toward synthetic structural biology as an emerging interdisciplinary field. Topics covered include combinatorial and protein-engineering approaches for directed evolution of artificial binding proteins and membrane proteins, binary code strategy for structural and functional de novo proteins, protein nanobuilding block strategy for constructing nano-architectures, protein-metal-organic frameworks for 3D protein complex crystals, and rational and computational approaches for design/creation of artificial proteins and complexes, novel protein folds, ideal/optimized protein structures, novel binding proteins for targeted therapeutics, and self-assembling nanomaterials. Protein designers and engineers look toward a bright future in synthetic structural biology for the next generation of biophysics and biotechnology.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan. .,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan. .,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
25
|
Sarkes DA, Jahnke JP, Stratis-Cullum DN. Semi-automated Biopanning of Bacterial Display Libraries for Peptide Affinity Reagent Discovery and Analysis of Resulting Isolates. J Vis Exp 2017. [PMID: 29286465 PMCID: PMC5755526 DOI: 10.3791/56061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biopanning bacterial display libraries is a proven technique for peptide affinity reagent discovery for recognition of both biotic and abiotic targets. Peptide affinity reagents can be used for similar applications to antibodies, including sensing and therapeutics, but are more robust and able to perform in more extreme environments. Specific enrichment of peptide capture agents to a protein target of interest is enhanced using semi-automated sorting methods which improve binding and wash steps and therefore decrease the occurrence of false positive binders. A semi-automated sorting method is described herein for use with a commercial automated magnetic-activated cell sorting device with an unconstrained bacterial display sorting library expressing random 15-mer peptides. With slight modifications, these methods are extendable to other automated devices, other sorting libraries, and other organisms. A primary goal of this work is to provide a comprehensive methodology and expound the thought process applied in analyzing and minimizing the resulting pool of candidates. These techniques include analysis of on-cell binding using fluorescence-activated cell sorting (FACS), to assess affinity and specificity during sorting and in comparing individual candidates, and the analysis of peptide sequences to identify trends and consensus sequences for understanding and potentially improving the affinity to and specificity for the target of interest.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Sensors and Electron Devices Directorate, US Army Research Laboratory;
| | - Justin P Jahnke
- Sensors and Electron Devices Directorate, US Army Research Laboratory
| | | |
Collapse
|
26
|
Friedrich L, Kornberger P, Mendler CT, Multhoff G, Schwaiger M, Skerra A. Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models. Biol Chem 2017; 399:235-252. [DOI: 10.1515/hsz-2017-0207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Abstract
We describe the selection of Anticalins against a common tumour surface antigen, human Hsp70, using functional display on live Escherichia coli cells as fusion with a truncated EspP autotransporter. While found intracellularly in normal cells, Hsp70 is frequently exposed in a membrane-bound state on the surface of tumour cells and, even more pronounced, in metastases or after radiochemotherapy. Employing a recombinant Hsp70 fragment comprising residues 383-548 as the target, Anticalins were selected from a naïve bacterial library. The Anticalin with the highest affinity (K
D=13 nm), as determined towards recombinant full-length Hsp70 by real-time surface plasmon resonance analysis, was improved to K
D=510 pm by doped random mutagenesis and another cycle of E. coli surface display, followed by rational combination of mutations. This Anticalin, which recognises a linear peptide epitope located in the interdomain linker of Hsp70, was demonstrated to specifically bind Hsp70 in its membrane-associated form in immunofluorescence microscopy and via flow cytometry using the FaDu cell line, which is positive for surface Hsp70. The radiolabelled and PASylated Anticalin revealed specific tumour accumulation in xenograft mice using positron emission tomography (PET) imaging. Furthermore, after enzymatic coupling to the protein toxin gelonin, the Anticalin showed potent cytotoxicity on FaDu cells in vitro.
Collapse
Affiliation(s)
- Lars Friedrich
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Petra Kornberger
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Claudia T. Mendler
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology , Klinikum rechts der Isar, Technische Universität München , D-81675 München , Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar , Technische Universität München , D-81675 München , Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| |
Collapse
|
27
|
Abil Z, Ellefson JW, Gollihar JD, Watkins E, Ellington AD. Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. Nat Protoc 2017; 12:2493-2512. [PMID: 29120463 DOI: 10.1038/nprot.2017.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Compartmentalized partnered replication (CPR) is an emulsion-based directed evolution method based on a robust and modular phenotype-genotype linkage. In contrast to other in vivo directed evolution approaches, CPR largely mitigates host fitness effects due to a relatively short expression time of the gene of interest. CPR is based on gene circuits in which the selection of a 'partner' function from a library leads to the production of a thermostable polymerase. After library preparation, bacteria produce partner proteins that can potentially lead to enhancement of transcription, translation, gene regulation, and other aspects of cellular metabolism that reinforce thermostable polymerase production. Individual cells are then trapped in water-in-oil emulsion droplets in the presence of primers and dNTPs, followed by the recovery of the partner genes via emulsion PCR. In this step, droplets with cells expressing partner proteins that promote polymerase production will produce higher copy numbers of the improved partner gene. The resulting partner genes can subsequently be recloned for the next round of selection. Here, we present a step-by-step guideline for the procedure by providing examples of (i) selection of T7 RNA polymerases that recognize orthogonal promoters and (ii) selection of tRNA for enhanced amber codon suppression. A single round of CPR should take ∼3-5 d, whereas a whole directed evolution can be performed in 3-10 rounds, depending on selection efficiency.
Collapse
Affiliation(s)
- Zhanar Abil
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, USA
| | - Jared W Ellefson
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Jimmy D Gollihar
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ella Watkins
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
28
|
Salema V, Fernández LÁ. Escherichia coli surface display for the selection of nanobodies. Microb Biotechnol 2017; 10:1468-1484. [PMID: 28772027 PMCID: PMC5658595 DOI: 10.1111/1751-7915.12819] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Nanobodies (Nbs) are the smallest functional antibody fragments known in nature and have multiple applications in biomedicine or environmental monitoring. Nbs are derived from the variable segment of camelid heavy chain-only antibodies, known as VHH. For selection, libraries of VHH gene segments from naïve, immunized animals or of synthetic origin have been traditionally cloned in E. coli phage display or yeast display systems, and clones binding the target antigen recovered, usually from plastic surfaces with the immobilized antigen (phage display) or using fluorescence-activated cell sorting (FACS; yeast display). This review briefly describes these conventional approaches and focuses on the distinct properties of an E. coli display system developed in our laboratory, which combines the benefits of both phage display and yeast display systems. We demonstrate that E. coli display using an N-terminal domain of intimin is an effective platform for the surface display of VHH libraries enabling selection of high-affinity Nbs by magnetic cell sorting and direct selection on live mammalian cells displaying the target antigen on their surface. Flow cytometry analysis of E. coli bacteria displaying the Nbs on their surface allows monitoring of the selection process, facilitates screening, characterization of antigen-binding clones, specificity, ligand competition and estimation of the equilibrium dissociation constant (KD ).
Collapse
Affiliation(s)
- Valencio Salema
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
29
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening. Pharmaceuticals (Basel) 2017; 10:ph10010006. [PMID: 28067769 PMCID: PMC5374410 DOI: 10.3390/ph10010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 10⁵ variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM).
Collapse
|
31
|
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016; 21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Margaret M Hurley
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| |
Collapse
|
32
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Terrell JL, Wu HC, Tsao CY, Barber NB, Servinsky MD, Payne GF, Bentley WE. Nano-guided cell networks as conveyors of molecular communication. Nat Commun 2015; 6:8500. [PMID: 26455828 PMCID: PMC4633717 DOI: 10.1038/ncomms9500] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/28/2015] [Indexed: 01/06/2023] Open
Abstract
Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.
Collapse
Affiliation(s)
- Jessica L Terrell
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Nathan B Barber
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA
| | - Matthew D Servinsky
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
34
|
Chen L, Li C, Zhu Y. The HGF inhibitory peptide HGP-1 displays promising in vitro and in vivo efficacy for targeted cancer therapy. Oncotarget 2015; 6:30088-101. [PMID: 26254225 PMCID: PMC4745783 DOI: 10.18632/oncotarget.3937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
HGF/MET pathway mediates cancer initiation and development. Thus, inhibition on HGF-initiated MET signaling pathway would provide a new approach to cancer targeted therapeutics. In our study, we identified a targeting peptide candidate binding to HGF which was named HGF binding peptide-1 (HGP-1) via bacterial surface display methods coupled with fluorescence-activated cell sorting (FACS). HGP-1 showed the moderate affinity when determined with surface plasmon resonance (SPR) technique and high specificity in binding to HGF while assessed by fluorescence-based ELISA assay. The results from MTT and in vitro migration assay indicated that HGF-dependent cell proliferation and migration could be inhibited by HGP-1. In vivo administration of HGP-1 led to an effective inhibitory effect on tumor growth in A549 tumor xenograft models. Moreover, findings from Western Blots revealed that HGP-1 could down-regulated the phosphorylation levels of MET and ERK1/2 initiated by HGF, which suggested that HGP-1 could disrupt the activation of HGF/MET signaling to influence the cell activity. All the data highlighted the potential of HGP-1 to be a potent inhibitor for HGF/MET signaling.
Collapse
Affiliation(s)
- Lisha Chen
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Li
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimin Zhu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
35
|
In Vitro Selection of Cancer Cell-Specific Molecular Recognition Elements from Amino Acid Libraries. J Immunol Res 2015; 2015:186586. [PMID: 26436100 PMCID: PMC4576012 DOI: 10.1155/2015/186586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 11/27/2022] Open
Abstract
Differential cell systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro selection method for obtaining molecular recognition elements (MREs) that specifically bind to individual cell types with high affinity. MREs are selected from initial large libraries of different nucleic or amino acids. This review outlines the construction of peptide and antibody fragment libraries as well as their different host types. Common methods of selection are also reviewed. Additionally, examples of cancer cell MREs are discussed, as well as their potential applications.
Collapse
|
36
|
Christiansen A, Kringelum JV, Hansen CS, Bøgh KL, Sullivan E, Patel J, Rigby NM, Eiwegger T, Szépfalusi Z, de Masi F, Nielsen M, Lund O, Dufva M. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci Rep 2015; 5:12913. [PMID: 26246327 PMCID: PMC4650709 DOI: 10.1038/srep12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens V Kringelum
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christian S Hansen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katrine L Bøgh
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Eric Sullivan
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Jigar Patel
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Neil M Rigby
- Institute of Food Research, Norwich, United Kingdom
| | - Thomas Eiwegger
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szépfalusi
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Federico de Masi
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- 1] Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark [2] Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ole Lund
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Kogot JM, Pennington JM, Sarkes DA, Kingery DA, Pellegrino PM, Stratis-Cullum DN. Screening and characterization of anti-SEB peptides using a bacterial display library and microfluidic magnetic sorting. J Mol Recognit 2015; 27:739-45. [PMID: 25319622 PMCID: PMC4274986 DOI: 10.1002/jmr.2400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 11/06/2022]
Abstract
Bacterial peptide display libraries enable the rapid and efficient selection of peptides that have high affinity and selectivity toward their targets. Using a 15-mer random library on the outer surface of Escherichia coli (E.coli), high-affinity peptides were selected against a staphylococcal enterotoxin B (SEB) protein after four rounds of biopanning. On-cell screening analysis of affinity and specificity were measured by flow cytometry and directly compared to the synthetic peptide, off-cell, using peptide-ELISA. DNA sequencing of the positive clones after four rounds of microfluidic magnetic sorting (MMS) revealed a common consensus sequence of (S/T)CH(Y/F)W for the SEB-binding peptides R338, R418, and R445. The consensus sequence in these bacterial display peptides has similar amino acid characteristics with SEB peptide sequences isolated from phage display. The Kd measured by peptide-ELISA off-cell was 2.4 nM for R418 and 3.0 nM for R445. The bacterial peptide display methodology using the semiautomated MMS resulted in the discovery of selective peptides with affinity for a food safety and defense threat. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Journal of Molecular Recognition published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua M Kogot
- US Army Research Laboratory; Sensors and Electron Devices, Adelphi, MD, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kapoor S, Rafiq A, Sharma S. Protein engineering and its applications in food industry. Crit Rev Food Sci Nutr 2015; 57:2321-2329. [DOI: 10.1080/10408398.2014.1000481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Swati Kapoor
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - Aasima Rafiq
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - Savita Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
39
|
Abstract
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
40
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
41
|
Chandra D, Sankalia N, Arcibal I, Banta S, Cropek D, Karande P. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex. Biopolymers 2014; 102:97-106. [DOI: 10.1002/bip.22436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Divya Chandra
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| | - Nitesh Sankalia
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
| | - Imee Arcibal
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Scott Banta
- Department of Chemical Engineering; Columbia University; New York NY
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Pankaj Karande
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| |
Collapse
|
42
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
43
|
Abstract
The genotype-phenotype linkage provided by display technologies enables efficient synthesis, analysis, and selection of combinatorial protein libraries. This approach tremendously expands the protein sequence space that can be efficiently evaluated for a selectable function. It thereby provides a key element in identification and directed evolution of novel or improved protein function. Here, yeast surface display is described in the context of selection for binding function. Yeast culture and multiple approaches to magnetic- and fluorescence-based protein selection are presented in detail.
Collapse
Affiliation(s)
- Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 356 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA,
| |
Collapse
|
44
|
Feng B, Guo L, Wang L, Li F, Lu J, Gao J, Fan C, Huang Q. A Graphene Oxide-Based Fluorescent Biosensor for the Analysis of Peptide–Receptor Interactions and Imaging in Somatostatin Receptor Subtype 2 Overexpressed Tumor Cells. Anal Chem 2013; 85:7732-7. [DOI: 10.1021/ac4009463] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bianying Feng
- Key Laboratory
of Laboratory
Medicine, Ministry of Education, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Linjie Guo
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fan Li
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jianxin Lu
- Key Laboratory
of Laboratory
Medicine, Ministry of Education, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
| | - Jimin Gao
- Key Laboratory
of Laboratory
Medicine, Ministry of Education, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
| | - Chunhai Fan
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qing Huang
- Division of Physical Biology
and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
45
|
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Oren Shur
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
- Current affiliation: Boston Consulting Group, New York, NY 10022
| |
Collapse
|
46
|
Verhoeven GS, Dogterom M, den Blaauwen T. Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain. BMC Microbiol 2013; 13:66. [PMID: 23522061 PMCID: PMC3637615 DOI: 10.1186/1471-2180-13-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022] Open
Abstract
Background It is widely believed that integral outer membrane (OM) proteins in bacteria are able to diffuse laterally in the OM. However, stable, immobile proteins have been identified in the OM of Escherichia coli. In explaining the observations, a hypothesized interaction of the immobilized OM proteins with the underlying peptidoglycan (PG) cell wall played a prominent role. Results OmpA is an abundant outer membrane protein in E. coli containing a PG-binding domain. We use FRAP to investigate whether OmpA is able to diffuse laterally over long-range (> ~100 nm) distances in the OM. First, we show that OmpA, containing a PG binding domain, does not exhibit long-range lateral diffusion in the OM. Then, to test whether PG interaction was required for this immobilization, we genetically removed the PG binding domain and repeated the FRAP experiment. To our surprise, this did not increase the mobility of the protein in the OM. Conclusions OmpA exhibits an absence of long-range (> ~100 nm) diffusion in the OM that is not caused by its PG binding domain. Therefore, other mechanisms are needed to explain this observation, such as the presence of physical barriers in the OM, or strong interactions with other elements in the cell envelope.
Collapse
|
47
|
Krumpe LR, Mori T. Potential of phage-displayed peptide library technology to identify functional targeting peptides. Expert Opin Drug Discov 2013; 2:525. [PMID: 20150977 DOI: 10.1517/17460441.2.4.525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo.
Collapse
Affiliation(s)
- Lauren Rh Krumpe
- SAIC-Frederick, Inc., Molecular Targets Development Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
48
|
Peptide-fluorescent bacteria complex as luminescent reagents for cancer diagnosis. PLoS One 2013; 8:e54467. [PMID: 23349898 PMCID: PMC3548802 DOI: 10.1371/journal.pone.0054467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/11/2012] [Indexed: 12/22/2022] Open
Abstract
Currently in clinic, people use hematoxylin and eosin stain (H&E stain) and immunohistochemistry methods to identify the generation and genre of cancers for human pathological samples. Since these methods are inaccurate and time consuming, developing a rapid and accurate method to detect cancer is urgently demanded. In our study, binding peptides for lung cancer cell line A549 were identified using bacteria surface display method. With those binding peptides for A549 cells on the surface, the fluorescent bacteria (Escherichia coli with stably expressed green fluorescent protein) were served as specific detecting reagents for the diagnosis of cancers. The binding activity of peptide-fluorescent bacteria complex was confirmed by detached cancer cells, attached cancer cells and mice tumor xenograft samples. A unique fixation method was developed for peptide-bacteria complex in order to make this complex more feasible for the clinic use. This peptide-fluorescent bacteria complex has great potential to become a new diagnostic tool for clinical application.
Collapse
|
49
|
Spatola BN, Murray JA, Kagnoff M, Kaukinen K, Daugherty PS. Antibody repertoire profiling using bacterial display identifies reactivity signatures of celiac disease. Anal Chem 2013; 85:1215-22. [PMID: 23234559 PMCID: PMC3903178 DOI: 10.1021/ac303201d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A general strategy to identify serum antibody specificities associated with a given disease state and peptide reagents for their detection was developed using bacterial display peptide libraries and multiparameter flow cytometry (MPFC). Using sera from patients with celiac disease (CD) (n = 45) or healthy subjects (n = 40), bacterial display libraries were screened for peptides that react specifically with antibodies from CD patients and not with those from healthy patients. The libraries were screened for peptides that simultaneously cross-react with CD patient antibodies present in two separate patient groups labeled with spectrally distinct fluorophores but do not react with unlabeled non-CD antibodies, thus affording a quantitative separation. A panel of six unique peptide sequences yielded 85% sensitivity and 91% specificity (AUC = 0.91) on a set of 60 samples not used for discovery, using leave-one-out cross-validation. Individual peptides were dissimilar with known CD-specific antigens tissue transglutaminase (tTG) and deamidated gliadin, and the classifier accuracy was independent of anti-tTG antibody titer. These results demonstrate that bacterial display/MPFC provides a highly effective tool for the unbiased discovery of disease-associated antibody specificities and peptide reagents for their detection that may have broad utility for diagnostic development.
Collapse
Affiliation(s)
- Bradley N. Spatola
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Joseph A. Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Martin Kagnoff
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
| | - Katri Kaukinen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Medical School, University of Tampere, Tampere, Finland
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
50
|
Increased affinity and solubility of peptides used for direct peptide ELISA on polystyrene surfaces through fusion with a polystyrene-binding peptide tag. Biotechniques 2012; 52:95-102. [PMID: 22313407 DOI: 10.2144/000113810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
Peptide reagents can serve as alternatives or replacements to antibodies in sensing or diagnostic applications. The passive adsorption of peptides onto polystyrene surfaces can limit the target binding capability, especially for short, positively charged, or hydrophobic sequences. In this report, we show that fusing a peptide with a previously characterized 12-amino acid polystyrene binding sequence (PS-tag) improves overall peptide solubility and enzyme-linked immunosorbent assay (ELISA) results using the peptide as a capture agent. Specific improvements for protective antigen (PA; Bacillus anthracis) protein binding peptides selected from bacterial surface display were compared with native or biotinylated peptides. The PS-tag was added to either peptide terminus, using a (Gly)(4) spacer, and comparable binding affinities were obtained. Fusion with the PS-tag did not have any negative impact on peptide secondary structure as measured by circular dichroism. The addition of the PS-tag provides a convenient method to utilize peptide reagents from peptide display libraries as capture agents in an ELISA format without the need for a biotin tag or concerns about passive adsorption of critical residues for target capture.
Collapse
|