1
|
Wang W, Zhang L. Genome-Wide Association Study on Two Immune-Related Traits in Jinghai Yellow Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- W Wang
- Jiangsu Agri-animal Husbandry Vocational College, China; Yangzhou University, China
| | - L Zhang
- Jiangsu Agri-animal Husbandry Vocational College, China
| |
Collapse
|
2
|
Habimana R, Ngeno K, Okeno TO, Hirwa CDA, Keambou Tiambo C, Yao NK. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda. Front Genet 2021; 12:723980. [PMID: 34745207 PMCID: PMC8570395 DOI: 10.3389/fgene.2021.723980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
A chicken genome has several regions with quantitative trait loci (QTLs). However, replication and confirmation of QTL effects are required particularly in African chicken populations. This study identified single nucleotide polymorphisms (SNPs) and putative genes responsible for body weight (BW) and antibody response (AbR) to Newcastle disease (ND) in Rwanda indigenous chicken (IC) using genome-wide association studies (GWAS). Multiple testing was corrected using chromosomal false detection rates of 5 and 10% for significant and suggestive thresholds, respectively. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of four significant SNPs (rs74098018, rs13792572, rs314702374, and rs14123335) significantly (p ≤ 7.6E-5) associated with BW were identified on chromosomes (CHRs) 8, 11, and 19. In the vicinity of these SNPs, four genes such as pre-B-cell leukaemia homeobox 1 (PBX1), GPATCH1, MPHOSPH6, and MRM1 were identified. Four other significant SNPs (rs314787954, rs13623466, rs13910430, and rs737507850) all located on chromosome 1 were strongly (p ≤ 7.6E-5) associated with chicken antibody response to ND. The closest genes to these four SNPs were cell division cycle 16 (CDC16), zinc finger, BED-type containing 1 (ZBED1), myxovirus (influenza virus) resistance 1 (MX1), and growth factor receptor bound protein 2 (GRB2) related adaptor protein 2 (GRAP2). Besides, other SNPs and genes suggestively (p ≤ 1.5E-5) associated with BW and antibody response to ND were reported. This work offers a useful entry point for the discovery of causative genes accountable for essential QTLs regulating BW and antibody response to ND traits. Results provide auspicious genes and SNP-based markers that can be used in the improvement of growth performance and ND resistance in IC populations based on gene-based and/or marker-assisted breeding selection.
Collapse
Affiliation(s)
- Richard Habimana
- College of Agriculture, Animal Science and Veterinary Medicine, University of Rwanda, Kigali, Rwanda.,Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Kiplangat Ngeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Tobias Otieno Okeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | | | - Christian Keambou Tiambo
- Centre for Tropical Livestock Genetics and Health, International Livestock Research Institute, Nairobi, Kenya
| | - Nasser Kouadio Yao
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
3
|
Hako Touko BA, Kong Mbiydzenyuy AT, Tumasang TT, Awah-Ndukum J. Heritability Estimate for Antibody Response to Vaccination and Survival to a Newcastle Disease Infection of Native chicken in a Low-Input Production System. Front Genet 2021; 12:666947. [PMID: 34659331 PMCID: PMC8514834 DOI: 10.3389/fgene.2021.666947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
The Newcastle disease virus (NDV) is the deadliest chicken pathogen in low-input village poultry, and selecting for NDV resistance has been recommended as a sustainable strategy in backyard poultry production systems. However, selecting for disease resistance needs precision data from either a big population sample size or on many generations with good pedigree records for effective prediction of heritability (h2) and breeding values of the foundation stock. Such conditions are almost impossible to meet in low-input backyard production systems. This study aimed at proposing a realistic method for estimating the heritability of the immune response to vaccination and survival of NDV infection in village poultry production to inform a breeding strategy for ND resistance in Cameroon. A 1 and 3% selection intensity of cocks and hens for higher antibody (ab) response (ABR) to vaccination followed by progeny selection of chickens who survived an experimental NDV infection was conducted from an initial population of 1,702 chickens. The selection induced an increase of 1012.47units/ml (p<0.01) of the NDV antibody of the progeny as well as an effective survival rate (ESR) increase of 11.75%. Three methods were used to estimate the heritability (h2) of NDV antibody response to vaccination. h2 was low irrespective of the method with estimates of 0.2227, 0.2442, and 0.2839 for the breeder’s equation method, the graphical method, and the full-sib/half-sib nested design, respectively. The mortality rate of infected chickens was high (86%). The antibody response to selection was not influenced by sex and genetic type even though the opposite was observed (p<0.05) for the ESR to NDV infection with naked neck chickens recording an ESR of 14% against 2.25% for the normal feather type. A very low heritability (0.0891) was observed for the survival against NDV infection. We confirm the evidence of disease resistance and the effect of selection for antibody response to vaccination on the improvement of the survival against NDV disease. Although the full sib/half sib nested design is more appropriate in case of availability of pedigree information, the direct methods are still useful in case of unavailability of full pedigree information. It is recommended that gene expression analysis should be prioritized for disease-resistance assessment and selection of native breeds of poultry.
Collapse
Affiliation(s)
- Blaise Arnaud Hako Touko
- Biotechnology and Bioinformatics Research Unit, Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Anold Tatah Kong Mbiydzenyuy
- Biotechnology and Bioinformatics Research Unit, Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon.,Animal Research Lab, Department of Animal Sciences, School of Agriculture and Natural Resources, Catholic University Institute of Buea, Buea, Cameroon
| | - Tebug Thomas Tumasang
- Laboratory of Animal Physiology and Health, Department of Animal Sciences, University of Dschang, Dschang, Cameroon
| | - Julius Awah-Ndukum
- Laboratory of Animal Physiology and Health, Department of Animal Sciences, University of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Monson MS, Lamont SJ. Genetic resistance to avian pathogenic Escherichia coli (APEC): current status and opportunities. Avian Pathol 2021; 50:392-401. [PMID: 33554653 DOI: 10.1080/03079457.2021.1879990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Infections with avian pathogenic Escherichia coli (APEC) can be extremely detrimental to poultry health and production. Investigating host genetic variation could identify the biological mechanisms that control resistance to this pathogen and allow selection for improved resistance in experimental and commercial poultry populations. In this review, the current knowledge of how host genetics contributes to APEC resistance and future opportunities that would benefit the understanding or application of genetic resistance are discussed. Phenotypes, such as antibody responses, lesion scores, and mortality, revealed that genetic background impacts APEC resistance and interacts with other factors including the environment and challenge conditions. Experiments have used divergent selection for APEC-specific antibody levels to facilitate genetic studies, estimated heritabilities in relevant traits, detected quantitative trait loci using microsatellites, and made associations with sequence variation in the major histocompatibility complex, which collectively suggest that improving APEC resistance through selection is feasible, although genetic control is partial, complex, and highly polygenic. Additionally, functional genomics techniques have identified antimicrobial responses, toll-like receptor and cytokine signalling, and the cell cycle as central pathways in the host response to APEC challenge. Opportunities for future research are discussed, including the expansion of existing lines of research and the application of new technologies that are relevant to the study of host genetics and APEC. This review closes with prospective strategies for improvement of host genetic resistance to APEC.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Chanthavixay G, Kern C, Wang Y, Saelao P, Lamont SJ, Gallardo RA, Rincon G, Zhou H. Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front Genet 2020; 11:567812. [PMID: 33101389 PMCID: PMC7545831 DOI: 10.3389/fgene.2020.567812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Two environmental factors, Newcastle disease and heat stress, are concurrently negatively impacting poultry worldwide and warrant greater attention into developing genetic resistance within chickens. Using two genetically distinct and highly inbred layer lines, Fayoumi and Leghorn, we explored how different genetic backgrounds affect the bursal response to a treatment of simultaneous Newcastle disease virus (NDV) infection at 6 days postinfection (dpi) while under chronic heat stress. The bursa is a primary lymphoid organ within birds and is crucial for the development of B cells. We performed RNA-seq and ChIP-seq targeting histone modifications on bursa tissue. Differential gene expression revealed that Leghorn, compared to Fayoumi, had significant down-regulation in genes involved in cell proliferation, cell cycle, and cell division. Interestingly, we also found greater differences in histone modification levels in response to treatment in Leghorns than Fayoumis, and biological processes enriched in associated target genes of H3K27ac and H3K4me1 were similarly associated with cell cycle and receptor signaling of lymphocytes. Lastly, we found candidate variants between the two genetic lines within exons of differentially expressed genes and regulatory elements with differential histone modification enrichment between the lines, which provides a strong foundation for understanding the effects of genetic variation on NDV resistance under heat stress. This study provides further understanding of the cellular mechanisms affected by NDV infection under heat stress in chicken bursa and identified potential genes and regulatory regions that may be targets for developing genetic resistance within chickens.
Collapse
Affiliation(s)
- Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Walugembe M, Amuzu-Aweh EN, Botchway PK, Naazie A, Aning G, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Kayang BB, Dekkers JCM. Genetic Basis of Response of Ghanaian Local Chickens to Infection With a Lentogenic Newcastle Disease Virus. Front Genet 2020; 11:739. [PMID: 32849779 PMCID: PMC7402339 DOI: 10.3389/fgene.2020.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease (ND) is a global threat to domestic poultry, especially in rural areas of Africa and Asia, where the loss of entire backyard local chicken flocks often threatens household food security and income. To investigate the genetics of Ghanaian local chicken ecotypes to Newcastle disease virus (NDV), in this study, three popular Ghanaian chicken ecotypes (regional populations) were challenged with a lentogenic NDV strain at 28 days of age. This study was conducted in parallel with a similar study that used three popular Tanzanian local chicken ecotypes and after two companion studies in the United States, using Hy-line Brown commercial laying birds. In addition to growth rate, NDV response traits were measured following infection, including anti-NDV antibody levels [pre-infection and 10 days post-infection (dpi)], and viral load (2 and 6 dpi). Genetic parameters were estimated, and two genome-wide association study analysis methods were used on data from 1,440 Ghanaian chickens that were genotyped on a chicken 600K Single Nucleotide Polymorphism (SNP) chip. Both Ghana and Tanzania NDV challenge studies revealed moderate to high (0.18 – 0.55) estimates of heritability for all traits, except viral clearance where the heritability estimate was not different from zero for the Tanzanian ecotypes. For the Ghana study, 12 quantitative trait loci (QTL) for growth and/or response to NDV from single-SNP analyses and 20 genomic regions that explained more than 1% of genetic variance using the Bayes B method were identified. Seven of these windows were also identified as having at least one significant SNP in the single SNP analyses for growth rate, anti-NDV antibody levels, and viral load at 2 and 6 dpi. An important gene for growth during stress, CHORDC1 associated with post-infection growth rate was identified as a positional candidate gene, as well as other immune related genes, including VAV2, IL12B, DUSP1, and IL17B. The QTL identified in the Ghana study did not overlap with those identified in the Tanzania study. However, both studies revealed QTL with genes vital for growth and immune response during NDV challenge. The Tanzania parallel study revealed an overlapping QTL on chromosome 24 for viral load at 6 dpi with the US NDV study in which birds were challenged with NDV under heat stress. This QTL region includes genes related to immune response, including TIRAP, ETS1, and KIRREL3. The moderate to high estimates of heritability and the identified QTL suggest that host response to NDV of local African chicken ecotypes can be improved through selective breeding to enhance increased NDV resistance and vaccine efficacy.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Esinam N Amuzu-Aweh
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Princess K Botchway
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Augustine Naazie
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - George Aning
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Ying Wang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Boniface B Kayang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Affiliation(s)
- P.M. Hocking
- Roslin Institute, Roslin, Midlothian, Scotland, EH25 9PS
| |
Collapse
|
8
|
Walugembe M, Mushi JR, Amuzu-Aweh EN, Chiwanga GH, Msoffe PL, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Muhairwa AP, Dekkers JCM. Genetic Analyses of Tanzanian Local Chicken Ecotypes Challenged with Newcastle Disease Virus. Genes (Basel) 2019; 10:genes10070546. [PMID: 31319636 PMCID: PMC6678660 DOI: 10.3390/genes10070546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023] Open
Abstract
Newcastle Disease (ND) is a continuing global threat to domestic poultry, especially in developing countries, where severe outbreaks of velogenic ND virus (NDV) often cause major economic losses to households. Local chickens are of great importance to rural family livelihoods through provision of high-quality protein. To investigate the genetic basis of host response to NDV, three popular Tanzanian chicken ecotypes (regional populations) were challenged with a lentogenic (vaccine) strain of NDV at 28 days of age. Various host response phenotypes, including anti-NDV antibody levels (pre-infection and 10 days post-infection, dpi), and viral load (2 and 6 dpi) were measured, in addition to growth rate. We estimated genetic parameters and conducted genome-wide association study analyses by genotyping 1399 chickens using the Affymetrix 600K chicken SNP chip. Estimates of heritability of the evaluated traits were moderate (0.18–0.35). Five quantitative trait loci (QTL) associated with growth and/or response to NDV were identified by single-SNP analyses, with some regions explaining ≥1% of genetic variance based on the Bayes-B method. Immune related genes, such as ETS1, TIRAP, and KIRREL3, were located in regions associated with viral load at 6 dpi. The moderate estimates of heritability and identified QTL indicate that NDV response traits may be improved through selective breeding of chickens to enhance increased NDV resistance and vaccine efficacy in Tanzanian local ecotypes.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - James R Mushi
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Esinam N Amuzu-Aweh
- Department of Animal Science, University of Ghana, P.O. Box LG 25 Legon, Accra, Ghana
| | - Gaspar H Chiwanga
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Peter L Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Department of Animal Science, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Berghof TVL, Matthijs MGR, Arts JAJ, Bovenhuis H, Dwars RM, van der Poel JJ, Visker MHPW, Parmentier HK. Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli (APEC) in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:45-57. [PMID: 30579935 DOI: 10.1016/j.dci.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Keyhole limpet hemocyanin (KLH)-binding natural antibody (NAb) titers in chickens are heritable, and higher levels have previously been associated with a higher survival. This suggests that selective breeding for higher NAb levels might increase survival by means of improved general disease resistance. Chickens were divergently selected and bred for total NAb levels binding KLH at 16 weeks of age for six generations, resulting in a High NAb selection line and a Low NAb selection line. To for test differences in disease resistance, chickens were challenged with avian pathogenic Escherichia coli (APEC) in two separate experiments. Chickens at 8 days of age received one of four intratracheal inoculations of 0.2 mL phosphate buffered saline (PBS): 1) mock inoculate, 2) with 0.2 mL PBS containing 108.20 colony-forming units (CFU)/mL APEC, 3) with 0.2 mL PBS containing 106.64 CFU/mL APEC, and 4) with 0.2 mL PBS containing 107.55 CFU/mL APEC. Mortality was recorded during 7 days post inoculation. Overall, 50-60% reduced mortality was observed in the High line compared to the Low line for all APEC doses. In addition, morbidity was determined of the surviving chickens at 15 days of age. The High line had lower morbidity scores compared to the Low line. We conclude that selective breeding for high KLH-binding NAb levels at 16 weeks of age increase APEC resistance in early life. This study and previous studies support the hypothesis that KLH-binding NAb might be used as an indicator trait for to selective breed for general disease resistance in an antigen non-specific fashion.
Collapse
Affiliation(s)
- T V L Berghof
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands; Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - M G R Matthijs
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J A J Arts
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| | - H Bovenhuis
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - R M Dwars
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J J van der Poel
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - M H P W Visker
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - H K Parmentier
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| |
Collapse
|
10
|
Saelao P, Wang Y, Chanthavixay G, Gallardo RA, Wolc A, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes (Basel) 2019; 10:genes10010061. [PMID: 30669351 PMCID: PMC6356198 DOI: 10.3390/genes10010061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV) is a highly contagious avian pathogen that poses a tremendous threat to poultry producers in endemic zones due to its epidemic potential. To investigate host genetic resistance to NDV while under the effects of heat stress, a genome-wide association study (GWAS) was performed on Hy-Line Brown layer chickens that were challenged with NDV while under high ambient temperature to identify regions associated with host viral titer, circulating anti-NDV antibody titer, and body weight change. A single nucleotide polymorphism (SNP) on chromosome 1 was associated with viral titer at two days post-infection (dpi), while 30 SNPs spanning a quantitative trait loci (QTL) on chromosome 24 were associated with viral titer at 6 dpi. Immune related genes, such as CAMK1d and CCDC3 on chromosome 1, associated with viral titer at 2 dpi, and TIRAP, ETS1, and KIRREL3, associated with viral titer at 6 dpi, were located in two QTL regions for viral titer that were identified in this study. This study identified genomic regions and candidate genes that are associated with response to NDV during heat stress in Hy-Line Brown layer chickens. Regions identified for viral titer on chromosome 1 and 24, at 2 and 6 dpi, respectively, included several genes that have key roles in regulating the immune response.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
- Hy-Line International, Dallas Center, IA 50063, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Wolc A, Arango J, Settar P, Fulton J, O’Sullivan N, Dekkers J. Genome wide association study for heat stress induced mortality in a white egg layer line. Poult Sci 2019; 98:92-96. [DOI: 10.3382/ps/pey403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
|
12
|
Tohidi R, Javanmard A, Idris I. Immunogenetics applied to control salmonellosis in chicken: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reza Tohidi
- Department of Animal Science, Torbat-e Jam University of Agriculture, Torbat-e Jam, Iran
| | - Arash Javanmard
- Department of Animal Science, University of Tabriz, Tabriz, Iran
| | - Ismail Idris
- Department of Animal Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
13
|
Geng T, Guan X, Smith EJ. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus. Poult Sci 2015. [PMID: 26217034 DOI: 10.3382/ps/pev224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody response, an important trait in both agriculture and biomedicine, plays a part in protecting animals from infection. Dissecting molecular basis of antibody response may improve artificial selection for natural disease resistance in livestock and poultry. A number of genetic markers associated with antibody response have been identified in the chicken and mouse by linkage-based association studies, which only define genomic regions by genetic markers but do not pinpoint genes for antibody response. In contrast, global expression profiling has been applied to define the molecular bases of a variety of biological traits through identification of differentially expressed genes (DEGs). Here, we employed Affimetrix GeneChip Chicken Genome Arrays to identify differentially expressed genes for antibody response to sheep red blood cells (SRBC) using chickens challenged with and without SRBC or chickens with high and low anti-SRBC titers. The DEGs include those with known (i.e., MHC class I and IgH genes) or unknown function in antibody response. Classification test of these genes suggested that the response of the chicken to intravenous injection of SRBC involved multiple biological processes, including response to stress or other different stimuli, sugar, carbohydrate or protein binding, and cell or soluble fraction, in addition to antibody response. This preliminary study thus provides an insight into molecular basis of antibody response to SRBC in the chicken.
Collapse
Affiliation(s)
- Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Xiaojing Guan
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Edward J Smith
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
14
|
The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One 2015; 10:e0117269. [PMID: 25822738 PMCID: PMC4378930 DOI: 10.1371/journal.pone.0117269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
The genetic improvement of disease resistance in poultry continues to be a challenge. To identify candidate genes and loci responsible for these traits, genome-wide association studies using the chicken 60k high density single nucleotide polymorphism (SNP) array for six immune traits, total serum immunoglobulin Y (IgY) level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against Avian Influenza Virus (AIV) and Sheep Red Blood Cell (SRBC), were performed. RT-qPCR was used to quantify the relative expression of the identified candidate genes. Nine significantly associated SNPs (P < 2.81E-06) and 30 SNPs reaching the suggestively significant level (P < 5.62E-05) were identified. Five of the 10 SNPs that were suggestively associated with the antibody response to SRBC were located within or close to previously reported QTL regions. Fifteen SNPs reached a suggestive significance level for AIV antibody titer and seven were found on the sex chromosome Z. Seven suggestive markers involving five different SNPs were identified for the numbers of heterophils and lymphocytes, and the heterophil/lymphocyte ratio. Nine significant SNPs, all on chromosome 16, were significantly associated with serum total IgY concentration, and the five most significant were located within a narrow region spanning 6.4kb to 253.4kb (P = 1.20E-14 to 5.33E-08). After testing expression of five candidate genes (IL4I1, CD1b, GNB2L1, TRIM27 and ZNF692) located in this region, changes in IL4I1, CD1b transcripts were consistent with the concentrations of IgY, while abundances of TRIM27 and ZNF692 showed reciprocal changes to those of IgY concentrations. This study has revealed 39 SNPs associated with six immune traits (total serum IgY level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against AIV and SRBC) in Beijing-You chickens. The narrow region spanning 247kb on chromosome 16 is an important QTL for serum total IgY concentration. Five candidate genes related to IgY level validated here are novel and may play critical roles in the modulation of immune responses. Potentially useful candidate SNPs for marker-assisted selection for disease resistance are identified. It is highly likely that these candidate genes play roles in various aspects of the immune response in chickens.
Collapse
|
15
|
Genome-wide association study of antibody level response to NDV and IBV in Jinghai yellow chicken based on SLAF-seq technology. J Appl Genet 2015; 56:365-73. [PMID: 25588649 DOI: 10.1007/s13353-014-0269-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 12/21/2022]
Abstract
Newcastle disease (ND) and avian infectious bronchitis (IB) are contagious diseases of chickens. To identify genes associated with antibody levels against ND and IB, a genome-wide association study was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in Jinghai yellow chickens. This determined six single-nucleotide polymorphisms (SNPs) that were associated with antibody levels against Newcastle disease virus (NDV): rsZ2494661, rsZ2494710, rs1211307701, rs1211307711, rs1218289310 and rs420701988. Of these, rsZ2494661 and rsZ2494710 reached the 5 % Bonferroni genome-wide significance level (5.5E-07) and they were both 134.7 kb downstream of the SETBP1 gene. The remaining four SNPs had 'suggestive' genome-wide significance levels (1.1E-05) and they were within or near the Plexin B1, LRRN1 and PDGFC genes. IB had two SNPs associated with antibody levels: rs149988433 and rs16170823; both reached chromosome-wide significance levels and they were near the USP7 and TRIM27 genes, respectively. Bioinformatics, GO annotation and pathway analysis indicated that five of these genes (Plexin B1, TRIM27, PDGFC, SETBP1 and USP7) may be important for the generation of protective antibodies against NDV and infectious bronchitis virus (IBV). This paves the way for further research on host immune responses against NDV.
Collapse
|
16
|
|
17
|
Luo C, Qu H, Ma J, Wang J, Li C, Yang C, Hu X, Li N, Shu D. Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genet 2013; 14:42. [PMID: 23663563 PMCID: PMC3654938 DOI: 10.1186/1471-2156-14-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 05/06/2013] [Indexed: 11/21/2022] Open
Abstract
Background Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens. Results To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98). Conclusion The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou 510640, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal 2012; 3:415-36. [PMID: 22444313 DOI: 10.1017/s1751731108003522] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This paper reviews the evidence for host genetic variation in resistance to infectious diseases for a wide variety of diseases of economic importance in poultry, cattle, pig, sheep and Atlantic salmon. Further, it develops a method of ranking each disease in terms of its overall impact, and combines this ranking with published evidence for host genetic variation and information on the current state of genomic tools in each host species. The outcome is an overall ranking of the amenability of each disease to genomic studies that dissect host genetic variation in resistance. Six disease-based assessment criteria were defined: industry concern, economic impact, public concern, threat to food safety or zoonotic potential, impact on animal welfare and threat to international trade barriers. For each category, a subjective score was assigned to each disease according to the relative strength of evidence, impact, concern or threat posed by that particular disease, and the scores were summed across categories. Evidence for host genetic variation in resistance was determined from available published data, including breed comparison, heritability studies, quantitative trait loci (QTL) studies, evidence of candidate genes with significant effects, data on pathogen sequence and on host gene expression analyses. In total, 16 poultry diseases, 13 cattle diseases, nine pig diseases, 11 sheep diseases and three Atlantic salmon diseases were assessed. The top-ranking diseases or pathogens, i.e. those most amenable to studies dissecting host genetic variation, were Salmonella in poultry, bovine mastitis, Marek's disease and coccidiosis, both in poultry. The top-ranking diseases or pathogens in pigs, sheep and Atlantic salmon were Escherichia coli, mastitis and infectious pancreatic necrosis, respectively. These rankings summarise the current state of knowledge for each disease and broadly, although not entirely, reflect current international research efforts. They will alter as more information becomes available and as genome tools become more sophisticated for each species. It is suggested that this approach could be used to rank diseases from other perspectives as well, e.g. in terms of disease control strategies.
Collapse
|
19
|
Sun Y, Parmentier H, Frankena K, van der Poel J. Natural antibody isotypes as predictors of survival in laying hens. Poult Sci 2011; 90:2263-74. [DOI: 10.3382/ps.2011-01613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
20
|
Aslam ML, Bastiaansen JWM, Crooijmans RPMA, Vereijken A, Groenen MAM. Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey. BMC Genet 2011; 12:61. [PMID: 21745371 PMCID: PMC3142527 DOI: 10.1186/1471-2156-12-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/11/2011] [Indexed: 12/02/2022] Open
Abstract
Background The turkey (Meleagris gallopavo) is an important agricultural species and is the second largest contributor to the world's poultry meat production. Demand of turkey meat is increasing very rapidly. Genetic markers linked to genes affecting quantitative traits can increase the selection response of animal breeding programs. The use of these molecular markers for the identification of quantitative trait loci, and subsequently fine-mapping of quantitative trait loci regions, allows for pinpointing of genes that underlie such economically important traits. Results The quantitative trait loci analyses of the growth curve, body weight, breast yield and the meat quality traits showed putative quantitative trait loci on 21 of the 27 turkey chromosomes covered by the linkage map. Forty-five quantitative trait loci were detected across all traits and these were found in 29 different regions on 21 chromosomes. Out of the 45 quantitative trait loci, twelve showed significant (p < 0.01) evidence of linkage while the remaining 33 showed suggestive evidence (p < 0.05) of linkage with different growth, growth curve, meat quality and breast yield traits. Conclusion A large number of quantitative trait loci were detected across the turkey genome, which affected growth, breast yield and meat quality traits. Pleiotropic effects or close linkages between quantitative trait loci were suggested for several of the chromosomal regions. The comparative analysis regarding the location of quantitative trait loci on different turkey, and on the syntenic chicken chromosomes, along with their phenotypic associations, revealed signs of functional conservation between these species.
Collapse
Affiliation(s)
- Muhammad L Aslam
- Animal Breeding and Genomics Centre, Wageningen University, 6709PG, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Biscarini F, Bovenhuis H, van Arendonk JAM, Parmentier HK, Jungerius AP, van der Poel JJ. Across-line SNP association study of innate and adaptive immune response in laying hens. Anim Genet 2009; 41:26-38. [PMID: 19781038 DOI: 10.1111/j.1365-2052.2009.01960.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in laying hens. For this purpose, the associations between 1022 single nucleotide polymorphism (SNP) markers and immune traits were studied in 583 hens from nine different layer lines. Immune traits were natural antibodies for keyhole limpet haemocyanin (KLH) and lipopolysaccharide (LPS) at 20, 40 and 65 weeks, acquired antibodies to the vaccinal virus of Newcastle disease at 20 weeks, and complement activity measured on sheep and bovine red blood cells at 20, 40 and 65 weeks. We adopted a novel approach based on across-line analysis and testing of the SNP-by-line interaction. Among lines, linkage disequilibrium is conserved at shorter distances than in individual lines; therefore, SNPs significantly associated with immune traits across lines are expected to be near the functional mutations. In the analysis, the SNPs that had a significant across-line effect but did not show significant SNP-by-line interaction were identified to test whether the association was consistent in the individual lines. Ultimately, 59 significant associations between SNPs and immune traits were detected. Our results confirmed some previously identified QTL and identified new QTL potentially involved in the immune function. We found evidence for a role of IL17A (chromosome 3) in natural and acquired antibody titres and in the classical and alternative pathways of complement activation. The major histocompatibility genes on chromosome 16 showed significant association with natural and acquired antibody titres and classical complement activity. The IL12B gene on chromosome 13 was associated with natural antibody titres.
Collapse
Affiliation(s)
- F Biscarini
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Abasht B, Dekkers JCM, Lamont SJ. Review of Quantitative Trait Loci Identified in the Chicken. Poult Sci 2006; 85:2079-96. [PMID: 17135661 DOI: 10.1093/ps/85.12.2079] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methods for mapping QTL are actively used in the chicken to identify chromosomal regions contributing to variation in traits related to growth, disease resistance, egg production, behavior, and metabolic parameters. However, higher-resolution mapping and better knowledge of the genetic architecture underlying QTL are needed for successful application of this information into breeding programs. Therefore, this paper summarizes and integrates original, primary QTL studies in the chicken to identify basic information on the genetic architecture of quantitative traits in chickens. The results of this review show several instances of consensus of QTL locations for similar traits from independent studies. Furthermore, the consensus of QTL location for different traits and evidence for QTL with parent-of-origin effect, transgressive alleles, epistatic QTL, and QTL x sex interaction in chicken are presented and discussed. This information can be helpful in identifying genes or mutations underlying the QTL and in the application of genomic information in marker-assisted breeding programs.
Collapse
Affiliation(s)
- B Abasht
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
23
|
Kim ES, Hong YH, Min W, Lillehoj HS. Fine-Mapping of Coccidia-Resistant Quantitative Trait Loci in Chickens. Poult Sci 2006; 85:2028-30. [PMID: 17032840 DOI: 10.1093/ps/85.11.2028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two commercial, pure broiler lines with different susceptibility to coccidiosis were used to fine-map QTL associated with the previously identified marker LEI0101, located at 259 cM on chromosome 1 and shown to be significantly associated with disease resistance. Eight additional microsatellite markers linked to LEI0101 were used for genotyping of F(1) parents and F(2) offspring (n = 314), and their associations with oocyst shedding, as a marker of disease resistance, were determined in birds experimentally infected with Eimeria maxima. Single-point analysis of 4 families showed that logarithm of odds (LOD) scores at all marker loci were > 0.5, with the exception of marker LEI0071, located at 242 cM (LOD score = 2.45). Multipoint analysis showed a maximum LOD score between LEI0071 and LEI0101 at 254 cM (LOD score = 3.74). Although the LEI0071 marker was mapped near LEI0101 by linkage analysis, the physical location of LEI0071 was not identified. Further studies to determine the physical locations of these and other markers will allow additional application association mapping techniques using single nucleotide polymorphism markers.
Collapse
Affiliation(s)
- E-S Kim
- Department of Animal Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
24
|
Smulikowska S. Chapter 21 Manipulation of the poultry ecosystem through biotechnology. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1877-1823(09)70108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
de Koning DJ, Carlborg O, Haley CS. The genetic dissection of immune response using gene-expression studies and genome mapping. Vet Immunol Immunopathol 2005; 105:343-52. [PMID: 15808311 DOI: 10.1016/j.vetimm.2005.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional genomics has been applied to the genetic dissection of immune response in different ways: (1) experimental crosses between lines that differ in their (non-) specific immune response have been used to detect quantitative trait loci (QTL) underlying these differences. (2) The measurement of gene expression levels for thousands of genes using microarrays or oligonucleotide chips to identify differential expression with regard to antigen challenge: (a) before and after infection, (b) resistant versus susceptible lines, or (c) combinations of both. Interpretation of QTL results is hampered by the fact that confidence regions of the QTL are large and can contain hundreds of potential candidate genes for the QTL. At the same time, the microarray experiments tend to show large numbers of differentially expressed genes without identifying the relationships between these genes. In the recently proposed 'genetical genomics' framework, members of a segregating population are characterised for genome-wide molecular markers and for gene expression levels. This facilitates the mapping of expression-QTL (eQTL): loci in the genome that control the expression of genes. Initial applications of this approach are critically reviewed and potential applications of this approach with regard to immune response are presented.
Collapse
|
26
|
Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 2005; 109:415-79. [PMID: 15905640 DOI: 10.1159/000084205] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harlizius B, van Wijk R, Merks JWM. Genomics for food safety and sustainable animal production. J Biotechnol 2004; 113:33-42. [PMID: 15380645 DOI: 10.1016/j.jbiotec.2004.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 02/09/2004] [Accepted: 03/04/2004] [Indexed: 11/22/2022]
Abstract
There is a growing concern in society about the safety of animal-derived food, the health and welfare of farm animals and the sustainability of current animal production systems. Along farm animal, breeding genomics may contribute to a solution for these concerns. The use of genomic analysis tools, to achieve genetic progress in typical out-bred populations of farm animals, seems to be more difficult compared to 'model' organisms or plants. However, identification of positional candidate genes may be accelerated by linkage disequilibrium (LD) mapping. Recording of sustainable traits requires a large financial and logistic input and the economic advantages for the market are not as clear as for traditional selection traits. Examples show that the major genes causing variability for similar traits in different species are rarely the same. Therefore, for breeding purposes genomic analysis of the species of interest is needed. The fundamental knowledge obtained on the genetic architecture of complex traits will open new perspectives for the use of DNA tests in selection schemes. For food safety and traceability, DNA-based techniques evolve for monitoring and early warning systems.
Collapse
Affiliation(s)
- Barbara Harlizius
- IPG, Institute for Pig Genetics BV, PO Box 43, 6640 AA Beuningen, The Netherlands.
| | | | | |
Collapse
|
28
|
Siwek M, Buitenhuis AJ, Cornelissen SJB, Nieuwland MGB, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ. Detection of different quantitative trait loci for antibody responses to keyhole lympet hemocyanin and Mycobacterium butyricum in two unrelated populations of laying hens. Poult Sci 2004; 82:1845-52. [PMID: 14717541 DOI: 10.1093/ps/82.12.1845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quantitative trait loci involved in the primary antibody response to keyhole lympet hemocyanin (KLH) and Mycobacterium butyricum were detected in two independent populations of laying hens. The first population was an F2 cross (H/L) of lines divergently selected for either high or low primary antibody responses to SRBC, and the second population was an F2 cross between 2 commercial layer lines displaying differences in feather pecking behavior (FP). Both populations were typed with microsatellite markers widely distributed over the genome with similar intervals between markers. Titers of antibodies binding KLH and M. butyricum were measured for all individuals by ELISA. Two genetic models were applied to detect QTL involved in the humoral immune response: a half-sib model and a line-cross model, both using the regression interval method. In the half-sib analysis, 2 QTL (on GGA14 and GGA27) were detected for the antibody response to KLH for the H/L population, and 2 QTL (on GGA14 and GGA18) were detected for the FP population. Only 1 QTL was detected for M. butyricum on GGA14 in the FP population using the half-sib analysis model. Two QTL were detected for the FP population on GGA2 and GGA3 using the line-cross analysis model. A QTL for the primary antibody response to KLH detected on GGA14 was validated in both populations under the half-sib analysis model. The present data suggest differences in the genetic regulation of antibody responses to two different T-cell dependent antigens.
Collapse
Affiliation(s)
- M Siwek
- Animal Breeding & Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Staszewski V, Boulinier T. Vaccination: a way to address questions in behavioral and population ecology? Trends Parasitol 2004; 20:17-22. [PMID: 14700585 DOI: 10.1016/j.pt.2003.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vincent Staszewski
- Laboratoire d'Ecologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7625, Université Pierre and Marie Curie, 7 Quai St Bernard, Paris, France
| | | |
Collapse
|
30
|
Siwek M, Cornelissen SJB, Nieuwland MGB, Buitenhuis AJ, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ. Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet 2003; 34:422-8. [PMID: 14687072 DOI: 10.1046/j.0268-9146.2003.01047.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study is to detect quantitative trait loci (QTL) involved in the regulation of the primary and the secondary immune response to sheep red blood cells (SRBC) in a resource population using microsatellite DNA markers. The F2 resource population originates from a cross of two divergently selected lines for either high (H line) or low (L line) primary antibody response to SRBC. The F2 population consisted of six half-sib families, three families per each of reciprocal crosses. Total antibody titres to SRBC were determined by agglutination in serum from all birds. F2, F1 and F0 generations were genotyped for 170 microsatellite markers, using a whole-genome scan approach. The half-sib and the line-cross analyses were performed to determine QTL regions associated with regulation of the immune response. In the half-sib analysis, four QTL for SRBC primary response have been identified: on GGA3, GGA5, GGA16 and GGA23. No QTL was identified for SRBC secondary response under the half-sib model. In the line-cross analysis, three QTL were identified on GGA10, GGA16 and GGA27 for SRBC primary response and five QTL were identified on GGA6, GGA9, GGA15, GGA16 and GGA27 for SRBC secondary response. Subsequently, the family contribution of individual families to the QTL was analysed. The family with the largest contribution was genotyped with additional microsatellite markers in the QTL region on GGA5. The extended half-sib analysis with additional genotype information results in narrowing down the QTL region on GGA5.
Collapse
Affiliation(s)
- M Siwek
- Animal Breeding & Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheema MA, Qureshi MA, Havenstein GB. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poult Sci 2003; 82:1519-29. [PMID: 14601727 DOI: 10.1093/ps/82.10.1519] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immunocompetence of the 2001 Ross 308 broiler strain and the 1957 Athens Canadian Randombred Control (ACRBC) strain was compared when they were given diets representative of those that were being used in 1957 and 2001. Antibody response against SRBC, in vivo lymphoproliferation against Phytohemagglutinin-P (PHA-P), and inflammatory and phagocytic responses of the macrophages were measured. The Ross 308 strain on the 2001 diet had higher BW at 24 d of age (P = 0.0001), whereas the ACRBC had greater lymphoid organ weights (except thymus) relative to BW (P < or = 0.003). The ACRBC strain showed greater antibody responses against SRBC than the 2001 Ross 308 birds for much of the trial (P < or = 0.0362). However, the Ross 308 broilers had greater PHA-P-induced toe-web swelling response (P < or = 0.0129). Inflammatory exudate cell numbers were higher in the Ross 308 broilers than in the ACRBC birds (P = 0.0261). The percentage of macrophages that phagocytized SRBC was comparable between the two strains, but the number of SRBC phagocytized by individual macrophages was higher (P = 0.0122) in the Ross 308 broiler than in the ACRBC chickens. Nitrite production by macrophages following lipopolysacharide stimulation was comparable between the two strains. Interactions of diet, strain, and sex were inconsistent among all parameters tested. In conclusion, the current study suggested that genetic selection for improved broiler performance has resulted in a decrease in the adaptive arm of the immune response but an increase in the cell-mediated and inflammatory responses.
Collapse
Affiliation(s)
- M A Cheema
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina 27695-7608, USA
| | | | | |
Collapse
|
32
|
Kerje S, Carlborg O, Jacobsson L, Schütz K, Hartmann C, Jensen P, Andersson L. The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim Genet 2003; 34:264-74. [PMID: 12873214 DOI: 10.1046/j.1365-2052.2003.01000.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large intercross between the domestic White Leghorn chicken and the wild ancestor, the red junglefowl, has been used in a Quantitative Trait Loci (QTL) study of growth and egg production. The linkage map based on 105 marker loci was in good agreement with the chicken consensus map. The growth of the 851 F2 individuals was lower than both parental lines prior to 46 days of age and intermediate to the two parental lines thereafter. The QTL analysis of growth traits revealed 13 loci that showed genome-wide significance. The four major growth QTLs explained 50 and 80% of the difference in adult body weight between the founder populations for females and males, respectively. A major QTL for growth, located on chromosome 1 appears to have pleiotropic effects on feed consumption, egg production and behaviour. There was a strong positive correlation between adult body weight and average egg weight. However, three QTLs affecting average egg weight but not body weight were identified. An interesting observation was that the estimated effects for the four major growth QTLs all indicated a codominant inheritance.
Collapse
Affiliation(s)
- S Kerje
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, BMC, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The current chicken genetic map contains at least 1,965 loci within 50 linkage groups, and it covers about 4,000 cM. About 235 of these loci have homology with known human or mammalian genes. The remaining loci are anonymous molecular DNA markers, including microsatellites, amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), CR1 elements, and others. A third generation genetic map for human uses single nucleotide polymorphisms (SNP), which have allowed the mapping of complex traits by linkage disequilibrium. One advantage of SNP is that they are usually linked to the gene of interest, and association of the SNP with traits of economic importance can be analyzed using candidate gene approaches. With the tremendous advancements in characterizing chicken expressed sequence tags (EST), the identification of genetic polymorphisms such as SNP in chicken genes has become a reality. Our laboratory has undertaken an in silico analysis of the chicken EST at the University of Delaware by using a Phred/Phrap/Polyphred/Consed pipeline to identify candidate chicken SNP. Initial scanning of 23,427 chicken EST identified a total of 1,209 candidate SNP, with at least 182 non-synonymous SNP that result in an amino acid change observed. Validation of these candidate chicken SNP is ongoing. Placement of the SNP on the chicken genetic map will enhance marker density, thus allowing for mapping of complex traits through linkage analysis and linkage disequilibrium. Application of SNP to identify disease resistance genes in chickens is of special interest to our laboratory, especially in regards to Marek's disease and coccidiosis.
Collapse
Affiliation(s)
- M G Emara
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19717, USA.
| | | |
Collapse
|
34
|
Zhou H, Li H, Lamont SJ. Genetic markers associated with antibody response kinetics in adult chickens. Poult Sci 2003; 82:699-708. [PMID: 12762390 DOI: 10.1093/ps/82.5.699] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A linkage disequilibrium approach with microsatellites was employed to investigate QTL affecting immune response. Highly inbred males of two MHC-congenic Fayoumi chicken lines were mated with highly inbred G-B1 Leghorn hens. Adult F2 hens (n = 158) were injected twice with SRBC and fixed Brucella abortus (BA). Agglutinating antibody titers were measured. Secondary phase parameters of maximum titers (Ymax) and time (Tmax) needed to achieve Ymax were estimated from postsecondary titers by using a nonlinear regression model. A three-step genotype strategy (DNA pooling, selective genotyping, and whole population genotyping) was used to identify microsatellite markers that are associated with immune response to SRBC and BA. The linkage distances between adjacent markers in the F2 population were estimated by Crimap. The QTL affecting immune response to SRBC and BA were detected based on F statistic by interval mapping. A total of five significant QTL, as determined by a permutation test, were detected at the 5% chromosome-wise level on Chromosomes 3, 5, 6, and Z. Two (Chromosome 3 and 6) of five QTL were significant at the 1% chromosome-wise level. The variance explained by the QTL ranged from 6.46 to 7.50%. The results suggest that regions on Chromosomes 3, 5, 6, and Z contain QTL that affect antibody kinetics in the hen.
Collapse
Affiliation(s)
- H Zhou
- Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
| | | | | |
Collapse
|
35
|
Zhu JJ, Lillehoj HS, Allen PC, Van Tassell CP, Sonstegard TS, Cheng HH, Pollock D, Sadjadi M, Min W, Emara MG. Mapping quantitative trait loci associated with resistance to coccidiosis and growth. Poult Sci 2003; 82:9-16. [PMID: 12580238 DOI: 10.1093/ps/82.1.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To map QTL associated with disease resistance to avian coccidiosis and growth, two commercial broiler lines with different degrees of resistance to the disease were crossed to generate an F1 generation that was intercrossed to produce 314 F2 generation offspring. The F2 offspring were inoculated with sporulated oocysts of Eimeria maxima. Five disease-associated phenotypes were measured after the infection. Intertrait comparisons revealed that oocyst shedding was a good parameter for evaluating disease resistance or susceptibility. One hundred nineteen microsatellite markers, covering 80% of the chicken genome with an average marker interval of 25 cM, were used for genotyping of F1 parents and F2 offspring. Statistical analysis based on the data of four families revealed a locus on chromosome 1 associated with oocyst shedding (logarithm of odds = 3.46). The genetic mechanism of this locus appeared additive. The genomic scan also identified three potential growth QTL on chromosomes 1, 6, and 8. These results provide the foundation for further investigation to validate the QTL.
Collapse
Affiliation(s)
- J J Zhu
- USDA-ARS, PBESL, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sewalem A, Morrice DM, Law A, Windsor D, Haley CS, Ikeobi CON, Burt DW, Hocking PM. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult Sci 2002; 81:1775-81. [PMID: 12512565 DOI: 10.1093/ps/81.12.1775] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An F2 chicken population was established from a cross of a broiler sire-line and an egg laying (White Leghorn) line. There were two males and two females from both lines in the base population. The F1 progeny consisted of 8 males and 32 females. Over 500 F2 offspring from five hatches were reared to slaughter at a live weight of 2 kg at 9 wk of age. Body weights at 3, 6, and 9 wk were recorded. The DNA was extracted from blood samples, and genotypes for 101 microsatellite markers were determined. Data of 466 individuals from 30 families were available for analysis. Interval mapping QTL analyses were carried out. The QTL significant at the genome wide level that affected body weight at two ages were identified on chromosomes 1, 2, 4, 7, and 8 and a QTL on Chromosome 13 influenced body weight at all three ages. Genetic effects were generally additive, and the broiler allele increased body weight in all cases. The effects for significant individual QTL accounted for between 0.2 and 1.0 phenotypic standard deviations and the sum of the additive effects accounted for approximately 0.75 of the line difference in body weight at 6 wk of age. The largest single additive effect was on chromosome 4, and the effect of substituting one copy of the gene was an increase in weight of 249 g. Interactions of the QTL with sex or family were unimportant. There was no evidence for imprinting or of two or more QTL at the same location for any of the traits.
Collapse
Affiliation(s)
- A Sewalem
- Roslin Institute, Roslin, Midlothian EH25 9PS, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ikeobi CON, Woolliams JA, Morrice DR, Law A, Windsor D, Burt DW, Hocking PM. Quantitative trait loci affecting fatness in the chicken. Anim Genet 2002; 33:428-35. [PMID: 12464017 DOI: 10.1046/j.1365-2052.2002.00911.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.
Collapse
|
38
|
Yunis R, Heller ED, Hillel J, Cahaner A. Microsatellite markers associated with quantitative trait loci controlling antibody response to Escherichia coli and Salmonella enteritidis in young broilers. Anim Genet 2002; 33:407-14. [PMID: 12464014 DOI: 10.1046/j.1365-2052.2002.00890.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A unique resource population was produced to facilitate detection of microsatellite markers associated with quantitative trait loci controlling antibody (Ab) response in broiler chickens. Three F1 males were produced by mating two lines divergently selected on Ab response to Escherichia coli vaccination. Each F1 male was mated with females from four genetic backgrounds: F1, high-Ab line (HH), low-Ab line and commercial line, producing three resource families, each with four progeny types. About 1700 chicks were immunized with E. coli and Salmonella enteritidis vaccines. Selective genotyping was conducted on the individuals with highest or lowest average Ab to E. coli and S. enteritidis within each progeny type in each sire family. Twelve markers were significantly associated with Ab to E. coli and six of them were also associated with Ab to S. enteritidis, mostly exhibiting a similar low effect (approximately 0.35 phenotypic SD) in all progeny types. Four markers exhibited a highly significant and much larger effect (approximately 1.7 SD), but only in progeny of females from the HH, suggesting that a backcross to the high parental line should be preferred over the commonly used F2 population. Results from two markers suggested a quantitative trait locus on chromosome 2 around 400 cM. The marker MCW0083, significant in two sire families, is closely linked to the bone morphogenetic protein 2 (BMP2) gene, known to be associated with the control of T-cell transformation in humans.
Collapse
Affiliation(s)
- R Yunis
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
39
|
Emara MG, Kim H, Zhu J, Lapierre RR, Lakshmanan N, Lillehojt HS. Genetic diversity at the major histocompatibility complex (B) and microsatellite loci in three commercial broiler pure lines. Poult Sci 2002; 81:1609-17. [PMID: 12455584 DOI: 10.1093/ps/81.11.1609] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic diversity at the MHC and non-MHC loci was investigated in three commercial broiler chicken pure lines. The MHC class II and IV loci were evaluated in Southern hybridizations and molecular genotypes based on RFLP were interpreted from pedigreed families. Four MHC class II and eight class IV genotypes were identified in the broiler lines, and their frequencies differed among the lines. Line-specific MHC genotypes were identified. The observed heterozygosities (59 to 67%) suggest that the MHC loci are highly polymorphic in the broiler lines. At least 9% of the genetic variation at the MHC was due to line differences; the remainder reflected individual variations. To characterize non-MHC genes, 41 microsatellite loci located throughout the chicken genome were evaluated in the broiler lines. Genetic variation was also observed at the microsatellite loci for the broiler lines; the number of alleles at a single locus ranged from one to eight, and the average number of alleles per locus was 3.5, 2.8, and 3.1 for each of the lines, respectively. The observed heterozygosities for microsatellite loci ranged between 0 and 89% in the lines. Based on the fixation index (Fst), about 19% of the genetic variation at microsatellite loci was attributed to broiler line differences. Deviations from Hardy-Weinberg equilibrium were detected at both MHC and non-MHC loci. Possible explanations for these deviations include genetic selection by the primary broiler breeder or the presence of null alleles that were not identified by the typing procedures described in this report. This study contributes to our knowledge on the molecular characteristics and genetic structure of a commercial broiler chicken population. Analysis of MHC and non-MHC loci suggests that there is still sufficient genetic diversity in the broiler lines to continue the progress toward improved broiler chicken production.
Collapse
Affiliation(s)
- M G Emara
- Department of Animal and Food Sciences, University of Delaware, Newark, 19717, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
As part of a comprehensive strategy to combat diseases, improving genetically resistance to diseases and therefore immune capacities of animals is more and more desirable. However, research is still needed to develop genetic tools that may be used. In this search, lines selected for various immune responses are used to study relevant immune markers. Chickens have been selected for six generations for three different in vivo immune responses: high antibody response, high cell-mediated immune response and high phagocytic activity. Each line, selected for one trait, showed significant increase in immune capacity for this trait. In addition, results showed clearly independence between the three immune responses analyzed, meaning that a global approach is needed to improve immune capacity. Selected lines allow to follow genetic markers linked to immune response genes. In the different lines, different patterns in MHC gene frequency were observed and MHC alleles differed in their effects according to the immune trait. Some correlations were found between immune responses and production traits. The selected lines will be used to find other "known" immune response genes or "anonymous" genetic markers, which may become the future tools to modulate immune responsiveness of animals.
Collapse
Affiliation(s)
- M-H Pinard-van der Laan
- Laboratoire de Génétique Factorielle, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| |
Collapse
|
41
|
Emara MG, Lapierre RR, Greene GM, Knieriem M, Rosenberger JK, Pollock DL, Sadjadi M, Kim CD, Lillehoj HS. Phenotypic variation among three broiler pure lines for Marek's disease, coccidiosis, and antibody response to sheep red blood cells. Poult Sci 2002; 81:642-8. [PMID: 12033413 DOI: 10.1093/ps/81.5.642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify candidate genes, chicken lines with the most divergent phenotypes are usually crossed to generate resource mapping populations, for example, either backcrossed or F2 populations. Linkage between the genetic marker and the phenotypic trait locus is then tested in the mapping population. As an initial step in the development of a mapping population from commercial broilers, the goal of the current research was to evaluate the phenotypic variation among three pure lines for antibody response to SRBC and in resistance to two economically important poultry diseases, Marek's disease (MD) and coccidiosis (Eimeria acervulina). Chicks from each line were received and separated into three experimental studies to evaluate each of their responses. In summary, broiler Line 3 had significantly lower antibody responses to SRBC immunizations compared to the other two lines, and nonvaccinated birds from Line 3 were also more susceptible to MD. With coccidiosis, the response was complex, and ranking of the lines was dependent on the age of infection, and whether it was a first or second challenge. With the first challenge, Line 1 was most susceptible at the younger age (Day 30), whereas Line 3 was susceptible at the older age (Day 58). Upon the second challenge, broiler Line 1 remained susceptible at the younger age, but Line 2 was more susceptible at the older age. Line 3 was completely resistant to the second challenge at the older age. Thus, although the broiler lines have been intensively selected for productivity and general livability, this study also demonstrates that the lines differ for immune response and disease resistance. Based on the phenotypic differences between Lines 1 and 3, they were chosen to establish a mapping population for identifying candidate genes that affect MD and coccidiosis in commercial broiler chickens.
Collapse
Affiliation(s)
- M G Emara
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaiser MG, Lamont SJ. Microsatellites linked to Salmonella enterica Serovar Enteritidis burden in spleen and cecal content of young F1 broiler-cross chicks. Poult Sci 2002; 81:657-63. [PMID: 12033415 DOI: 10.1093/ps/81.5.657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Contamination of poultry and poultry products by Salmonella enterica Serovar Enteritidis (SE) continues to be problematic even though biosafety management practices have aided in reduction of the SE burden. Identification of molecular markers linked to disease resistance loci would further reduce SE burden by enabling selection for genetic resistance. The objectives of this study were therefore to evaluate specific genomic regions for resistance to SE burden in young broiler-cross chicks and to evaluate the interaction of allele with dam line and sex. Three hatches of F1 chicks were produced by crossing sires from a broiler breeder male line with hens from three highly inbred lines (Fayoumi 15.2, and MHC-congenic G-B1 and G-B2 Leghorn). At 1 d of age, the chicks were intraesophageally inoculated with SE phage type 13a. Spleen and cecal content samples were harvested at 1 wk, and the levels of SE were quantified by serial plate dilution. Each of the F1 chicks was genotyped with four microsatellites that had previously been shown to be linked to antibody response to SE vaccine. All four microsatellites had a significant (P < or = 0.05) main effect or interaction with dam line or sex on the level of SE in spleen and cecal contents.
Collapse
Affiliation(s)
- M G Kaiser
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA
| | | |
Collapse
|
43
|
Yunis R, Ben-David A, Heller ED, Cahaner A. Genetic and phenotypic correlations between antibody responses to Escherichia coli, infectious bursa disease virus (IBDV), and Newcastle disease virus (NDV), in broiler lines selected on antibody response to Escherichia coli. Poult Sci 2002; 81:302-8. [PMID: 11902404 DOI: 10.1093/ps/81.3.302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genetic control of antibody (Ab) response to Escherichia coli (EC), infectious bursa disease virus, and Newcastle disease virus and the genetic and phenotypic correlation between these Ab responses, were evaluated under farm conditions in which chicks were simultaneously exposed to these antigens. The experimental population comprised five groups: two lines divergently selected for high (HH) or low (LL) Ab response to EC vaccination; a commercial broiler dam-line (CC), from which HH and LL had been derived; and the HH x CC and LL x CC hybrid groups (HC and LC, respectively). Lines LL and HH expressed similar symmetric divergence to all three antigens. The ranking of the LL, LC, CC, HC, and HH genetic groups according to their mean Ab responses and their very high linear correlation with the LL vs. HH genomic scale clearly indicate the additive nature of the genetic divergence between these lines. Several estimates of correlation were calculated between Ab responses of each pair of antigens and between BW and Ab to each antigen. The high correlation between group means, the near-zero within-group correlation, and the low phenotypic correlation indicate the strongly positive genetic correlation between Ab responses and no correlation with BW. The results of this study suggest that overall immunocompetence of commercial broilers can be improved by selection for high Ab response of young chicks to controlled immunization with a single antigen, without counteracting further selection for high BW.
Collapse
Affiliation(s)
- R Yunis
- The Hebrew University, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot, Israel
| | | | | | | |
Collapse
|
44
|
Kaiser MG, Deeb N, Lamont SJ. Microsatellite markers linked to Salmonella enterica serovar enteritidis vaccine response in young F1 broiler-cross chicks. Poult Sci 2002; 81:193-201. [PMID: 11873827 DOI: 10.1093/ps/81.2.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reduction in Salmonella enteritidis (SE) contamination is of importance for poultry production as well as for food safety. The objectives of this study were to identify potential genetic markers of antibody response to SE vaccine in young broiler chicks and then to confirm this linkage in broiler-cross offspring, as well as to explore interactions of marker alleles with dam line and sex. The initial identification of suggestive quantitative trait loci (QTL) markers for antibody response to SE vaccine was conducted by using bulked segregant analysis (BSA) with 58 microsatellite markers in a broiler breeder male line. Four unlinked microsatellites that had allele frequency differences between the high and low antibody response DNA pools were selected for subsequent analysis in a linkage study. Antibody response was measured in an F1 population (n = 379) that was derived by crossing each of four males of the broiler line with several dams from four genetically distant, highly inbred lines (Spanish, Fayoumi, and MHC-congenic G-B1 and G-B2 Leghorn). These crosses enabled us to evaluate the broiler sire QTL-marker allele effects and to explore QTL interactions with the dam lines by individual genotyping. Each of the four microsatellites identified by BSA in the broiler population had a significant (P < 0.05) association with F1 population antibody response in one or more sire families. The effect of the interaction of microsatellite allele with dam line or sex on antibody response was frequently significant. Microsatellite markers linked to antibody response QTL were identified, and genetic interactions with dam line and sex were detected.
Collapse
Affiliation(s)
- M G Kaiser
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA
| | | | | |
Collapse
|