1
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Chen J, Huang H, Lu R, Wan X, Yao Y, Yang T, Li P, Ning N, Zhang S. Hydrogen-bond super-amphiphile based drug delivery system: design, synthesis, and biological evaluation. RSC Adv 2022; 12:6076-6082. [PMID: 35424584 PMCID: PMC8981983 DOI: 10.1039/d1ra08624c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Drug delivery systems (DDSs) show great application prospects in tumor therapy. So far, physical encapsulation and covalent grafting were the two most common strategies for the construction of DDSs. However, physical encapsulation-based DDSs usually suffered from low drug loading capacity and poor stability, and covalent grafting-based DDSs might reduce the activity of original drug, which greatly limited their clinical application. Therefore, it is of great research value to design a new DDS with high drug loading capacity, robust stability, and original drug activity. Herein, we report a super-amphiphile based drug delivery system (HBS-DDS) through self-assembly induced by hydrogen bonds between amino-substituted N-heterocycles of the 1,3,5-triazines and hydrophilic carmofur (HCFU). The resulting HBS-DDS had a high drug loading capacity (38.1%) and robust stability. In addition, the drug delivery system exhibited pH-triggered size change and release of drugs because of the pH responsiveness of hydrogen bonds. In particular, the anticancer ability test showed that the HBS-DDS could be efficiently ingested by tumor cells, and its half-maximal inhibitory concentration (IC50 = 3.53 μg mL-1) for HeLa cells was close to that of free HCFU (IC50 = 5.54 μg mL-1). The hydrogen bond-based DDS represents a potential drug delivery system in tumor therapy.
Collapse
Affiliation(s)
- Jiali Chen
- West China School of Nursing/West China Hospital Orthopedics Department, Sichuan University 37 Guo Xue Xiang Chengdu 610041 China
| | - Haolong Huang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| | - Xiaohui Wan
- West China School of Nursing/West China Hospital Orthopedics Department, Sichuan University 37 Guo Xue Xiang Chengdu 610041 China
| | - Yongchao Yao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| | - Tian Yang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| | - Ning Ning
- West China School of Nursing/West China Hospital Orthopedics Department, Sichuan University 37 Guo Xue Xiang Chengdu 610041 China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China +86-28-85411109 +86-28-85411109
| |
Collapse
|
3
|
Beyond gold nanoparticles cytotoxicity: Potential to impair metastasis hallmarks. Eur J Pharm Biopharm 2020; 157:221-232. [PMID: 33130338 DOI: 10.1016/j.ejpb.2020.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023]
Abstract
Gold nanoparticle (AuNP)-based systems have been extensively investigated as diagnostic and therapeutic agents due to their tunable properties and easy surface functionalization. Upon cell uptake, AuNPs present an inherent cell impairment potential based on organelle and macromolecules damage, leading to cell death. Such cytotoxicity is concentration-dependent and completely undesirable, especially if unspecific. However, under non-cytotoxic concentrations, internalized AuNPs could potentially weaken cells and act as antitumor agents. Therefore, this study aimed to investigate the antitumor effect of ultrasmall AuNPs (~3 nm) stabilized by the anionic polysaccharide gum arabic (GA-AuNPs). Other than intrinsic cytotoxicity, the focus was downregulation of cancer hallmarks of aggressive tumors, using a highly metastatic model of melanoma. We first demonstrated that GA-AuNPs showed excellent stability under biological environment. Non-cytotoxic concentrations to seven different cell lines, including tumorigenic and non-tumorigenic cells, were determined by standard 2D in vitro assays. Gold concentrations ≤ 2.4 mg L-1 (16.5 nM AuNPs) were non-cytotoxic and therefore chosen for further analyses. Cells exposed to GA-AuNPs were uptaken by melanoma cells through endocytic processes. Next we described remarkable biological properties using non-cytotoxic concentrations of this nanomaterial. Invasion through an extracellular matrix barrier as well as 3D growth capacity (anchorage-independent colony formation and spheroids growth) were negatively affected by 2.4 mg L-1 GA-AuNPs. Additionally, exposed spheroids showed morphological changes, suggesting that GA-AuNPs could penetrate into the preformed tumor and affect its integrity. All together these results demonstrate that side effects, such as cytotoxicity, can be avoided by choosing the right concentration, nevertheless, preserving desirable effects such as modulation of key tumor cell malignancy features.
Collapse
|
4
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https:/doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
5
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020; 31:2060-2071. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
6
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https://doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
7
|
Elkhoury K, Russell C, Sanchez-Gonzalez L, Mostafavi A, Williams T, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019; 8:e1900506. [PMID: 31402589 PMCID: PMC6752977 DOI: 10.1002/adhm.201900506] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Tissue engineering has emerged as an important research area that provides numerous research tools for the fabrication of biologically functional constructs that can be used in drug discovery, disease modeling, and the treatment of diseased or injured organs. From a materials point of view, scaffolds have become an important part of tissue engineering activities and are usually used to form an environment supporting cellular growth, differentiation, and maturation. Among various materials used as scaffolds, hydrogels based on natural polymers are considered one of the most suitable groups of materials for creating tissue engineering scaffolds. Natural hydrogels, however, do not always provide the physicochemical and biological characteristics and properties required for optimal cell growth. This review discusses the properties and tissue engineering applications of widely used natural hydrogels. In addition, methods of modulation of their physicochemical and biological properties using soft nanoparticles as fillers or reinforcing agents are presented.
Collapse
Affiliation(s)
| | - Carina Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | | | | | - Tyrell Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Nicholas A. Peppas
- Departments of Biomedical and Chemical Engineering, Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
- Mary and Dick Holland Regenerative Medicine Program University of Nebraska-Medical Center, Omaha, NE, 68198
| |
Collapse
|
8
|
Hong S, Ding P, Luo Y, Gao T, Zhang Y, Pei R. Aptamer-integrated α-Gal liposomes as bispecific agents to trigger immune response for killing tumor cells. J Biomed Mater Res A 2019; 107:1176-1183. [PMID: 30650243 DOI: 10.1002/jbm.a.36609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
A novel bispecific α-Gal liposome was constructed by self-assembling AS1411 aptamers into the α-Gal containing liposomes. The α-Gal liposomes were prepared using cell membranes of red blood cells from rabbit, which are composed of cholesterol, phospholipids, and α-Gal glycolipids. AS1411 is a DNA aptamer with high specificity and affinity for nucleolin and could integrate into liposomes by the modification of cholesterol. The bispecific α-Gal liposomes surface-functionalized by α-Gal and AS1411 aptamer could recognize anti-Gal antibodies and nucleolin overexpressed by tumor cells simultaneously, followed by activating the immune system to attack the tumor cells, resulting in the lysis of the tumor cells by antibody dependent cell-mediated cytotoxicity. Under simulated tumor environment, the lysis rate of MCF-7 cells treated by the AS1411 modified α-Gal liposomes drastically increased compared to the liposomes without AS1411 aptamer. This study suggests that the AS1411 modified α-Gal liposomes can recognize nucleolin-overexpressing tumor cells selectively, subsequently improve the effect of the immunotherapy with high specificity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1176-1183, 2019.
Collapse
Affiliation(s)
- Shanni Hong
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Pi Ding
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
9
|
Future perspectives of nanoparticle-based contrast agents for cardiac magnetic resonance in myocardial infarction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:329-341. [PMID: 30802547 DOI: 10.1016/j.nano.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/11/2019] [Accepted: 02/02/2019] [Indexed: 12/23/2022]
Abstract
Cardiac Magnetic Resonance (CMR), thanks to high spatial resolution and absence of ionizing radiation, has been widely used in myocardial infarction (MI) assessment to evaluate cardiac structure, function, perfusion and viability. Nevertheless, it suffers from limitations in tissue and assessment of myocardial pathophysiological changes subsequent to MI. In this issue, nanoparticle-based contrast agents offer the possibility to track biological processes at cellular and molecular level underlying the various phases of MI, infarct healing and tissue repair. In this paper, first we examine the conventional CMR protocol and its findings in MI patients. Next, we looked at how nanoparticles can help in the imaging of MI and give an overview of the major approaches currently explored. Based on the presentation of successful nanoparticle applications as contrast agents (CAs) in preclinical and clinical models, we discuss promises and outstanding challenges facing the field of CMR in MI, their translational potential and clinical application.
Collapse
|
10
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Parra FL, Caimi AT, Altube MJ, Cargnelutti DE, Vermeulen ME, de Farias MA, Portugal RV, Morilla MJ, Romero EL. Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes. Front Bioeng Biotechnol 2018; 6:163. [PMID: 30460231 PMCID: PMC6232313 DOI: 10.3389/fbioe.2018.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Hyperhalophilic archaebacteria exclusively produce sn2,3 diphytanylglycerol diether archaeolipids, unique structures absent in bacteria and eukaryotes. Nanovesicles made of archaeolipids known as nanoarchaeosomes (nanoARC), possess highly stable bilayers, some of them displaying specific targeting ability. Here we hypothesize that nanoARC made from Halorubrum tebenquichense archaebacteria, may constitute efficient carriers for the TLR7 agonist imiquimod (IMQ). NanoARC-IMQ takes advantage of the intense interaction between IMQ and the highly disordered, poorly fluid branched archaeolipid bilayers, rich in archaeol analog of methyl ester of phosphatidylglycerophosphate (PGP-Me), a natural ligand of scavenger receptor A1 (SR-A1). This approach lacks complex manufacture steps required for bilayers labeling, enabling future analytical characterization, batch reproducibility, and adaptation to higher scale production. SR-A1 mediated internalization of particulate material is mostly targeted to macrophages and is extensive because it is not submitted to a negative feedback. A massive and selective intracellular delivery of IMQ may concentrate its effect specifically into the endosomes, where the TLR7 is expressed, magnifying its immunogenicity, at the same time reducing its systemic bioavailability, and therefore it's in vivo adverse effects. NanoARC-IMQ (600-900 nm diameter oligolamellar vesicles of ~-43 mV Z potential) were heavily loaded with IMQ at ~44 μg IMQ/mg phospholipids [~20 folds higher than the non-SR-A1 ligand soyPC liposomes loaded with IMQ (LIPO-IMQ)]. In vitro, nanoARC-IMQ induced higher TNF-α and IL-6 secretion by J774A1 macrophages compared to same dose of IMQ and same lipid dose of LIPO-IMQ. In vivo, 3 subcutaneous doses of nanoARC-IMQ+ 10 μg total leishmania antigens (TLA) at 50 μg IMQ per Balb/C mice, induced more pronounced DTH response, accompanied by a nearly 2 orders higher antigen-specific systemic IgG titers than IMQ+TLA and LIPO-IMQ. The isotype ratio of nanoARC-IMQ+TLA remained ~0.5 indicating, the same as IMQ+TLA, a Th2 biased response distinguished by a pronounced increase in antibody titers, without negative effects on splenocytes lymphoproliferation, with a potential CD8+LT induction 10 days after the last dose. Overall, this first approach showed that highly SR-A1 mediated internalization of heavily loaded nanoARC-IMQ, magnified the effect of IMQ on TLR7 expressing macrophages, leading to a more intense in vivo immune response.
Collapse
Affiliation(s)
- Federico Leonel Parra
- Departamento de Ciencia y Tecnología, Nanomedicine Research & Development Center, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ayelen Tatiana Caimi
- Departamento de Ciencia y Tecnología, Nanomedicine Research & Development Center, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria Julia Altube
- Departamento de Ciencia y Tecnología, Nanomedicine Research & Development Center, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego Esteban Cargnelutti
- Centro Científico y Tecnológico de Mendoza, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Mónica Elba Vermeulen
- Instituto de Medicina Experimental—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Maria Jose Morilla
- Departamento de Ciencia y Tecnología, Nanomedicine Research & Development Center, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Eder Lilia Romero
- Departamento de Ciencia y Tecnología, Nanomedicine Research & Development Center, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
12
|
Konopka CJ, Wozniak M, Hedhli J, Ploska A, Schwartz-Duval A, Siekierzycka A, Pan D, Munirathinam G, Dobrucki IT, Kalinowski L, Dobrucki LW. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Am J Cancer Res 2018; 8:5012-5024. [PMID: 30429883 PMCID: PMC6217059 DOI: 10.7150/thno.24791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is central to multiple disease states, including diabetes-related conditions such as peripheral arterial disease (PAD). Despite RAGE's importance in these pathologies, there remains a need for a molecular imaging agent that can accurately assess RAGE levels in vivo. Therefore, we have developed a multimodal nanoparticle-based imaging agent targeted at RAGE with the well-characterized RAGE ligand, carboxymethyllysine (CML)-modified human serum albumin (HSA). Methods: A multimodal tracer (64Cu-Rho-G4-CML) was developed using a generation-4 (G4) polyamidoamine (PAMAM) dendrimer, conjugated with both rhodamine and copper-64 (64Cu) chelator (NOTA) for optical and PET imaging, respectively. First, 64Cu-Rho-G4-CML and its non-targeted analogue (64Cu-Rho-G4-HSA) were evaluated chemically using techniques such as dynamic light scattering (DLS), electron microscopy and nuclear magnetic resonance (NMR). The tracers' binding capabilities were examined at the cellular level and optimized using live and fixed HUVEC cells grown in 5.5-30 mM glucose, followed by in vivo PET-CT imaging, where the probes' kinetics, biodistribution, and RAGE targeting properties were examined in a murine model of hindlimb ischemia. Finally, histological assessment of RAGE levels in both ischemic and non-ischemic tissues was performed. Conclusions: Our RAGE-targeted probe demonstrated an average size of 450 nm, a Kd of 340-390 nM, rapid blood clearance, and a 3.4 times greater PET uptake in ischemic RAGE-expressing hindlimbs than their non-ischemic counterpart. We successfully demonstrated increased RAGE expression in a murine model of hindlimb ischemia and the feasibility for non-invasive examination of cellular, tissue, and whole-body RAGE levels with a molecularly targeted tracer.
Collapse
|
13
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
14
|
Meng H, Leong W, Leong KW, Chen C, Zhao Y. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 2018; 174:41-53. [PMID: 29778981 PMCID: PMC5984195 DOI: 10.1016/j.biomaterials.2018.04.056] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/15/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
Biological systems have developed an efficient multi-tiered defense system to block foreign substances such as engineered nanomaterials (NMs) from causing damage. In a pathological scenario, the disease itself may also pose additional barriers due to the imbalance between abnormal cells and their surrounding microenvironment, and NMs could behave similarly or differently to classic foreign substances, depending on their unique characteristics. Thus, understanding the mechanisms that govern the fate of NMs against these biological barriers, including the strategies that can be used to shift their fate between access and blockage, become key information for NMs design. In this manuscript, we first describe the biological barriers that NMs may encounter, and further discuss how these biological barrier interactions could shift the fate of NMs between toxicity and therapeutic potential. A list of effects that may influence NMs access at nano/bio interface are presented and discussed, followed by personal insights on the important nano/bio topics that require additional research for a better understanding of NM/biological barrier interactions.
Collapse
Affiliation(s)
- Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing 100190, China; Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA.
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10025, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10025, USA
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing 100190, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing 100190, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Cox A, Andreozzi P, Dal Magro R, Fiordaliso F, Corbelli A, Talamini L, Chinello C, Raimondo F, Magni F, Tringali M, Krol S, Jacob Silva P, Stellacci F, Masserini M, Re F. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. ACS NANO 2018; 12:7292-7300. [PMID: 29953205 DOI: 10.1021/acsnano.8b03500] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineered nanoparticles offer the chance to improve drug transport and delivery through biological barriers, exploiting the possibility to leave the blood circulation and traverse the endothelial vascular bed, blood-brain barrier (BBB) included, to reach their target. It is known that nanoparticles gather molecules on their surface upon contact with biological fluids, forming the "protein corona", which can affect their fate and therapeutic/diagnostic performance, yet no information on the corona's evolution across the barrier has been gathered so far. Using a cellular model of the BBB and gold nanoparticles, we show that the composition of the corona undergoes dramatic quantitative and qualitative molecular modifications during passage from the "blood" to the "brain" side, while it is stable once beyond the BBB. Thus, we demonstrate that the nanoparticle corona dynamically and drastically evolves upon crossing the BBB and that its initial composition is not predictive of nanoparticle fate and performance once beyond the barrier at the target organ.
Collapse
Affiliation(s)
- Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Patrizia Andreozzi
- IFOM-FIRC Institute of Molecular Oncology , IFOM-IEO Campus , Milan 20139 , Italy
- CICbiomaGUNE, Soft Matter Nanotechnology Group , San Sebastian-Donostia , 20014 Guipuzcoa , Spain
| | - Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Fabio Fiordaliso
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Alessandro Corbelli
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Laura Talamini
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Clizia Chinello
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Francesca Raimondo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Fulvio Magni
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Maria Tringali
- Department of Environmental Sciences , University of Milano-Bicocca , Milan 20126 , Italy
| | - Silke Krol
- IRCCS Foundation Institute for Neurology "Carlo Besta" , IFOM-IEO Campus , Milan 20139 , Italy
- IRCCS Cancer Institute "Giovanni Paolo II" , Bari 70021 , Italy
| | - Paulo Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
- Interfaculty Bioengineering Institute, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
| | - Massimo Masserini
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| |
Collapse
|
16
|
Mendoza G, Ortiz de Solorzano I, Pintre I, Garcia-Salinas S, Sebastian V, Andreu V, Gimeno M, Arruebo M. Near infrared dye-labelled polymeric micro- and nanomaterials: in vivo imaging and evaluation of their local persistence. NANOSCALE 2018; 10:2970-2982. [PMID: 29372230 DOI: 10.1039/c7nr07345c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of micro- and nanomaterials as carriers of therapeutic molecules can enhance the efficiency of treatments while avoiding side effects thanks to the development of controlled drug delivery systems. The binding of a dye to a drug or to a drug carrier has opened up a wide range of possibilities for an effective in vivo optical tracing of drug biodistribution by using non-invasive real-time technologies prior to their potential use as therapeutic vectors. Here, we describe the fluorescent tagging of polymeric micro- and nanomaterials based on poly(lactic-co-glycolic) acid and on the thermoresponsive poly(N-isopropylacrylamide) with the fluorescent probe IR-820 which was chemically modified for its covalent coupling to the materials. The chemical modification of the dye and the polymers yielded micro- and nanoparticulated labelled materials to be potentially used as drug depots of different therapeutic molecules. In vitro biological studies revealed their reduced cytotoxicity. A spatiotemporal in vivo micro- and nanoparticle tracking allowed the evaluation of the biodistribution of materials showing their local persistence and high biocompatibility after pathological studies. These results underline the suitability of these materials for the local, sustained, not harmful and/or on-demand drug delivery and the remarkable importance of evaluating the biodistribution of materials and tissue persistence for their use as local drug depots.
Collapse
Affiliation(s)
- Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
18
|
Wang Y, Jiang L, Yin Q, Liu H, Liu G, Zhu G, Li B. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo. J Cancer 2017; 8:3001-3013. [PMID: 28928892 PMCID: PMC5604452 DOI: 10.7150/jca.21059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
The novel C-PC/CMC-CD59sp-NPs were made by carbocymethyl chitosan (CMC) loading C-phycocyanin (C-PC) with the lead of CD59 specific ligand peptide (CD59sp) for targeting, and the characteristics and targeted anti-tumor mechanism were explored in order to realize the targeted therapy of C-PC on the growth of HeLa cells both in vitro and vivo. The targeting nanoparticles were synthesized by ionic-gelation method, and the optimal condition was selected out by orthogonal analysis. The properties of nanoparticles were observed by laser particle analyzer and dynamic light scattering (DLS) and Fourier Transform Infrared Spectrometer (FTIR). The effects of nanoparticles on the proliferation of HeLa cells in vitro were assessed by MTT assay. The mice model with tumor was constructed by subcutaneous injection of HeLa cells into the left axilla of NU/NU mice. The weight of tumor and the spleen were tested. The expression quantities of cleaved caspase-3, Bcl-2 were determined by western blot and immunofluorescent staining. Results showed the morphology of the finally prepared nanoparticles was well distributed with a diameter distribution of 200±11.3 nm and zeta potential of -19.5±4.12mV. Under the guidance of CD59sp, the targeting nanoparticles could targetedly and efficiently arrive at the surface of HeLa cells, and had obvious inhibitory effect on HeLa cells proliferation both in vitro and vivo. Moreover, the nanoparticles could induce cell apoptosis by up-regulation of cleaved caspase-3 proteins expression, but down-regulation of Bcl-2 and cyclinD1 proteins. Our study provided a new idea for the research and development of marine drugs, and supplied a theoretical support for the target therapy of anticancer drug.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Liangqian Jiang
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoteng Zhu
- Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Bing Li
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
19
|
Tang JQ, Hou XY, Yang CS, Li YX, Xin Y, Guo WW, Wei ZP, Liu YQ, Jiang G. Recent developments in nanomedicine for melanoma treatment. Int J Cancer 2017; 141:646-653. [PMID: 28340496 DOI: 10.1002/ijc.30708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a most aggressive skin cancer with limited therapeutic options and its incidence is increasing rapidly in recent years. The discovery and application of new targeted therapy agents have shown significant benefits. However, adverse side-effects and resistance to chemotherapy remain formidable challenges in the clinical treatment of malignant melanoma. Nanotherapeutics offers an important prospect of overcoming these drawbacks. The anti-tumoral applications of nanomedicine are varied, including those in chemotherapy, RNA interference, photothermal therapy, and photodynamic therapy. Furthermore, nanomedicine allows delivery of the effector structures into the tumor site via passive or active targeting, thereby allowing increased therapeutic specificity and reduced side effects. In this review, we summarize the latest developments in the application of nanocarrier-mediated targeted drug delivery to melanoma and nanomedicine-related clinical trials in melanoma treatment. We also discuss existing problems and opportunities for future developments, providing direction and new thoughts for further studies.
Collapse
Affiliation(s)
- Jian-Qin Tang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiao-Yang Hou
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chun-Sheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Ya-Xi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yong Xin
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wen-Wen Guo
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhi-Ping Wei
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yan-Qun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
20
|
Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J Control Release 2017; 260:12-21. [DOI: 10.1016/j.jconrel.2017.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
21
|
Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017; 12:1873-1889. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.
Collapse
Affiliation(s)
- Geoffrey A Pietersz
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Burnet Institute, Centre for Biomedical Research, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Xiaowei Wang
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| | - May Lin Yap
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Bock Lim
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Karlheinz Peter
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv 2016; 14:851-864. [DOI: 10.1080/17425247.2016.1244187] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Héloïse Ragelle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, USA
| | - Fabienne Danhier
- Advanced Drug Delivery and Biomaterial, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterial, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|