1
|
Zhang Y, Gao Y, Wang Y, Jiang Y, Xiang Y, Wang X, Wang Z, Ding Y, Chen H, Rui B, Huai W, Cai B, Ren X, Ma F, Xu S, Zhan Z, Liu X. RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol 2024; 21:1231-1250. [PMID: 39251781 PMCID: PMC11527992 DOI: 10.1038/s41423-024-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Collapse
MESH Headings
- Animals
- Inflammation/pathology
- Inflammation/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice
- RNA Splicing/genetics
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Macrophages/metabolism
- Macrophages/immunology
- Humans
- ATP Citrate (pro-S)-Lyase/metabolism
- ATP Citrate (pro-S)-Lyase/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Spliceosomes/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
Collapse
Affiliation(s)
- Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Xiaohui Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zeting Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Bing Rui
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Boyu Cai
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaomeng Ren
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
2
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
3
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Al-Sanea MM, Abdel-Maksoud MS, El-Behairy MF, Hamdi A, Ur Rahman H, Parambi DGT, Elbargisy RM, Mohamed AAB. Anti-inflammatory effect of 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole derivatives as p38α inhibitors. Bioorg Chem 2023; 139:106716. [PMID: 37459825 DOI: 10.1016/j.bioorg.2023.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
In the present work, the anti-inflammatory effect of 30 compounds containing 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole was investigated. All final target compounds showed significant Inhibitory effect on p38α. P38α is considered one of the key kinases in the inflammatory process due to its regulatory effect on pro-inflammatory mediators. The final target compounds divided into four group based on the type of terminal moiety (amide and sulfonamide) and the linker between pyrimidine ring and terminal moiety (ethyl and propyl). Most compounds with terminal sulfonamide moiety and propyl linker between the sulfonamide and pyrimidine ring were the most potent among all synthesized final target compounds with sub-micromolar IC50s. Compound 24g (with p-Cl benzene sulfonamide and propyl linker) exhibited the highest activity over P38α with IC50 0.68 µM. All final target compounds were tested for their ability to inhibit nitric oxide release and prostaglandin E2 production. Compounds having amide terminal moiety with ethyl linker showed higher inhibitory activity for nitric oxide release and compound 21d exhibited the highest activity for nitric oxide release with IC50 1.21 µM. Compounds with terminal sulfonamide moiety and propyl linker showed the highest activity for inhibiting PGE2 production and compounds 24i and 24g had the lowest IC50s with value 0.87 and 0.89 µM, respectively. Compounds 21d, 22d and 24g were tested for their ability to inhibit over expression of iNOS, COX1, and COX2. In addition the ability of compounds 21d, 22d and 24g to inhibit inflammatory cytokines were determined. Finally molecular docking of the three compounds were performed on P38α crystal structure to expect their mode of binding.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia.
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt.
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab M Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Zhou M, Tan W, Hasimu H, Liu J, Gu Z, Zhao J. Euphorbium total triterpenes improve Freund's complete adjuvant-induced arthritis through PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116146. [PMID: 36610673 DOI: 10.1016/j.jep.2023.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbium is the resinous secretion of Euphorbia resinifera Berg. According to the record, Euphorbium was first used by Roman doctors to treat the emperor's joint pain. In China, it is applied in folk medicine to treat damp-cold or mucous diseases, such as arthralgia and ascites, etc. This herb is used for rheumatoid arthritis and skin tumors in the folklore of northeastern Brazil. Triterpenes are mainly characteristic constituents of Euphorbium, and possibly possess anti-rheumatoid arthritis. AIM OF THE STUDY To explore the preventive effect of Euphorbium total triterpenes (TTE) on Freund's complete adjuvant (FCA) induced arthritis in rats and its mechanism. MATERIAL AND METHODS TTE was extracted and isolated from Euphorbium, and its components were analyzed by HPLC. The safety of TTE was evaluated by an acute toxicity test in mice. Arthritis was induced in rats by injecting 0.2 mL FCA into the right hind paw toe, except for the control group, which was given the same volume of physiological saline. Tripterygium Glycosides (TG, 7.5 mg/kg) and TTE (32, 64 and 128 mg/kg) were administered by gavage for 30 days. Body weights, paw swelling, and arthritic scores were measured during the experiment process. After 30 days, blood and joints were harvested to determine various indicators of arthritis. RESULTS The contents of euphol and euphorbol in TTE were 47.03% and 18.77% respectively, and the maximal feasible dose of TTE in mice is 12 g/kg. The experimental results showed that arthritis indicators in rats deteriorated after FCA inducement compared with the control group. After treatment with TTE, the swelling degree and histopathological change of the hind paws in rats were significantly improved as well as arthritic score; the serum TNF-α, CRP, IL-1β, IL-6, IL-18 and RF levels in rats were significantly reduced; The expression of PI3K, AKT, P-AKT, Bcl-2, NF-κB, NLRP3 and Pro-caspase-1 protein in joint tissue were down-regulated, and the expression of Bax protein was up-regulated. CONCLUSION The results suggested that TTE possessed anti-arthritis effects, and its mechanism may be related to its anti-inflammatory and immunomodulatory properties, as well as regulation of PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Maojie Zhou
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Wei Tan
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Hamulati Hasimu
- Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jing Liu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830013, China.
| | - Zhengyi Gu
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jun Zhao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| |
Collapse
|
7
|
Jensen TSR, Binderup T, Olsen MH, Kjaer A, Fugleholm K. Subdural Levels of Interleukin 1-receptor Antagonist are Elevated in Patients with Recurrent Chronic Subdural Hematomas. Inflammation 2023:10.1007/s10753-023-01811-8. [PMID: 37039933 DOI: 10.1007/s10753-023-01811-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Anti-inflammatory treatment reduces the risk of recurrent chronic subdural hematoma (CSDH), but clinical implementation is improper due to side effects. Exact knowledge of subdural molecules involved in recurrent CSDH may lead to targeted medical treatment and possibly improve the prospect of a personalized approach by eliminating the broad use of anti-inflammatory drugs on the entire CSDH population. With this study, we aim to (1) describe the associations between cytokine levels at the primary surgery and the risk of subsequent recurrence and (2) describe the association between cytokines in patients with recurrent CSDH between the first and second operations. Systemic and subdural levels of pro- and anti-inflammatory cytokines were measured and compared between patients with the first-time CSDH and recurrent CSDH. Cytokine levels were analyzed using a multiplex antibody bead kit. In case of recurrent CSDH within 90 days of follow-up, the samples were re-collected and analyzed. We included 101 adult CSDH patients of which 20 had a recurrence. The levels of cytokines in the CSDH fluid from patients who were operated on for the first-time CSDH were not associated with the risk of later developing a recurrence. We found interleukin-1 receptor antagonist (IL-1ra) to be elevated in subdural fluid in patients with recurrent CSDH at the time of their second operation (p = 0.0005). This study provides knowledge on cytokine composition in the subdural fluid in patients with CSDH with and without recurrence. IL-1ra is elevated in subdural fluid in patients with recurrent CSDH at the time of the second operation, identifying a possible medical target.
Collapse
Affiliation(s)
- Thorbjørn Søren Rønn Jensen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Rigshospitalet, Copenhagen, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Rigshospitalet & Department of Biomedical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Rigshospitalet & Department of Biomedical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Garrido-Mesa J, Thomas BL, Dodd J, Spana C, Perretti M, Montero-Melendez T. Pro-resolving and anti-arthritic properties of the MC 1 selective agonist PL8177. Front Immunol 2022; 13:1078678. [PMID: 36505403 PMCID: PMC9730523 DOI: 10.3389/fimmu.2022.1078678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melanocortins are peptides endowed with anti-inflammatory and pro-resolving activities. Many of these effects are mediated by the Melanocortin receptor 1 (MC1) as reported in several experimental settings. As such, MC1 can be a viable target for the development of new therapies that mimic endogenous pro-resolving mediators. The aim of this study was to assess the immunopharmacology of a selective MC1 agonist (PL8177) in vitro and in a mouse model of inflammatory arthritis. Methods PL8177 and the natural agonist αMSH were tested for activation of mouse and human Melanocortin receptors (MC1,3,4,5), monitoring cAMP accumulation and ERK1/2 phosphorylation, using transiently transfected HEK293A cells. The anti-inflammatory and pro-resolving effects of PL8177 and αMSH were evaluated using mouse peritoneal Macrophages. Finally, a model of K/BxN serum transfer induced arthritis was used to determine the in vivo potential of PL8177. Results PL8177 activates mouse and human MC1 with apparent EC50 values of 0.01 and 1.49 nM, respectively, using the cAMP accumulation assay. Similar profiles were observed for the induction of ERK phosphorylation (EC50: 0.05 and 1.39 nM). PL8177 displays pro-resolving activity (enhanced Macrophage efferocytosis) and counteracts the inflammatory profile of zymosan-stimulated macrophages, reducing the release of IL-1β, IL-6, TNF-α and CCL-2. In the context of joint inflammation, PL8177 (3mg/kg i.p.) reduces clinical score, paw swelling and incidence of severe disease as well as the recruitment of immune cells into the arthritic joint. Conclusion These results demonstrate that the MC1 agonism with PL8177 affords therapeutic effects in inflammatory conditions including arthritis. Significance Drugs targeting the Melanocortin system have emerged as promising therapeutics for several conditions including inflammation or obesity. Multiple candidates are under clinical development, and some have already reached approval. Here we present the characterization of a novel drug candidate, PL8177, selective for the Melanocortin 1 receptor (MC1), demonstrating its selectivity profile on cAMP and ERK1/2 phosphorylation signaling pathways, of relevance as selective drugs will translate into lesser off-target effect. PL8177 also demonstrated, not only anti-inflammatory activity, but pro-resolving actions due to its ability to enhance efferocytosis (i.e. the phagocytosis of apoptotic cells), endowing this molecule with therapeutic advantages compared to classical anti-inflammatory drugs. Using a mouse model of inflammatory arthritis, the compound demonstrated in vivo efficacy by reducing clinical score, paw swelling and overall disease severity. Taken together, these results present Melanocortin-based therapies, and specifically targeting MC1 receptor, as a promising strategy to manage chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bethan Lynne Thomas
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John Dodd
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Carl Spana
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom,*Correspondence: Trinidad Montero-Melendez,
| |
Collapse
|
9
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
10
|
Hamed MA, Aboul Naser AF, El-Feky AM, Elbatanony MM, Shaker SE, Fayed DB, Hassan EE, Ali SA, Khalil WK, Aboutabl ME. Phytoconstituents of Red Grape Seeds Extract as Inflammatory Modulator in Adjuvant Arthritic Rats: Role Of IL-1 and its Receptor Blocking. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2022. [DOI: 10.1080/22311866.2022.2081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Amal M. El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Sylvia E. Shaker
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Dalia B. Fayed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Entesar E.S. Hassan
- Department of Genetics and Cytology, National Research Centre, Dokki, Giza, Egypt
| | - Sanaa A. Ali
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Wagdy K.B. Khalil
- Department of Cell Biology, National Research Centre, Dokki, Giza, Egypt
| | - Mona E. Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
12
|
Diabetes-Modifying Antirheumatic Drugs: The Roles of DMARDs as Glucose-Lowering Agents. Medicina (B Aires) 2022; 58:medicina58050571. [PMID: 35629988 PMCID: PMC9143119 DOI: 10.3390/medicina58050571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Systemic inflammation represents a shared pathophysiological mechanism which underlies the frequent clinical associations among chronic inflammatory rheumatic diseases (CIRDs), insulin resistance, type 2 diabetes (T2D), and chronic diabetes complications, including cardiovascular disease. Therefore, targeted anti-inflammatory therapies are attractive and highly desirable interventions to concomitantly reduce rheumatic disease activity and to improve glucose control in patients with CIRDs and comorbid T2D. Therapeutic approaches targeting inflammation may also play a role in the prevention of prediabetes and diabetes in patients with CIRDs, particularly in those with traditional risk factors and/or on high-dose corticosteroid therapy. Recently, several studies have shown that different disease-modifying antirheumatic drugs (DMARDs) used for the treatment of CIRDs exert antihyperglycemic properties by virtue of their anti-inflammatory, insulin-sensitizing, and/or insulinotropic effects. In this view, DMARDs are promising drug candidates that may potentially reduce rheumatic disease activity, ameliorate glucose control, and at the same time, prevent the development of diabetes-associated cardiovascular complications and metabolic dysfunctions. In light of their substantial antidiabetic actions, some DMARDs (such as hydroxychloroquine and anakinra) could be alternatively termed “diabetes-modifying antirheumatic drugs”, since they may be repurposed for co-treatment of rheumatic diseases and comorbid T2D. However, there is a need for future randomized controlled trials to confirm the beneficial metabolic and cardiovascular effects as well as the safety profile of distinct DMARDs in the long term. This narrative review aims to discuss the current knowledge about the mechanisms behind the antihyperglycemic properties exerted by a variety of DMARDs (including synthetic and biologic DMARDs) and the potential use of these agents as antidiabetic medications in clinical settings.
Collapse
|
13
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
14
|
Choi YR, Collins KH, Springer LE, Pferdehirt L, Ross AK, Wu CL, Moutos FT, Harasymowicz NS, Brunger JM, Pham CTN, Guilak F. A genome-engineered bioartificial implant for autoregulated anticytokine drug delivery. SCIENCE ADVANCES 2021; 7:eabj1414. [PMID: 34516920 PMCID: PMC8442875 DOI: 10.1126/sciadv.abj1414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Biologic drug therapies are increasingly used for inflammatory diseases such as rheumatoid arthritis but may cause significant adverse effects when delivered continuously at high doses. We used CRISPR-Cas9 genome editing of iPSCs to create a synthetic gene circuit that senses changing levels of endogenous inflammatory cytokines to trigger a proportional therapeutic response. Cells were engineered into cartilaginous constructs that showed rapid activation and recovery in response to inflammation in vitro or in vivo. In the murine K/BxN model of inflammatory arthritis, bioengineered implants significantly mitigated disease severity as measured by joint pain, structural damage, and systemic and local inflammation. Therapeutic implants completely prevented increased pain sensitivity and bone erosions, a feat not achievable by current clinically available disease-modifying drugs. Combination tissue engineering and synthetic biology promises a range of potential applications for treating chronic diseases via custom-designed cells that express therapeutic transgenes in response to dynamically changing biological signals.
Collapse
Affiliation(s)
- Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Luke E. Springer
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison K. Ross
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Cytex Therapeutics Inc., Durham, NC 27704, USA
| |
Collapse
|
15
|
Wang L, Che K, Liu Y. Pharmacokinetics, distribution and efficacy of triptolide PLGA microspheres after intra-articular injection in a rat rheumatoid arthritis model. Xenobiotica 2021; 51:703-715. [PMID: 33938387 DOI: 10.1080/00498254.2021.1923860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The UPLC-MS/MS method was established with good precision, accuracy and stability to determine the concentrations of TPL in biological samples, such as heart, liver, spleen, lung, kidney, plasma and joint.After being made into microspheres, TPL can stay in the joint tissue for a long time, further reducing the number of times joint cavity administration, and its sustained release effect was significantly improved compared with the solution dosage form.The pharmacokinetic parameters, such as AUC(0-t), AUC(0-∞), T1/2, Tmax, MTR(0-t), and MTR(0-∞) of the TPL-PLGA-MS group were significantly increased compared with those of the solution group. The microsphere preparation could significantly slow the release rate of the drug from the joint cavity.TPL-PLGA-MS can significantly reduce the expression of inflammatory factors such as IL-1, IL-6, TNF-α and hs-CRP. TPL-PLGA-MS for articular cavity injection has potential as a new preparation for the treatment of RA.
Collapse
Affiliation(s)
- Lijuan Wang
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Keke Che
- Department of Pharmacy, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yan Liu
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
16
|
Endothelial Dysfunction and Extra-Articular Neurological Manifestations in Rheumatoid Arthritis. Biomolecules 2021; 11:biom11010081. [PMID: 33435178 PMCID: PMC7827097 DOI: 10.3390/biom11010081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease that affects about 1% of the global population, with a female–male ratio of 3:1. RA preferably affects the joints, with consequent joint swelling and deformities followed by ankylosis. However, evidence has accumulated showing that patients suffering from RA can also develop extra-articular manifestations, including cardiovascular disease states, neuropathies, and multiorgan dysfunction. In particular, peripheral nerve disorders showed a consistent impact in the course of the disease (prevalence about 20%) mostly associated to vasculitis of the nerve vessels leading to vascular ischemia, axonal degeneration, and neuronal demyelination. The pathophysiological basis of this RA-associated microvascular disease, which leads to impairment of assonal functionality, is still to be better clarified. However, endothelial dysfunction and alterations of the so-called brain-nerve barrier (BNB) seem to play a fundamental role. This review aims to assess the potential mechanisms underlying the impairment of endothelial cell functionality in the development of RA and to identify the role of dysfunctional endothelium as a causative mechanism of extra-articular manifestation of RA. On the other hand, the potential impact of lifestyle and nutritional interventions targeting the maintenance of endothelial cell integrity in patients with RA will be discussed as a potential option when approaching therapeutic solutions in the course of the disease.
Collapse
|
17
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
18
|
Zhang C. Flare-up of cytokines in rheumatoid arthritis and their role in triggering depression: Shared common function and their possible applications in treatment (Review). Biomed Rep 2020; 14:16. [PMID: 33269077 PMCID: PMC7694594 DOI: 10.3892/br.2020.1392] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic illnesses are associated with an increased risk of depression and anxiety. Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically causes damage to the joints. RA extensively impacts patients, both physically and psychologically. Depression is a common comorbid disorder with RA, which leads to worsened health outcomes. There are several cytokines that are active in the joints of patients with RA. Inflammatory cytokines serve important roles in the key processes in the joints, which usually cause inflammation, articular damage and other comorbidities associated with RA. The key role of inflammatory cytokines could be attributed to their interactions within signaling pathways. In RA, IL-1, and the cytokines of TNF-α, IL-6 and IL-18 are primarily involved. Furthermore, depression is hypothesized to be strongly associated with systemic inflammation, particularly with dysregulation of the cytokine network. The present review summarizes the current state of knowledge on these two diseases from the perspective of inflammation and cytokines, and emphasizes the possible bridge between them by exploring the involvement of systemic cytokines in both conditions.
Collapse
Affiliation(s)
- Chunhai Zhang
- Thyroid Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin 1300332, P.R. China
| |
Collapse
|
19
|
Mechano-activated biomolecule release in regenerating load-bearing tissue microenvironments. Biomaterials 2020; 265:120255. [PMID: 33099065 DOI: 10.1016/j.biomaterials.2020.120255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Although mechanical loads are integral for musculoskeletal tissue homeostasis, overloading and traumatic events can result in tissue injury. Conventional drug delivery approaches for musculoskeletal tissue repair employ localized drug injections. However, rapid drug clearance and inadequate synchronization of molecule provision with healing progression render these methods ineffective. To overcome this, a programmable mechanoresponsive drug delivery system was developed that utilizes the mechanical environment of the tissue during rehabilitation (for example, during cartilage repair) to trigger biomolecule provision. For this, a suite of mechanically-activated microcapsules (MAMCs) with different rupture profiles was generated in a single fabrication batch via osmotic annealing of double emulsions. MAMC physical dimensions were found to dictate mechano-activation in 2D and 3D environments and their stability in vitro and in vivo, demonstrating the tunability of this system. In models of cartilage regeneration, MAMCs did not interfere with tissue growth and activated depending on the mechanical properties of the regenerating tissue. Finally, biologically active anti-inflammatory agents were encapsulated and released from MAMCs, which counteracted degradative cues and prevented the loss of matrix in living tissue environments. This unique technology has tremendous potential for implementation across a wide array of musculoskeletal conditions for enhanced repair of load-bearing tissues.
Collapse
|
20
|
Zhang L, Zhou Q, Wu Z, Zhu X, Geng T. The effect of IL-1R1 and IL-1RN polymorphisms on osteoporosis predisposition in a Chinese Han population. Int Immunopharmacol 2020; 87:106833. [DOI: 10.1016/j.intimp.2020.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/06/2022]
|
21
|
Han H, Zhou W. Leptin and Its Derivatives: A Potential Target for Autoimmune Diseases. Curr Drug Targets 2020; 20:1563-1571. [PMID: 31362672 DOI: 10.2174/1389450120666190729120557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
Leptin is an adipocyte-derived hormone product of the obese (ob) gene. Leptin plays an important regulatory role as an immunomodulatory factor in the maintenance and homeostasis of immune functions. Indeed, the role of leptin as an immunomodulator in inflammatory and immune responses has attracted increasing attention in recent years. Leptin mostly affects responses through the immunomodulation of monocytes, dendritic cells, neutrophils, NK cells, and dendritic cells in addition to modulating T and B cell development and functions. Leptin is also an important inflammatory regulator, wherein higher expression influences the secretion rates of IL-6, C-reactive proteins, and TNF-α. Moreover, leptin is highly involved in processes related to human metabolism, inflammatory reactions, cellular development, and diseases, including hematopoiesis. Owing to its diverse immunerelated functions, leptin has been explored as a potential target for therapeutic development in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis. Shenyang City, Liaoning Pro 110034, China
| |
Collapse
|
22
|
Seaman SC, Hong S, Dlouhy BJ, Menezes AH. Current management of juvenile idiopathic arthritis affecting the craniovertebral junction. Childs Nerv Syst 2020; 36:1529-1538. [PMID: 31845026 DOI: 10.1007/s00381-019-04469-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Craniovertebral instability is a rare and serious problem. While previously treated surgically, better understanding of disease processes has permitted the field to move towards conservative management. Juvenile idiopathic arthritis (JIA) is one cause of pediatric craniovertebral instability. Early recognition and institution of appropriate medical therapy and bracing in a multidisciplinary fashion is critical to avoid long-term instability, joint abnormalities, or morbid surgical procedures. We seek to highlight cases of this rare problem and provide a principled approach to management decisions. METHODS We review 6 cases that have presented over the last 6 years and highlight 3 cases in particular regarding craniovertebral instability as a presentation of JIA. We reviewed the clinical records and radiographic features with particular emphasis of the stability of the craniovertebral junction. RESULTS Age range of the subjects was from 5 to 12. All patients presented with neck pain and abnormal head rotation. Four of the patients responded to medical management and/or cervical bracing with no long-term sequelae or instability. Two patients had refractory rotary subluxation, one that responded to manual reduction under pharmacological paralysis and bracing; the other had an incompetent transverse ligament requiring surgical reduction and fixation. CONCLUSIONS Neck pain and abnormal head rotation in an older child is rare finding but should prompt suspicion as a manifestation of JIA to the general pediatrician or initial provider. Appropriate serologic studies and MRI studies with contrast at the craniovertebral junction is necessary for evaluation. Early institution of medical management and cervical bracing under a multidisciplinary team of pediatric rheumatology and neurosurgery is key to avoiding surgical intervention and long-term abnormalities at the craniovertebral junction.
Collapse
Affiliation(s)
- Scott C Seaman
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Sandy Hong
- Department of Pediatrics, Division of Rheumatology, University of Iowa Stead Family Children's Hospital, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.,Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Arnold H Menezes
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
23
|
Wu LF, Wang WY, Zhu DC, He P, Zhu K, Gui GP, Gao HQ, Mo XB, Lu X, Deng FY, Lei SF. Protein array test detected three osteoporosis related plasma inflammatory cytokines in Chinese postmenopausal women. Cytokine 2020; 133:155166. [PMID: 32570159 DOI: 10.1016/j.cyto.2020.155166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Inflammatory cytokines were involved in pathological conditions of osteoporosis (OP). However, the specific OP-associated inflammatory cytokines are still awaiting to be detected by using a systemic method. Herein, we adopted an extreme sampling scheme and examined inflammatory cytokines between subjects with low and high bone mineral density (BMD) through protein microarray. First, 8 candidate cytokines including B lymphocyte chemoattractant (BLC), osteopontin (OPN) and insulin-like growth factor-binding protein 4 (IGFBP4) were identified in the discovery extreme sampling subgroup. Then, the different expressions for BLC, OPN and IGFBP4 were validated and replicated in two independent extreme sampling subgroups. Further functional experiments showed that the cytokine BLC was involved in bone metabolism by inhibiting bone formation and promoting bone resorption. Together, this study further revealed that inflammatory cytokines were closely related with OP, and that they highlighted critical roles of BLC in the pathogenesis of OP.
Collapse
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wen-Yu Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Dong-Cheng Zhu
- Department of Orthopedics, Sihong People's Hospital, Suqian, Jiangsu 223900, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kan Zhu
- Loujiang Community Health Service Center, Suzhou Gusu District, Suzhou, Jiangsu, China
| | - Guo-Ping Gui
- Disease Prevention and Control Center of Suzhou High Tech Zone, Suzhou, Jiangsu, China
| | - Hong-Qin Gao
- Shishan Community Health Service Center, Suzhou High Tech Zone, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
24
|
Mycoplasma bovis induces matrix metalloproteinase-3 expression in bovine synovial cells via up-regulation of interleukin-1β expression in mononuclear cells. Vet Immunol Immunopathol 2020; 227:110057. [PMID: 32554268 DOI: 10.1016/j.vetimm.2020.110057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022]
Abstract
Mycoplasma bovis causes chronic arthritis in calves, presenting as osteolysis in affected joints. Matrix metalloproteinase-3 (MMP-3), an enzyme involved in cartilage degradation, is produced by synovial cells. Production of this proteinase is regulated by interleukin (IL)-1β, which is produced by mononuclear cells. Both factors are known to play important roles in osteolysis in human autoimmune and bacterial arthritis. However, the pathophysiology of Mycoplasma arthritis (MA) has not been elucidated. In this study, we evaluated the levels of MMP-3 and IL-1β in synovial fluid (SF) from MA calves and examined the effect of IL-1β on MMP-3 expression in bovine synovial cells in vitro. Levels of MMP-3 and IL-1β in SF from MA calves were significantly higher than those of clinically healthy calves. Mycoplasma bovis induced significant increases in the expression of IL-1β mRNA and protein in mononuclear cells, compared with cells not exposed to M. bovis. Interestingly, the supernatant of mononuclear cells stimulated with M. bovis contained high levels of IL-1β, which induced higher expression of MMP-3 mRNA and protein in synovial cells than direct stimulation by M. bovis. Recombinant bovine IL-1β also induced increased MMP-3 mRNA and protein expression in synovial cells. Our results indicate that M. bovis induces IL-1β expression by bovine mononuclear cells, and this cytokine then promotes MMP-3 production by synovial cells. These findings suggest that MMP-3 and IL-1β are key factors in the development of osteolysis in MA calves.
Collapse
|
25
|
Ascone G, Cao Y, Jansen ID, Di Ceglie I, van den Bosch MH, Blom AB, van Lent PL, Everts V, de Vries TJ. Increase in the Number of Bone Marrow Osteoclast Precursors at Different Skeletal Sites, Particularly in Long Bone and Jaw Marrow in Mice Lacking IL-1RA. Int J Mol Sci 2020; 21:ijms21113774. [PMID: 32471111 PMCID: PMC7312984 DOI: 10.3390/ijms21113774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn-/-) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C-), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31- Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn-/- mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn-/- mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn-/- cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn-/- osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.
Collapse
Affiliation(s)
- Giuliana Ascone
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Y.C.); (V.E.)
| | - Ineke D.C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam Gustav Mahlerlaan 2004, 1081 LA Amsterdam, The Netherlands;
| | - Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Martijn H.J. van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Arjen B. Blom
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Peter L.E.M. van Lent
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Y.C.); (V.E.)
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam Gustav Mahlerlaan 2004, 1081 LA Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
26
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
27
|
Tseng CC, Chen YJ, Chang WA, Tsai WC, Ou TT, Wu CC, Sung WY, Yen JH, Kuo PL. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int J Mol Sci 2020; 21:E1071. [PMID: 32041125 PMCID: PMC7038065 DOI: 10.3390/ijms21031071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases that display features of articular cartilage destruction. The underlying disturbance results from immune dysregulation that directly and indirectly influence chondrocyte physiology. In the last years, significant evidence inferred from studies in vitro and in the animal model offered a more holistic vision of chondrocytes in RA. Chondrocytes, despite being one of injured cells in RA, also undergo molecular alterations to actively participate in inflammation and matrix destruction in the human rheumatoid joint. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the chondrocyte signatures of RA and its potential applications for diagnosis and prognosis in RA.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
28
|
Lipopolysaccharide (LPS) inhibits ectopic bone formation induced by bone morphogenetic protein-2 and TGF-β1 through IL-1β production. J Oral Biosci 2020; 62:44-51. [PMID: 31987892 DOI: 10.1016/j.job.2020.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In order to gain new insight into bacterial infection during bone-regenerative treatment using bone morphogenetic proteins (BMPs), we examined the effects of lipopolysaccharide (LPS) on ectopic bone formation induced by BMP-2 and transforming growth factor (TGF)-β1 in mice. METHODS We implanted collagen sponges containing BMP-2, TGF-β1, and various amounts of LPS into mouse muscle tissues. Lump-like masses in which ectopic bones developed in mice were processed for microcomputed tomography, DNA microarray, reverse-transcription PCR, and histological analyses. RESULTS LPS treatment caused a dose-dependent reduction in the volume of ectopic bone. The total volume of ectopic bone induced by BMP-2 + TGF-β1 treatment was reduced by more than 75% in the presence of LPS. Histological analysis of the ectopic bone tissues revealed a significant reduction in total bone volume and bone volume/total volume in response to LPS. LPS treatment significantly increased the osteoblast number and osteoid volume, while the osteoclast number did not change. Since LPS induced production of TNF-α and IL-1β in lump-like masses, we implanted collagen sponges containing BMP-2 and TGF-β1 with or without LPS into TNF-α- or IL-1α/β-deficient mice. LPS treatment reduced the volume of ectopic bones in TNF-α-deficient mice but not in IL-1α/β-deficient mice. Furthermore, collagen sponges containing IL-1β reduced ectopic bone formation by BMP-2 and TGF-β1 in wild-type mice to the same extent as LPS treatment did. CONCLUSIONS LPS suppresses the ectopic bone formation induced by BMP-2 and TGF-β1 through IL-1β production.
Collapse
|
29
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
30
|
Kalemci S, Zeybek A, Mıcılı SC, Sarıhan A, Çalışır M, Şimşek A, Akın F, İhtiyar A, Yılmaz O. The Protective Effect of The Interleukin 1 Receptor Antagonist on Chronic Thromboembolic Pulmonary Hypertension Model. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the main reasons of severe pulmonary hypertension and has significantly higher morbidity and mortality rates. The pathogenesis of the disease is characterized by the incomplete resolution of acute embolisms. The elevated inflammatory conditions after the acute embolism are one of the critical factors. Therefore, we aimed to investigate whether or not anakinra is an option for treating CTEPH in an animal model.
We studied twenty-one rats in this study They were randomly divided into three groups containing seven animals: the control group: saline-treated control; the embolism group: CTEPH + normal saline; the anakinra group: CTEPH + anakinra.
We have observed that the layers of the segmental arteries and the alveolar were normal in the control group. In the cardiac tissue it was observed that muscular tissues and connective tissue were normal in the right ventricle. In embolism group, we detected a widening of the alveolar septum, a surrounding the alveolar infiltrates and a thickening of the segmental arteries in the muscular layer and a hypertrophy in the right ventricle tissues. We have determined that the lung and cardiac tissue specimens in the anakinra group are similar to control group.
We have showed that anakinra was useful option for the CTEPH model in rats. Anakinra may be considered as protective effect and the regression of the increased inflammation in CTEPH. The effectiveness of anakinra will continue to be subject to the further experimental and clinical studies.
Collapse
Affiliation(s)
- Serdar Kalemci
- Gebze Medical Park Hospital, Department of Chest Illnesses, Gebze, İzmit, Turkey
| | - Arife Zeybek
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Chest Surgery, Muğla, Turkey
| | - Serap Cilaker Mıcılı
- Dokuz Eylül University, School of Medicine, Department of Histology, Izmir, Turkey
| | - Aydın Sarıhan
- Manisa State Hospital, Emergency Medicine, Manisa, Turkey
| | - Meryem Çalışır
- Dokuz Eylül University, School of Medicine, Clinical Animals Multidisciplinary Laboratory, Izmir, Turkey
| | - Abdullah Şimşek
- Bursa Chest Disease Hospital, Department of Chest Diseases, Bursa, Turkey
| | - Fatih Akın
- Mugla Sitki Kocman University, Faculty of Medicine, Departmant of Cardiology, Mugla, Turkey
| | - Alperen İhtiyar
- Izmir Katip Celebi University, Department of Clinical Biochemistry İzmir, Turkey
| | - Osman Yılmaz
- Dokuz Eylül University, School of Medicine, Clinical Animals Multidisciplinary Laboratory, Izmir, Turkey
| |
Collapse
|
31
|
Xie L, Huang Z, Li H, Liu X, Zheng S, Su W. IL-38: A New Player in Inflammatory Autoimmune Disorders. Biomolecules 2019; 9:E345. [PMID: 31387327 PMCID: PMC6723600 DOI: 10.3390/biom9080345] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-38, a newly discovered IL-1 family cytokine, is expressed in several tissues and secreted by various cells. IL-38 has recently been reported to exert an anti-inflammatory function by binding to several receptors, including interleukin-36 receptor (IL-36R), interleukin-1 receptor accessory protein-like 1 (IL-1RAPL1), and interleukin-1 receptor 1 (IL-1R1) to block binding with other pro-inflammatory cytokines and inhibit subsequent signaling pathways; thereby regulating the differentiation and function of T cells, peripheral blood mononuclear cells, macrophages, and dendritic cells. Inflammatory autoimmune diseases, which are common immune-mediated inflammatory syndromes, are characterized by an imbalance between T helper cells (Ths), especially Th1s and Th17s, and regulatory T cells (Tregs). Recent findings have shown that abnormal expression of IL-38 in inflammatory autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, primary Sjogren's syndrome, psoriasis, inflammatory bowel disease, hidradenitis suppurativa, ankylosing spondylitis, and glaucoma, involves Th1s, Th17s, and Tregs. In this review, the expression, regulation, and biological function of IL-38 are discussed, as are the roles of IL-38 in various inflammatory autoimmune disorders. Current data support that the IL-38/IL-36R and/or IL-38/IL-1RAPL1 axis primarily play an anti-inflammatory role in the development and resolution of inflammatory autoimmune diseases and indicate a possible therapeutic benefit of IL-38 in these diseases.
Collapse
Affiliation(s)
- Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Songguo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
32
|
Venugopal N, Acharya P, Zarei M, Talahalli RR. Cysteinyl leukotriene receptor antagonism: a promising pharmacological strategy for lowering the severity of arthritis. Inflammopharmacology 2019; 27:923-931. [PMID: 31309487 DOI: 10.1007/s10787-019-00618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Though cyclooxygenase inhibitors are employed in rheumatoid arthritis treatment, modulators of leukotrienes are underexplored. We investigated the therapeutic potential of montelukast, a known cysteinyl leukotriene receptor-1 (CysLT1) inhibitor in an experimental rat model of arthritis. METHODS Arthritis was induced in rats, and montelukast (5 mg/kg body wt.) was administered prophylactically (PAM) and therapeutically (TAM) through oral route. RESULTS AND DISCUSSION Blood and joint tissue markers of oxidative stress (lipid peroxidation, protein carbonyls, and nitric oxides) were significantly (p < 0.05) reduced in montelukast administered rats. Paw inflammation, RA markers (RF and CRP), eicosanoids (PGE2, LTB4, and LTC4), cytokines (IL-1β and MCP-1), activity of hydrolytic enzymes (collagenase, elastase, and hyaluronidase), expression of matrix metalloproteinases (MMP), and EP-4 receptor were significantly (p < 0.05) reduced in montelukast administered rats. This study established that leukotriene inhibition through montelukast lowered the severity of arthritis and thus a potential strategy for reducing the severity of arthritis.
Collapse
Affiliation(s)
- Nayana Venugopal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | | |
Collapse
|
33
|
Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, Jin Y, He X, Jin F. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. PeerJ 2019; 7:e7023. [PMID: 31198641 PMCID: PMC6553443 DOI: 10.7717/peerj.7023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and nonspecific autoimmune disease, which leads to joint destruction and deformity. To investigate the potential of human mesenchymal stem cells (MSCs) as a new therapeutic strategy for patients with RA, we compared the therapeutic effects of bone marrow derived MSCs (BMSCs), umbilical cord derived MSCs (UCs), and stem cells derived from human exfoliated deciduous teeth (SHED) on collagen-induced arthritis (CIA) in mice. Methods A total of 24 DBA/1 mice were infused with type II collagen to induce RA in the experimental model. MSC-treated mice were infused with UCs, BMSCs, and SHED, respectively. Bone erosion and joint destruction were measured by micro-computed tomographic (micro-CT) analysis and hematoxylin and eosin staining. The levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were measured by immunohistochemistry and Enzyme-Linked Immunosorbent Assay (ELISA). Results Systemic delivery of MSCs significantly improved the severity of the symptoms related to CIA to greater extent compared with the untreated control group. Micro-CT revealed reduced bone erosions in the metatarsophalangeal joints upon treatment with MSCs. Additionally, according to histologic evaluation, reduced synovitis and articular destruction were observed in MSC-treated groups. The levels of TNF-α and IL-1β in the serum and joints decreased with treatment by MSCs. Conclusion Our findings suggest that systemic infusion of UCs, BMSCs, and SHED may significantly alleviate the effects of RA. The therapeutic effect of BMSCs was greater than that of SHED, while the UCs were shown to have the best therapeutic effect on CIA mice. In conclusion, compared with BMSCs and SHED, UCs may be a more suitable source of MSCs for the treatment of patients with RA.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Qihong Li
- Department of Stomatology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical Universit, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Cellulase-Assisted Extraction, Characterization, and Bioactivity against Rheumatoid Arthritis of Astragalus Polysaccharides. INT J POLYM SCI 2019. [DOI: 10.1155/2019/8514247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study investigated the effect of cellulase on the isolation of crude Astragalus polysaccharide (APS), analyzed the monosaccharide component of deproteinized APS, detected the molecular weights of purified APS, and examined the biological activities and the preliminary mechanism against rheumatoid arthritis (RA). Compared with water extraction method, cellulase-assisted extraction increased the yield of crude APS to 154% and polysaccharide contents to 121%. Crude APS was then purified by ethanol precipitation, Sevag deproteinization, and high-performance liquid chromatography (HPLC) analysis; monosaccharide contents of APS were different after cellulase-assisted method, especially galacturonic acid content which significantly increased. DEAE-52 cellulose column chromatography isolated three polysaccharide fractions, including a neutral polysaccharide (APS-water) and two acidic polysaccharides (APS-NaCl1 and APS-NaCl2). Using high-performance gel permeation chromatography (HPGPC), the molecular weights of APS-water, APS-NaCl1, and APS-NaCl2 were identified as 67.7 kDa, 234.1 kDa, and 189.4 kDa, respectively. Then their therapeutic effects and possible mechanism against RA were explored using type II collagen-induced arthritis (CIA) rat model. APS could significantly reduce paw swelling, serum concentration of IL-1β and TNF-α, and the expression levels of NF-κB-p65 and IκBα in synovial membranes in CIA rats. Our study indicated that cellulase significantly increases the yield and polysaccharide contents of crude APS, improves the product quality, and preserves the biological features against RA in CIA rats.
Collapse
|
35
|
Zhao C, Gu Y, Zeng X, Wang J. NLRP3 inflammasome regulates Th17 differentiation in rheumatoid arthritis. Clin Immunol 2018; 197:154-160. [DOI: 10.1016/j.clim.2018.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
|
36
|
Zarringam D, Bekkers JEJ, Saris DBF. Long-term Effect of Injection Treatment for Osteoarthritis in the Knee by Orthokin Autologous Conditioned Serum. Cartilage 2018; 9:140-145. [PMID: 29172669 PMCID: PMC5871127 DOI: 10.1177/1947603517743001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Orthokin is an intra-articular autologous conditioned serum (ACS). Its use might have a beneficial biological effect on pain and function of osteoarthritis in the knee. However, earlier studies lack any consensus on its clinical application and disease modifying effect. Objective The aim of this study was to investigate the long-term effect of Orthokin injection treatment on prevention of surgical treatment for end-stage knee osteoarthritis. Study Design Prospective cohort study. Methods Patients of the previously published Orthokin cohort were contacted to determine whether any intra-articular surgical intervention or osteotomy of the study knee had taken place during the past decade. A log-rank test was performed to evaluate the differences in the survival distribution for the 2 types of intervention: Orthokin versus placebo. Results The survival distributions for the 2 interventions were not statistically significantly different, χ2(1) = 2.069, P = 0.150. After 7.5 ± 3.9 years, 46.3% of the placebo and 40.3% of the Orthokin group had been treated surgically. Conclusion The use of Orthokin in knee osteoarthritis patients did not result in a delay regarding surgical treatment. Clinical Relevance The intra-articular use of Orthokin does not seem to prevent or delay surgical intervention at 10 years after treatment for end-stage knee osteoarthritis.
Collapse
Affiliation(s)
- Danial Zarringam
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel B. F. Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Daniel B. F. Saris, Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Xiang C, Yang K, Liang Z, Wan Y, Cheng Y, Ma D, Zhang H, Hou W, Fu P. Sphingosine-1-phosphate mediates the therapeutic effects of bone marrow mesenchymal stem cell-derived microvesicles on articular cartilage defect. Transl Res 2018; 193:42-53. [PMID: 29324234 DOI: 10.1016/j.trsl.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 01/22/2023]
Abstract
Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular components to target cells, yet their function in disease is just being explored. However, the therapeutic effects of MVs in cartilage injury and degeneration remain unknown. We found MVs contained high levels of sphingosine-1-phosphate (S1P) compared with the original bone marrow mesenchymal stem cells (MSCs). The enrichment of S1P in MVs was mediated by sphingosine kinase 1 (SphK1), but not by sphingosine kinase 2 (SphK2). Co-culture of human chondrocytes with MVs resulted in increased proliferation of chondrocytes in vitro, which was mediated by activation of S1P receptor 1 (S1PR1) expressed on chondrocytes. Meanwhile, MVs inhibited interleukin 1 beta-induced human chondrocytes apoptosis in a dose dependent manner. Furthermore, uptake of MVs by primary cultures of human chondrocytes was mediated by CD44 expressed by MVs. Anti-CD44 antibody significantly reduced the uptake of fluorescent protein-labeled MVs by chondrocytes. Further, blocking S1P by its neutralizing antibody significantly inhibited the therapeutic effects of MVs in vivo. Taken together, MVs showed therapeutic potential for treatment of clinical cartilage injury. This therapeutic potential is due to CD44-mediated uptake of MVs by chondrocytes and the S1P/S1PR1 axis-mediated proliferative effects of MVs on chondrocytes.
Collapse
Affiliation(s)
- Chuan Xiang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Kun Yang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyong Liang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulong Wan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanwei Cheng
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Ma
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Heng Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiyu Hou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Panfeng Fu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
van de Veerdonk FL, de Graaf DM, Joosten LAB, Dinarello CA. Biology of IL-38 and its role in disease. Immunol Rev 2017; 281:191-196. [DOI: 10.1111/imr.12612] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frank L. van de Veerdonk
- Department of Medicine and Radboud Center for Infectious diseases (RCI); Radboudumc The Netherlands
- Department of Medicine; University of Colorado Denver; Aurora CO USA
| | - Dennis M. de Graaf
- Department of Medicine and Radboud Center for Infectious diseases (RCI); Radboudumc The Netherlands
- Department of Medicine; University of Colorado Denver; Aurora CO USA
| | - Leo AB Joosten
- Department of Medicine and Radboud Center for Infectious diseases (RCI); Radboudumc The Netherlands
- Department of Medicine; University of Colorado Denver; Aurora CO USA
| | - Charles A. Dinarello
- Department of Medicine and Radboud Center for Infectious diseases (RCI); Radboudumc The Netherlands
- Department of Medicine; University of Colorado Denver; Aurora CO USA
| |
Collapse
|
39
|
Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med 2017; 12:e237-e249. [PMID: 28079986 DOI: 10.1002/term.2399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri-culture of synovial fibroblasts (SFs), LPS-stimulated macrophages and a primary chondrocyte-based tissue-engineered construct was established. The tissue-engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue-degrading enzymes (MMP-1, -3, -13 and ADAMTS-4, -5), and upregulation of inflammatory mediator gene expression (TNF-α, IL-1β, IL-6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti-rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Li Ting Leom
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Pei Fen Patricia Low
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dong-An Wang
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
40
|
Nsir H, Szychlinska MA, Cardile V, Graziano ACE, Avola R, Esafi H, Bendini A, Zarouk M, Loreto C, Rapisarda V, Castrogiovanni P, Musumeci G. RETRACTED: Polar and apolar extra virgin olive oil and leaf extracts as a promising anti-inflammatory natural treatment for osteoarthritis. Acta Histochem 2017; 119:407-416. [PMID: 28461019 DOI: 10.1016/j.acthis.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Authors. An anonymous reader made the authors aware of potential errors in the presentation and the experimental design for the Western blot data in Figure 3. Upon thorough investigation the authors concluded that in fact, in addition to an honest error (wrong image selected for inclusion into the article), the experimental design was not state-of-the-art in that the loading controls were run on parallel gels rather than on the gels to be probed for iNOS and collagen II. Therefore, in order to avoid any potentially wrong conclusions, the authors decided to retract the article, to confirm the data in a separate series of experiments and to submit the manuscript again after proper confirmation of the results and conclusions. The authors thank the anonymous reader, who spotted this error, and apologize for any inconvenience caused.
Collapse
Affiliation(s)
- Houda Nsir
- Biotechnology Laboratory of Olive Tree, Centre of Biotechnology of BorjCedreya, University of Carthage, Tunisia.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy.
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, Italy.
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, Italy.
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, Italy.
| | - Hanen Esafi
- Biotechnology Laboratory of Olive Tree, Centre of Biotechnology of BorjCedreya, University of Carthage, Tunisia.
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, p.zza Goindanich 60, 47521 Cesena (FC), Italy.
| | - Mokhtar Zarouk
- Biotechnology Laboratory of Olive Tree, Centre of Biotechnology of BorjCedreya, Tunisia.
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy.
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy.
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy; Department of Health, Institut des Etudes Universitaries, UniPoliSI, Veyras, Switzerland.
| |
Collapse
|
41
|
Yadav NV, Sadashivaiah, Ramaiyan B, Acharya P, Belur L, Talahalli RR. Sesame Oil and Rice Bran Oil Ameliorates Adjuvant-Induced Arthritis in Rats: Distinguishing the Role of Minor Components and Fatty Acids. Lipids 2016; 51:1385-1395. [DOI: 10.1007/s11745-016-4203-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
|
42
|
Holton J, Imam M, Ward J, Snow M. The Basic Science of Bone Marrow Aspirate Concentrate in Chondral Injuries. Orthop Rev (Pavia) 2016; 8:6659. [PMID: 27761221 PMCID: PMC5066111 DOI: 10.4081/or.2016.6659] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022] Open
Abstract
There has been great interest in bone marrow aspirate concentrate (BMAC) as a cost effective method in delivering mesenchymal stem cells (MSCs) to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration.
Collapse
Affiliation(s)
- James Holton
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| | - Mohamed Imam
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
- Department of Orthopedics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Jonathan Ward
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| | - Martyn Snow
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| |
Collapse
|
43
|
Kumar R, Gupta YK, Singh S, Patil A. Glorisa superba Hydroalcoholic Extract from Tubers Attenuates Experimental Arthritis by Downregulating Inflammatory Mediators, and Phosphorylation of ERK/JNK/p-38. Immunol Invest 2016; 45:603-18. [PMID: 27603689 DOI: 10.1080/08820139.2016.1195406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glorisa superba (GS) is a medicinal plant that has been traditionally used in the treatment of joint pain and rheumatoid arthritis (RA). The present study was carried out to investigate the antiarthritic activity of Glorisa superba hydroalcoholic extract (GSHE) in an adjuvant-induced arthritis (AIA) rat model. Arthritis was induced by sub-plantar administration of complete Freund's adjuvant (CFA) and GSHE (25, 50, or 100 mg/kg/day) was administered orally for 21 consecutive days. Joint diameter was measured on Days 0, 3, 7, 14, and 21. GSHE dose dependently attenuates the increased joint diameter and serum tumor necrosis factor (TNF)-α level following induction of arthritis by adjuvant. This attenuation was well substantiated with reduced mRNA expression of interleukin (IL)-1β, IL-6, TNF-α, and NF-κB. Additionally, GSHE inhibited phosphorylation of the mitogen-activated protein kinases (MAPK) signaling pathway as there was decreased protein expression of MAPK (p-p38/p38 and p-ERK/ERK p-JNK/JNK ratio). Moreover, GSHE in a dose-dependent fashion normalized the redox status of ankle joint (GSH, malonaldialdehyde [MDA], and NO levels and superoxide dismutase [SOD] and catalase [CAT] activities) and displayed decreased inflammatory cell infiltration in histopathological findings. Taken together, these findings indicate that GSHE protects against AIA by modulating MAPK.
Collapse
Affiliation(s)
- Rohit Kumar
- a Department of Pharmacology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India.,b Department of Pharmacology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Yogendra Kumar Gupta
- a Department of Pharmacology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Surender Singh
- a Department of Pharmacology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Amol Patil
- b Department of Pharmacology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
44
|
Avenues to autoimmune arthritis triggered by diverse remote inflammatory challenges. J Autoimmun 2016; 73:120-9. [PMID: 27427404 DOI: 10.1016/j.jaut.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/16/2023]
Abstract
Environmental factors contribute to development of autoimmune diseases. For instance, human autoimmune arthritis can associate with intestinal inflammation, cigarette smoking, periodontal disease, and various infections. The cellular and, molecular pathways whereby such remote challenges might precipitate arthritis or flares remain unclear. Here, we used a transfer model of self-reactive arthritis-inducing CD4(+) cells from KRNtg mice that, upon transfer, induce a very mild form of autoinflammatory arthritis in recipient animals. This model enabled us to identify external factors that greatly aggravated disease. We show that several distinct challenges precipitated full-blown arthritis, including intestinal inflammation through DSS-induced colitis, and bronchial stress through Influenza infection. Both triggers induced strong IL-17 expression primarily in self-reactive CD4(+) cells in lymph nodes draining the site of inflammation. Moreover, treatment of mice with IL-1β greatly exacerbated arthritis, while transfer of KRNtg CD4(+) cells lacking IL-1R significantly reduced disease and IL-17 expression. Thus, IL-1β enhances the autoaggressive potential of self-reactive CD4(+) cells, through increased Th17 differentiation, and this influences inflammatory events in the joints. We propose that diverse challenges that cause remote inflammation (lung infection or colitis, etc.) result in IL-1β-driven Th17 differentiation, and this precipitates arthritis in genetically susceptible individuals. Thus the etiology of autoimmune inflammatory arthritis likely relates to diverse triggers that converge to a common pathway involving IL-1β production and Th17 cell distribution.
Collapse
|
45
|
Kaur S, Harjai K, Chhibber S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS One 2016; 11:e0157626. [PMID: 27333300 PMCID: PMC4917197 DOI: 10.1371/journal.pone.0157626] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh-160014, India
- * E-mail:
| |
Collapse
|
46
|
Lee WK, Kang JS. Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes. Toxicol Res 2016; 32:115-21. [PMID: 27123162 PMCID: PMC4843981 DOI: 10.5487/tr.2016.32.2.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 12/25/2022] Open
Abstract
This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ (50~200 μg/mL) rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the control (p < 0.01). SSZ treatment clearly increased the SNP-reduced proliferation levels in a concentration-dependent manner (p < 0.01). SNP treatment induced significant dedifferentiation and inflammation compared with control chondrocytes (p < 0.01). Type II collagen expression levels increased in a concentration-dependent manner in response to SSZ treatment but were unaltered in SNP-treated chondrocytes (p < 0.05 and < 0.01, respectively). Cylooxygenase-2 (COX-2) expression increased in a concentration-dependent manner in response to SSZ treatment but was unaltered in SNP-treated chondrocytes (p < 0.05). Immunofluorescence staining showed that SSZ treatment increased type II collagen expression compared with that in SNP-treated chondrocytes. Furthermore, phosphorylated extracellular regulated kinase (pERK) expression levels were decreased significantly in the SNP-treated group compared with those in control chondrocytes (p < 0.01). Expression levels of pERK increased in a concentration-dependent manner by SSZ but were unaltered in SNP-treated chondrocytes. pp38 kinase expression levels increased in a concentration-dependent manner by SSZ but were unaltered in control chondrocytes (p < 0.01). In summary, SSZ significantly inhibited nitric oxide-induced cell death and dedifferentiation, and regulated extracellular regulated kinases 1 and 2 and p38 kinase in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Won Kil Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| | - Jin Seok Kang
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| |
Collapse
|
47
|
Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, Guggino G, Berardicurti O, Carubbi F, Triolo G, Cipriani P. IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol 2016; 12:849-55. [PMID: 26999417 DOI: 10.1586/1744666x.2016.1168293] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although in the past the prevention of joint destruction in rheumatoid arthritis (RA) was strongly emphasized, now a great interest is focused on associated comorbidities in these patients. Multiple data suggest that a large percentage of RA patients are affected by Type 2 Diabetes (T2D), whose incidence has reached epidemic levels in recent years, thus increasing the health care costs. A better knowledge about the pathogenesis of these diseases as well as the mechanisms of action of drugs may allow both policy designers and physicians to choose the most effective treatments, thus lowering the costs. This review will focus on the role of Interleukin (IL)-1β in the pathogenesis of both the diseases, the efficacy of IL-1 blocking molecules in controlling these diseases, and will provide information suggesting that targeting IL-1β, in patients affected by both RA and T2D, may be a promising therapeutic choice.
Collapse
Affiliation(s)
- Roberto Giacomelli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Piero Ruscitti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Saverio Alvaro
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Ciccia
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Vasiliki Liakouli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Paola Di Benedetto
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giuliana Guggino
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Onorina Berardicurti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Carubbi
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giovanni Triolo
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Paola Cipriani
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
48
|
Yang L, Zhang J, Tao J, Lu T. Elevated serum levels of Interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. APMIS 2016; 123:1025-31. [PMID: 26547368 DOI: 10.1111/apm.12467] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Interleukin-37 (IL-37) is closely associated with several inflammatory diseases. However, the role of IL-37 in the pathogenesis of rheumatoid arthritis (RA) remains unclear. The aim of this study was to assess the associations between serum levels of IL-37 and disease activity, inflammatory cytokines, and bone loss in patients with RA. Serum cytokines levels were examined by Enzyme-linked immunosorbent assay (ELISA). Radiographic bone erosion was assessed using the van der Heijde-modified Sharp score and bone mineral density (BMD) was measured using DXA. Serum IL-37 levels in RA patients were significantly higher than those in HCs (p < 0.001), and were significantly positively correlated with clinical parameters of disease activity and serum levels of IL-17 and IL-23. In addition, serum IL-37 levels were significantly higher in patients with stage IV of radiographic bone erosion than those with stage III and stage I-II, and they were significantly higher in those with osteopenia and osteoporosis than in those with normal BMD. Our results suggest that serum IL-37 levels were increased in patients with RA and were positively associated with disease activity, IL-17/IL-23 and bone loss in RA, suggesting that IL-37 may play a critical role in the pathogenesis of RA.
Collapse
Affiliation(s)
- Libin Yang
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jun Zhang
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jingang Tao
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tan Lu
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
49
|
Jin WJ, Kim B, Kim JW, Kim HH, Ha H, Lee ZH. Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cell Signal 2016; 28:357-365. [PMID: 26829213 DOI: 10.1016/j.cellsig.2016.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/15/2023]
Abstract
Notch signaling plays a central role in various cell fate decisions, including skeletal development. Recently, Notch signaling was implicated in osteoclast differentiation and maturation, including the resorption activity of osteoclasts. However, the specific involvement of notch signaling in resorption activity was not fully investigated. Here, we investigated the roles of Notch signaling in the resorption activity of osteoclasts by use of the gamma-secretase inhibitor dibenzazepine (DBZ). Attenuating Notch signaling by DBZ suppressed the expression of NFATc1, a master transcription factor for osteoclast differentiation. However, overexpression of a constitutively active form of NFATc1 did not fully rescue the effects of DBZ. DBZ suppressed the autophosphorylation of PYK2, which is essential for the formation of the podosome belt and sealing zone, with reduced c-Src/PYK2 interaction. We found that RANKL increases PYK2 activation accompanied by increased NICD2 production in osteoclasts. Overexpression of NICD2 in osteoclasts rescued DBZ-mediated suppression of resorption activity with promotion of PYK2 autophosphorylation and microtubule acetylation. Consistent with the in vitro results, DBZ strongly suppressed bone destruction in an interleukin-1-induced bone loss model. Collectively, these results demonstrate that Notch2 in osteoclasts plays a role in the control of resorption activity via the PYK2-c-Src-microtubule signaling pathway.
Collapse
Affiliation(s)
- Won Jong Jin
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Bongjun Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jung-Wook Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hyunil Ha
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea.
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
50
|
Sardar S, Andersson Å. Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development. Immunopharmacol Immunotoxicol 2016; 38:2-13. [PMID: 26769136 DOI: 10.3109/08923973.2015.1125917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of novel drugs for treatment of chronic inflammatory diseases is to a large extent dependent on the availability of good experimental in vivo models in order to perform preclinical tests of new drugs and for the identification of novel drug targets. Here, we review a number of existing rodent models for Rheumatoid Arthritis in the context of how these models have been utilized for developing established therapy in Rheumatoid Arthritis and, furthermore, the present use of animal models for studies of novel drug candidates. We have studied the literature in the field for the use of in vivo models during development of anti-rheumatic drugs; from Methotrexate to various antibody treatments, to novel drugs that are, or have recently been, in clinical trials. For novel drugs, we have explored websites for clinical trials. Although a single Rheumatoid Arthritis in vivo model cannot mirror the complexity of disease development, there exist a number of good animal models for Rheumatoid Arthritis, each defining some parts in disease development, which are useful for studies of drug response. We find that many of the established drugs were not tested in in vivo models before being used in the clinic, but rather animal models have been subsequently used to find mechanisms for efficacy. Finally, we report a number of novel drugs, tested in preclinical in vivo models, presently in clinical trials.
Collapse
Affiliation(s)
- Samra Sardar
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Åsa Andersson
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|