1
|
Zou X, Xu H, Qian W. Macrophage Polarization in the Osteoarthritis Pathogenesis and Treatment. Orthop Surg 2025; 17:22-35. [PMID: 39638774 PMCID: PMC11735378 DOI: 10.1111/os.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disorder that severely impacts quality of life due to pain and disability. Although the pathophysiology of OA remains incompletely understood, recent research highlights the role of synovial inflammation in OA onset and progression, driven primarily by inflammatory infiltrates, especially macrophages, in the synovium. These macrophages respond to the local microenvironment, polarizing into either pro-inflammatory (M1) or anti-inflammatory (M2) subtypes. This review focuses on the role of macrophage polarization in OA pathogenesis and treatment, emphasizing how M1/M2 polarization is influenced by pathways such as STAT, NF-κB, caspase, and MAPK. These pathways induce low-grade inflammation within OA-affected joints, altering chondrocyte metabolism, inhibiting cartilage repair, and impairing mesenchymal stem cell chondrogenesis, thereby contributing to OA progression. Additionally, this review discusses potential therapies targeting macrophage polarization, encompassing compounds, proteins, cells, and microRNAs, to offer insights into novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Hongjun Xu
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Wenwei Qian
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
2
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Ferreira DA, Medeiros ABA, Soares MM, Lima ÉDA, de Oliveira GCSL, Leite MBDS, Machado MV, Villar JAFP, Barbosa LA, Scavone C, Moura MT, Rodrigues-Mascarenhas S. Evaluation of Anti-Inflammatory Activity of the New Cardiotonic Steroid γ-Benzylidene Digoxin 8 (BD-8) in Mice. Cells 2024; 13:1568. [PMID: 39329752 PMCID: PMC11430542 DOI: 10.3390/cells13181568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiotonic steroids are known to bind to Na+/K+-ATPase and regulate several biological processes, including the immune response. The synthetic cardiotonic steroid γ-Benzylidene Digoxin 8 (BD-8) is emerging as a promising immunomodulatory molecule, although it has remained largely unexplored. Therefore, we tested the immunomodulatory potential of BD-8 both in vitro and in vivo. Hence, primary mouse macrophages were incubated with combinations of BD-8 and the pro-inflammatory fungal protein zymosan (ZYM). Nitric oxide (NO) production was determined by Griess reagent and cytokines production was assessed by enzyme-linked immunosorbent assay. Inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), p-nuclear factor kappa B p65 (NF-κB p65), p-extracellular signal-regulated kinase (p-ERK), and p-p38 were evaluated by flow cytometry. Macrophages exposed to BD-8 displayed reduced phagocytic activity, NO levels, and production of the proinflammatory cytokine IL-1β induced by ZYM. Furthermore, BD-8 diminished the expression of iNOS and phosphorylation of NF-κB p65, ERK, and p38. Additionally, BD-8 exhibited anti-inflammatory capacity in vivo in a carrageenan-induced mouse paw edema model. Taken together, these findings demonstrate the anti-inflammatory activity of BD-8 and further reinforce the potential of cardiotonic steroids and their derivatives as immunomodulatory molecules.
Collapse
Affiliation(s)
- Davi Azevedo Ferreira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Anna Beatriz Araujo Medeiros
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Éssia de Almeida Lima
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Gabriela Carolina Santos Lima de Oliveira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mateus Bernardo da Silva Leite
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Matheus Vieira Machado
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - José Augusto Ferreira Perez Villar
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Leandro Augusto Barbosa
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Cristoforo Scavone
- Laboratory of Neuropharmacology Research, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, São Paulo 05.508-900, SP, Brazil;
| | - Marcelo Tigre Moura
- Laboratory of Cellular Reprogramming, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil;
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| |
Collapse
|
4
|
Cazzanelli P, Lamoca M, Hasler J, Hausmann ON, Mesfin A, Puvanesarajah V, Hitzl W, Wuertz-Kozak K. The role of miR-155-5p in inflammation and mechanical loading during intervertebral disc degeneration. Cell Commun Signal 2024; 22:419. [PMID: 39192354 DOI: 10.1186/s12964-024-01803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a multifactorial pathological process resulting in the dysregulation of IVD cell activity. The catabolic shift observed in IVD cells during degeneration leads to increased inflammation, extracellular matrix (ECM) degradation, aberrant intracellular signaling and cell loss. Importantly, these pathological processes are known to be interconnected and to collectively contribute to the progression of the disease. MicroRNAs (miRNAs) are known as strong post-transcriptional regulators, targeting multiple genes simultaneously and regulating numerous intracellular pathways. Specifically, miR-155-5p has been of particular interest since it is known as a pro-inflammatory mediator and contributing factor to diseases like cancer and osteoarthritis. This study investigated the role of miR-155-5p in IVD degeneration with a specific focus on inflammation and mechanosensing. METHODS Gain- and loss-of-function studies were performed through transfection of human Nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from degenerated IVDs with miR-155-5p mimics, inhibitors or their corresponding non-targeting control. Transfected cells were then subjected to an inflammatory environment or mechanical loading. Conditioned media and cell lysates were collected for phosphorylation and cytokine secretion arrays as well as gene expression analysis. RESULTS Increased expression of miR-155-5p in AF cells resulted in significant upregulation of interleukin (IL)-8 cytokine secretion during cyclic stretching and a similar trend in IL-6 secretion during inflammation. Furthermore, miR-155-5p mimics increased the expression of the brain-derived neurotrophic factor (BDNF) in AF cells undergoing cyclic stretching. In NP cells, miR-155-5p gain-of-function resulted in the activation of the mitogen-activated protein kinase (MAPK) signaling pathway through increased phosphorylation of p38 and p53. Lastly, miR-155-5p inhibition caused a significant increase in the anti-inflammatory cytokine IL-10 in AF cells and the tissue inhibitor of metalloproteinases (TIMP)-4 in NP cells respectively. CONCLUSION Overall, these results show that miR-155-5p contributes to IVD degeneration by enhancing inflammation through pro-inflammatory cytokines and MAPK signaling, as well as by promoting the catabolic shift of AF cells during mechanical loading. The inhibition of miR-155-5p may constitute a potential therapeutic approach for IVD degeneration and low back pain.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Johannes Hasler
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Oliver Nic Hausmann
- Neuro- and Spine Center, Hirslanden Klinik St. Anna, Lucerne, Switzerland
- Neurosurgical Department, University of Berne, Berne, Switzerland
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, Washington, DC, USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany.
| |
Collapse
|
5
|
Wu H, Wang J, Lin Y, He W, Hou J, Deng M, Chen Y, Liu Q, Lu A, Cui Z, Guan D, Yu B. Injectable Ozone-Rich Nanocomposite Hydrogel Loaded with D-Mannose for Anti-Inflammatory and Cartilage Protection in Osteoarthritis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309597. [PMID: 38279613 DOI: 10.1002/smll.202309597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1β, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.
Collapse
Affiliation(s)
- Hangtian Wu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yanpeng Lin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Wanling He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiahui Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510515, P. R. China
| | - Zhuang Cui
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
6
|
Qi W, Jin L, Huang S, Aikebaier A, Xue S, Wang Q, Chen Q, Lu Y, Ding C. Modulating synovial macrophage pyroptosis and mitophagy interactions to mitigate osteoarthritis progression using functionalized nanoparticles. Acta Biomater 2024; 181:425-439. [PMID: 38729544 DOI: 10.1016/j.actbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Synovial macrophages play an important role in the progression of osteoarthritis (OA). In this study, we noted that synovial macrophages can activate pyroptosis in a gasdermin d-dependent manner and produce reactive oxygen species (ROS), aberrantly activating the mammalian target of rapamycin complex 1 (mTORC1) pathway and matrix metalloproteinase-9 (MMP9) expression in synovial tissue samples collected from both patients with OA and collagen-induced osteoarthritis (CIOA) mouse model. To overcome this, we constructed rapamycin- (RAPA, a mTORC1 inhibitor) loaded mesoporous Prussian blue nanoparticles (MPB NPs, for catalyzing ROS) and modified the NPs with MMP9-targeted peptides (favor macrophage targeting) to develop RAPA@MPB-MMP9 NPs. The inherent enzyme-like activity and RAPA released from RAPA@MPB-MMP9 NPs synergistically impeded the pyroptosis of macrophages and the activation of the mTORC1 pathway. In particular, the NPs decreased pyroptosis-mediated ROS generation, thereby inhibiting cGAS-STING signaling pathway activation caused by the release of mitochondrial DNA. Moreover, the NPs promoted macrophage mitophagy to restore mitochondrial stability, alleviate pyroptosis-related inflammatory responses, and decrease senescent synoviocytes. After the as-prepared NPs were intra-articularly injected into the CIOA mouse model, they efficiently attenuated synovial macrophage pyroptosis and cartilage degradation. In conclusion, our study findings provide a novel therapeutic strategy for OA that modulates the pyroptosis and mitophagy of synovial macrophage by utilizing functionalized NPs. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) presents a significant global challenge owing to its complex pathogenesis and finite treatment options. Synovial macrophages have emerged as key players in the progression of OA, managing inflammation and tissue destruction. In this study, we discovered a novel therapeutic strategy in which the pyroptosis and mitophagy of synovial macrophages are targeted to mitigate OA pathology. For this, we designed and prepared rapamycin-loaded mesoporous Prussian blue nanoparticles (RAPA@MPB-MMP9 NPs) to specifically target synovial macrophages and modulate their inflammatory responses. These NPs could efficiently suppress macrophage pyroptosis, diminish reactive oxygen species production, and promote mitophagy, thereby alleviating inflammation and protecting cartilage integrity. Our study findings not only clarify the intricate mechanisms underlying OA pathogenesis but also present a promising therapeutic approach for effectively managing OA by targeting dysregulation in synovial macrophages.
Collapse
Affiliation(s)
- Weizhong Qi
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shiqian Huang
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Alafate Aikebaier
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Song Xue
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - QianYi Wang
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yao Lu
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Changhai Ding
- Clinical Research Centre, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Menzies Institute for Medical Research, University of Tasmania, 7000, Hobart, Tasmania, Australia.
| |
Collapse
|
7
|
Chen B, Sun Y, Xu G, Jiang J, Zhang W, Wu C, Xue P, Cui Z. Role of crosstalk between synovial cells and chondrocytes in osteoarthritis (Review). Exp Ther Med 2024; 27:201. [PMID: 38590580 PMCID: PMC11000048 DOI: 10.3892/etm.2024.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a low-grade, nonspecific inflammatory disease that affects the entire joint. This condition is characterized by synovitis, cartilage erosion, subchondral bone defects, and subpatellar fat pad damage. There is mounting evidence demonstrating the significance of crosstalk between synovitis and cartilage destruction in the development of OA. To comprehensively explore the phenotypic alterations of synovitis and cartilage destruction, it is important to elucidate the crosstalk mechanisms between chondrocytes and synovial cells. Furthermore, the updated iteration of single-cell sequencing technology reveals the interaction between chondrocyte and synovial cells. In the present review, the histological and pathological alterations between cartilage and synovium during OA progression are described, and the mode of interaction and molecular mechanisms between synovial cells and chondrocytes in OA, both of which affect the OA process mainly by altering the inflammatory environment and cellular state, are elucidated. Finally, the current OA therapeutic approaches are summarized and emerging therapeutic targets are reviewed in an attempt to provide potential insights into OA treatment.
Collapse
Affiliation(s)
- Baisen Chen
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Orthopedics, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China
| | - Guanhua Xu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiawei Jiang
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenhao Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunshuai Wu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Pengfei Xue
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Cazzanelli P, Lamoca M, Hausmann ON, Mesfin A, Puvanesarajah V, Hitzl W, Haglund L, Wuertz-Kozak K. Exploring the Impact of TLR-2 Signaling on miRNA Dysregulation in Intervertebral Disc Degeneration. Adv Biol (Weinh) 2024; 8:e2300581. [PMID: 38419396 DOI: 10.1002/adbi.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Toll-like receptors (TLRs) are key mediators of inflammation in intervertebral disc (IVD) degeneration. TLR-2 activation contributes to the degenerative process by increasing the expression of extracellular matrix-degrading enzymes, pro-inflammatory cytokines, and neurotrophins. As potent post-transcriptional regulators, microRNAs can modulate intracellular mechanisms, and their dysregulation is known to contribute to numerous pathologies. This study aims to investigate the impact of TLR-2 signaling on miRNA dysregulation in the context of IVD degeneration. Small-RNA sequencing of degenerated IVD cells shows the dysregulation of ten miRNAs following TLR-2 activation by PAM2CSK4. The miR-155-5p is most significantly upregulated in degenerated and non-degenerated annulus fibrosus and nucleus pulposus cells. Sequence-based target and pathway prediction shows the involvement of miR-155-5p in inflammation- and cell fate-related pathways and TLR-2-induced miR-155-5p expression leads to the downregulation of its target c-FOS. Furthermore, changes specific to the activation of TLR-2 through fragmented fibronectin are seen in miR-484 and miR-487. Lastly, miR-100-3p, miR-320b, and miR-181a-3p expression exhibit degeneration-dependent changes. These results show that TLR-2 signaling leads to the dysregulation of miRNAs in IVD cells as well as their possible downstream effects on inflammation and degeneration. The identified miRNAs provide important opportunities as potential therapeutic targets for IVD degeneration and low back pain.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Oliver Nic Hausmann
- Neuro- and Spine Center, Hirslanden Klinik St. Anna, St. Anna-Strasse 32, Lucerne, 6006, Switzerland
- Neurosurgical Department, University of Berne, Freiburgstrasse 16, Bern, 3010, Switzerland
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, 3800 Reservoir Rd NW, Washington, DC, 20007, USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Strubergasse 16, Salzburg, 5020, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Strubergasse 21, Salzburg, 5020, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Strubergasse 21, Salzburg, 5020, Austria
| | - Lisbet Haglund
- Orthopaedic Research Laboratory, and Shriners Hospital for Children, 1003 Decarie Boulevard, Montreal, H4A 0A9, Canada
- Department of Surgery, McGill University, 1001 Decarie Boulevard, Montreal, H4A 3J1, Canada
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Grünwalder Str. 72, 81547, Munich, Germany
| |
Collapse
|
9
|
Zhang Y, Cong R, Lv T, Liu K, Chang X, Li Y, Han X, Zhu Y. Islet-resident macrophage-derived miR-155 promotes β cell decompensation via targeting PDX1. iScience 2024; 27:109540. [PMID: 38577099 PMCID: PMC10993184 DOI: 10.1016/j.isci.2024.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic inflammation is critical for the initiation and progression of type 2 diabetes mellitus via causing both insulin resistance and pancreatic β cell dysfunction. miR-155, highly expressed in macrophages, is a master regulator of chronic inflammation. Here we show that blocking a macrophage-derived exosomal miR-155 (MDE-miR-155) mitigates the insulin resistances and glucose intolerances in high-fat-diet (HFD) feeding and type-2 diabetic db/db mice. Lentivirus-based miR-155 sponge decreases the level of miR-155 in the pancreas and improves glucose-stimulated insulin secretion (GSIS) ability of β cells, thus leading to improvements of insulin sensitivities in the liver and adipose tissues. Mechanistically, miR-155 increases its expression in HFD and db/db islets and is released as exosomes by islet-resident macrophages under metabolic stressed conditions. MDE-miR-155 enters β cells and causes defects in GSIS function and insulin biosynthesis via the miR-155-PDX1 axis. Our findings offer a treatment strategy for inflammation-associated diabetes via targeting miR-155.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Rong Cong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Tingting Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Chen KT, Yeh CT, Yadav VK, Pikatan NW, Fong IH, Lee WH, Chiu YS. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon 2024; 10:e28094. [PMID: 38532994 PMCID: PMC10963379 DOI: 10.1016/j.heliyon.2024.e28094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.
Collapse
Affiliation(s)
- Ko-Ta Chen
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
11
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Li C, Ouyang Z, Huang Y, Lin S, Li S, Xu J, Liu T, Wu J, Guo P, Chen Z, Wu H, Ding Y. NOD2 attenuates osteoarthritis via reprogramming the activation of synovial macrophages. Arthritis Res Ther 2023; 25:249. [PMID: 38124066 PMCID: PMC10731717 DOI: 10.1186/s13075-023-03230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Synovial inflammation, which precedes other pathological changes in osteoarthritis (OA), is primarily initiated by activation and M1 polarization of macrophages. While macrophages play a pivotal role in the inflammatory process of OA, the mechanisms underlying their activation and polarization remain incompletely elucidated. This study aims to investigate the role of NOD2 as a reciprocal modulator of HMGB1/TLR4 signaling in macrophage activation and polarization during OA pathogenesis. DESIGN We examined NOD2 expression in the synovium and determined the impact of NOD2 on macrophage activation and polarization by knockdown and overexpression models in vitro. Paracrine effect of macrophages on fibroblast-like synoviocytes (FLS) and chondrocytes was evaluated under conditions of NOD2 overexpression. Additionally, the in vivo effect of NOD2 was assessed using collagenase VII induced OA model in mice. RESULTS Expression of NOD2 was elevated in osteoarthritic synovium. In vitro experiments demonstrated that NOD2 serves as a negative regulator of HMGB1/TLR4 signaling pathway. Furthermore, NOD2 overexpression hampered the inflammatory paracrine effect of macrophages on FLS and chondrocytes. In vivo experiments revealed that NOD2 overexpression mitigated OA in mice. CONCLUSIONS Supported by convincing evidence on the inhibitory role of NOD2 in modulating the activation and M1 polarization of synovial macrophages, this study provided novel insights into the involvement of innate immunity in OA pathogenesis and highlighted NOD2 as a potential target for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhuji Ouyang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhsi Huang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Taihe Liu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jionglin Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Peidong Guo
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhong Chen
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haoyu Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Liang J, Liu L, Feng H, Yue Y, Zhang Y, Wang Q, Zhao H. Therapeutics of osteoarthritis and pharmacological mechanisms: A focus on RANK/RANKL signaling. Biomed Pharmacother 2023; 167:115646. [PMID: 37804812 DOI: 10.1016/j.biopha.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease afflicting millions globally. Despite the development of numerous pharmacological treatments for OA, a substantial unmet need for effective therapies persists. The RANK/RANKL signaling pathway has emerged as a promising therapeutic target for OA, owing to its pivotal role in regulating osteoclast differentiation and activity. In this comprehensive review, we aim to elucidate the relevant mechanisms of OA mediated by RANK/RANKL signaling, including bone remodeling, inflammation, cartilage degradation, osteophyte formation, and pain sensitization. Furthermore, we discuss and summarize the cutting-edge strategies targeting RANK/RANKL signaling for OA therapy, encompassing approaches such as gene-based interventions and biomaterials-aided pharmacotherapy. In addition, we highlight the prevailing challenges associated with pharmacological OA treatments and explore potential future directions, approached through a clinical-translational lens.
Collapse
Affiliation(s)
- Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
14
|
Dong L, Zhao Y, Sun C, Ou Yang Z, Chen F, Hu W, Zhang H, Wang Y, Zhu R, Cheng Y, Chen Y, Li S, Wang K, Ding C, Zhou R, Hu W. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int Immunopharmacol 2023; 124:110878. [PMID: 37660594 DOI: 10.1016/j.intimp.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Identification of a role for, and the mechanism of action of, the acid-sensing ion channel 1a (ASIC1a) in M1 macrophage polarization, which results in osteoarthritis (OA)-associated chondrocyte senescence. METHOD ASIC1a expression in synovial M1 macrophages of OA patients was assessed by immunofluorescence. A role for ASIC1a in M1 macrophage and chondrocyte senescence was assessed in a mouse OA model. RESULTS ASIC1a expression was found to be upregulated in synovial M1 macrophages of OA patients. Extracellular acidification (pH 6.0) promoted M1 polarization of bone marrow derived macrophages (BMDMs), which was reversed by PcTx-1 or ASIC1a-siRNA. RNA-seq transcriptome results demonstrated a downregulation of M1 macrophage-associated genes in BMDMs after PcTx-1 treatment. Mechanistically, a role for the ASIC1a-cytidine/uridine monophosphate kinase 2 (CMPK2) axis in M1 macrophage polarization was demonstrated. The concentration of IL-18 was elevated in synovial fluid and supernatants of acid-activated BMDMs. In vitro, IL-18 stimulation or co-culture with acid-activated macrophages promoted chondrocyte senescence. In vivo, intra-articular administration of PcTx-1 reduced articular cartilage destruction and chondrocytes senescence in OA mice, which related to reduced numbers of M1 macrophages and IL-18 in affected joints. CONCLUSION These results demonstrate a novel pathogenic process that results in OA cartilage damage, in which M1 macrophage derived IL-18 induces articular chondrocytes senescence. Further, the ASIC1a-CMPK2 axis was shown to positively regulate M1 macrophage polarization. Hence, ASIC1a is a promising treatment target for M1 macrophage-mediated diseases, such as OA.
Collapse
Affiliation(s)
- Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ou Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Weirong Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Liu R, Zhou Y, Chen H, Xu H, Zuo M, Chen B, Wang H. Membrane vesicles from Lactobacillus johnsonii delay osteoarthritis progression via modulating macrophage glutamine synthetase/mTORC1 axis. Biomed Pharmacother 2023; 165:115204. [PMID: 37499456 DOI: 10.1016/j.biopha.2023.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
AIMS The manipulation of macrophage recruitment and their shift in the M1/M2 ratio is a promising approach to mitigate osteoarthritis (OA). Nevertheless, the current clinical medication available for OA is only palliative and may result in undesirable outcomes. Hence, it is urgent to explore alternative disease-modifying drug supplement that are both safer and more effective in OA treatment, like probiotic and probiotic-derived membrane vesicles. METHODS The synovial inflammation and cartilage damage in collagenase-induced OA (CIOA) mice were observed using haematoxylin and eosin, saffron O-solid green and immunohistochemical staining. Bipedal balance test and open field test were conducted to determine the effectiveness of L. johnsonii-derived membrane vesicles (LJ-MVs) in reducing joint pain of CIOA mice. Additionally, Transwell, western blot, and immunological testing were used to examine the effect of LJ-MVs on macrophage migration and reprogramming. Furthermore, a 4D label-free proteomic analysis of LJ-MVs and their parent bacterium was performed, and the glutamine synthetase (GS)/mTORC1 axis in macrophage was verified by western blot. RESULTS L. johnsonii and its membrane vesicles, LJ-MVs, exhibit a novel ability to mitigate inflammation, cartilage damage, and pain associated with OA. This is achieved by their ability to impede macrophage migration, M1-like polarization, and inflammatory mediators secretion, while simultaneously promoting the M2/M1 ratio in synovial macrophages. The mechanism underlying this effect involves the modulation of macrophage GS/mTORC1 pathway, at least partially. SIGNIFICANCE Owing to their probiotic derivation, LJ-MVs will be a more dependable and potent disease-modifying drugs for the prevention and therapy of OA in the long run.
Collapse
Affiliation(s)
- Rangru Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China; Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Yue Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Huanxiong Chen
- Department of Spine Surgery, Hainan Province Clinical Medical Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Haixia Xu
- Department of Spine Surgery, Hainan Province Clinical Medical Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zuo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Bo Chen
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Yang X, Jiang Q, Luan T, Yu C, Liu Z, Wang T, Wan J, Huang J, Li K. Pyruvate Dehydrogenase Kinase 1 inhibition mediated oxidative phosphorylation enhancement in cartilage promotes osteoarthritis progression. BMC Musculoskelet Disord 2023; 24:597. [PMID: 37474941 PMCID: PMC10357736 DOI: 10.1186/s12891-023-06585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Osteoarthritis (OA) is a common disease characterized by cartilage degradation. Growing evidence showed that glucose metabolism impacts joint homeostasis and an imbalance between glycolysis and oxidative phosphorylation (OXPHOS) may exacerbate OA progression, however, a definitive link is yet to be established. Here, we report that pyruvate metabolism and oxidative phosphorylation pathway is enriched in OA cartilage through gene set enrichment analysis (GSEA) and expression of Pyruvate Dehydrogenase Kinase 1 (PDK1), an enzyme that can phosphorylate Pyruvate Dehydrogenase (PDH), and inhibit pyruvate fluxes into the tricarboxylic acid (TCA) cycle and to OXPHOS, in articular cartilage is notably reduced through destabilization of medial meniscus (DMM). Moreover, by inhibiting PDK1, cartilage loss is markedly accelerated in DMM-induced OA through extracellular matrix (ECM) degradation and apoptosis of chondrocytes. These results indicate that PDK1 is involved in the progression of OA through accelerating cartilage matrix degradation and synovium inflammation to ameliorate cartilage degeneration.
Collapse
Affiliation(s)
- Xian Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing, Chongqing, China
| | - Ting Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing, Chongqing, China.
| | - Ke Li
- Department of Orthopedics Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Zhao K, Ruan J, Nie L, Ye X, Li J. Effects of synovial macrophages in osteoarthritis. Front Immunol 2023; 14:1164137. [PMID: 37492583 PMCID: PMC10364050 DOI: 10.3389/fimmu.2023.1164137] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease in mammals. However, its pathogenesis remains unclear. Studies indicate that OA is not only an aging process that but also an inflammation-related disease. Synovitis is closely related to the progression of OA, and synovial macrophages are crucial participants in synovitis. Instead of being a homogeneous population, macrophages are polarized into M1 or M2 subtypes in OA synovial tissues. Polarization is highly associated with OA severity. However, the M1/M2 ratio cannot be the only factor in OA prognosis because intermediate stages of macrophages also exist. To better understand the mechanism of this heterogeneous disease, OA subtypes of synovial macrophages classified by gene expression were examined. Synovial macrophages do not act alone; they interact with surrounding cells such as synovial fibroblasts, osteoclasts, chondrocytes, lymphocytes and even adipose cells through a paracrine approach to exacerbate OA. Treatments targeting synovial macrophages and their polarization are effective in relieving pain and protecting cartilage during OA development. In this review, we describe how synovial macrophages and their different polarization states influence the progression of OA. We summarize the current knowledge of the interactions between macrophages and other joint cells and examine the current research on new medications targeting synovial macrophages.
Collapse
Affiliation(s)
- Kun Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liuyan Nie
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Juebao Li
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based Reactive Oxygen Species Scavengers for Osteoarthritis Therapy. Acta Biomater 2023; 162:1-19. [PMID: 36967052 DOI: 10.1016/j.actbio.2023.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Reactive oxygen species (ROS) play distinct but important roles in physiological and pathophysiological processes. Recent studies on osteoarthritis (OA) have suggested that ROS plays a crucial role in its development and progression, serving as key mediators in the degradation of the extracellular matrix, mitochondrial dysfunction, chondrocyte apoptosis, and OA progression. With the continuous development of nanomaterial technology, the ROS-scavenging ability and antioxidant effects of nanomaterials are being explored, with promising results already achieved in OA treatment. However, current research on nanomaterials as ROS scavengers for OA is relatively non-uniform and includes both inorganic and functionalized organic nanomaterials. Although the therapeutic efficacy of nanomaterials has been reported to be conclusive, there is still no uniformity in the timing and potential of their use in clinical practice. This paper reviews the nanomaterials currently used as ROS scavengers for OA treatment, along with their mechanisms of action, with the aim of providing a reference and direction for similar studies, and ultimately promoting the early clinical use of nanomaterials for OA treatment. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Nanomaterials serving as promising ROS scavengers have gained increasing attention in recent years. This review provides a comprehensive overview of ROS production and regulation, as well as their role in OA pathogenesis. Furthermore, this review highlights the applications of various types of nanomaterials as ROS scavengers in OA treatment and their mechanisms of action. Finally, the challenges and future prospects of nanomaterial-based ROS scavengers in OA therapy are discussed.
Collapse
|
19
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
20
|
Research Progress of Macrophages in Bone Regeneration. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/1512966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.
Collapse
|
21
|
Liu X, Xiao H, Peng X, Chai Y, Wang S, Wen G. Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis. Front Immunol 2023; 13:1050743. [PMID: 36700234 PMCID: PMC9869167 DOI: 10.3389/fimmu.2022.1050743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoarthritis (OA) is a common orthopedic degenerative disease, leading to high disability in activities of daily living. There remains an urgent need to identify the underlying mechanisms and identify new therapeutic targets in OA diagnosis and treatment. Circular RNAs (circRNAs) play a role in the development of multiple diseases. Many studies have reported that circRNAs regulate microRNAs (miRNAs) through an endogenous competitive mechanism. However, it remains unclear if an interplay between circRNAs, miRNAs, and target genes plays a deeper regulatory role in OA. Four datasets were downloaded from the GEO database, and differentially expressed circRNAs (DECs), differentially expressed miRNAs (DEMs), and differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analysis of DEGs and DECs were carried out to determine the main associated mechanism in OA. A protein-protein network (PPI) was constructed to analyze the function of, and to screen out, hub DEGs in OA. Based on the artificial intelligence prediction of protein crystal structures of two hub DEGs, TOP2A and PLK1, digitoxin and oxytetracycline were found to have the strongest affinity, respectively, with molecular docking. Subsequently, overlapping DEMs and miRNAs targeted by DECs obtained target DEMs (DETMs). Intersection of DEGs and genes targeted by DEMs obtained target DEGs (DETGs). Thus, a circRNA-miRNA-mRNA regulatory network was constructed from 16 circRNAs, 32 miRNAs, and 97 mRNAs. Three hub DECs have the largest number of regulated miRNAs and were verified through in vitro experiments. In addition, the expression level of 16 DECs was validated by RT-PCR. In conclusion, we constructed a circRNA-miRNA-mRNA regulatory network in OA and three new hub DECs, hsa_circ_0027914, hsa_circ_0101125, and hsa_circ_0102564, were identified as novel biomarkers for OA.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaotong Peng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| |
Collapse
|
22
|
Zhou Y, Jia H, Hu A, Liu R, Zeng X, Wang H. Nanoparticles Targeting Delivery Antagomir-483-5p to Bone Marrow Mesenchymal Stem Cells Treat Osteoporosis by Increasing Bone Formation. Curr Stem Cell Res Ther 2023; 18:115-126. [PMID: 35473519 DOI: 10.2174/1574888x17666220426120850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Promoting bone marrow mesenchymal stem cell (BMSC) osteoblastic differentiation is a promising therapeutic strategy for osteoporosis (OP). The present study demonstrates that miR- 483-5p inhibits the osteogenic differentiation of BMSCs. Therefore, selectively delivering the nanoparticles carrying antagomir-483-5p (miR-483-5p inhibitor) to BMSCs is expected to become an effective treatment drug for OP. METHODS Real-time PCR assays were used to analyze miR-483-5p, ALP and Bglap levels in BMSCs of ovariectomized and aged osteoporotic mice. Immunoglobulin G and poloxamer-188 encapsulated the functional small molecules, and a BMSC-targeting aptamer was employed to confirm the direction of the nanoparticles to selectively and efficiently deliver antagomir-483-5p to BMSCs in vivo. Luciferase assays were used to determine the target genes of miR-483-5p. Western blot assays and immunohistochemistry staining were used to detect the targets in vitro and in vivo. RESULTS miR-483-5p levels were increased in BMSCs of ovariectomized and aged osteoporotic mice. Inhibiting miR-483-5p levels in BMSCs by antagomir-483-5p in vitro promoted the expression of bone formation markers, such as ALP and Bglap. The FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p were taken up by BMSCs, resulting in stimulation of BMSC osteoblastic differentiation in vitro and osteoporosis prevention in vivo. Furthermore, our research demonstrated that mitogen-activated protein kinase 1 (MAPK1) and SMAD family member 5 (Smad5) were direct targets of miR-483-5p in regulating BMSC osteoblastic differentiation and osteoporosis pathological processes. CONCLUSIONS The important therapeutic role of FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p in osteoporosis was established in our study. These nanoparticles are a novel candidate for the clinical prevention and treatment of osteoporosis. The optimized, targeted drug delivery platform for small molecules will provide new ideas for treating clinical diseases.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Aihua Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Rangru Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.,Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xiangzhou Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
23
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
24
|
Jia H, Duan L, Yu P, Zhou Y, Liu R, Wang H. Digoxin ameliorates joint inflammatory microenvironment by downregulating synovial macrophage M1-like-polarization and its-derived exosomal miR-146b-5p/Usp3&Sox5 axis. Int Immunopharmacol 2022; 111:109135. [PMID: 35987145 DOI: 10.1016/j.intimp.2022.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
Abstract
Relatively low-grade inflammatory of osteoarthritic joints is characterized by synovitis and a catabolic and proinflammatory state of the chondrocytes and plays an important role in osteoarthritis (OA) initiation and exacerbation. Our previous research showed cardiac glycoside compounds might be effective in OA synovitis. However, the effect of digoxin (DIG), an FDA-approved cardenolide, on inflammation inhibition of osteoarthritic joints has not been investigated. In the present study, a western blot analysis and immunofluorescence staining revealed that DIG alleviated OA synovitis by inhibiting the M1-like polarization of synovial macrophages in OA patients and collagenase-induced OA (CIOA, with considerable synovitis) mice. Subsequently, the exosomes produced by macrophages and M1-like macrophages treated with or without DIG were isolated and identified. According to miRNA sequencing analysis of these exosomes and subsequent target activity assays, we confirmed DIG controls OA inflammatory microenvironment and promotes chondrogenesis by, at least partly, downregulating the M1-like macrophage-derived exosomal miR-146b-5p/Usp3&Sox5 axis in vitro and in vivo. This research provides reliable experimental evidence supporting the clinical application of DIG as a disease-modifying drug for inflammation-associated OA. Additionally, the spectrum of diseases of inflammation controlled by DIG has been broadened, which prompting research interest in the new function of an "old" FDA-approved drug.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Lian Duan
- Department of Joint Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Peng Yu
- Department of Joint Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yue Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Rangru Liu
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
25
|
Bai LK, Su YZ, Wang XX, Bai B, Zhang CQ, Zhang LY, Zhang GL. Synovial Macrophages: Past Life, Current Situation, and Application in Inflammatory Arthritis. Front Immunol 2022; 13:905356. [PMID: 35958604 PMCID: PMC9361854 DOI: 10.3389/fimmu.2022.905356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory arthritis is an inflammatory disease that involves the joints and surrounding tissues. Synovial hyperplasia often presents when joints become inflamed due to immune cell infiltration. Synovial membrane is an important as well as a highly specific component of the joint, and its lesions can lead to degeneration of the joint surface, causing pain and joint disability or affecting the patients’ quality of life in severe cases. Synovial macrophages (SMs) are one of the cellular components of the synovial membrane, which not only retain the function of macrophages to engulf foreign bodies in the joint cavity, but also interact with synovial fibroblasts (SFs), T cells, B cells, and other inflammatory cells to promote the production of a variety of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-1β, IL-8, and IL-6, which are involved in the pathogenic process of inflammatory arthritis. SMs from different tissue sources have differently differentiated potentials and functional expressions. This article provides a summary on studies pertaining to SMs in inflammatory arthritis, and explores their role in its treatment, in order to highlight novel treatment modalities for the disease.
Collapse
Affiliation(s)
- Lin-Kun Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Ya-Zhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xue-Xue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Bing Bai
- First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Qiang Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Li-Yun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Gai-Lian Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
- *Correspondence: Gai-Lian Zhang,
| |
Collapse
|
26
|
Hu WS, Zhang Q, Li SH, Ai SC, Wu QF. Ten Hotspot MicroRNAs and Their Potential Targets of Chondrocytes Were Revealed in Osteoarthritis Based on Bibliometric Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8229148. [PMID: 35437466 PMCID: PMC9013302 DOI: 10.1155/2022/8229148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
Background Osteoarthritis (OA) is one of the most common joint disorders and debilitating diseases. Current evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of OA and have great potential as new biomarkers and therapeutic targets. We aimed to analyze the trends and research status on miRNAs in OA and further demonstrate the hotspot miRNAs in OA via CiteSpace and VOSviewer. Methods Publications regarding miRNAs and OA were extracted from the Web of Science (WOS) database on October 30, 2021. We assessed the number of publications, institutions, countries, authors, journals, cited references, and keywords with the help of the software tools CiteSpace and VOSviewer. Results A total of 1109 articles were included. Research related to miRNAs and OA began to appear in 2008, and the overall trend is increasing. Chinese institutions have a leading advantage in the number of publications but lack high-quality and high-cited research and are laggard in co-cited literature. Ten miRNAs including miR-140, miR-146, miR-34, miR-181, miR-27, miR-9, miR-29, miR-21, miR-26, and miR-155 and chondrocytes were revealed as the most obvious miRNAs and a potential target for OA based on bibliometric analysis. More focus will be placed on a comprehensive study on chondrocytes regulated by miRNAs, which may accelerate possible diagnostic biomarkers and diagnostic biomarkers of OA in the future.
Collapse
Affiliation(s)
- Wei-Shang Hu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Si-Hui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuang-Chun Ai
- Mianyang Hospital of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Wang D, Chai XQ, Hu SS, Pan F. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain. Osteoarthritis Cartilage 2022; 30:406-415. [PMID: 34861384 DOI: 10.1016/j.joca.2021.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is the most common form of joint disease and is one of the leading causes of chronic pain. Given the multi-factorial nature, numerous efforts have been made to clarify the multiple factors impacting the pain symptoms and joint pathology, including synovial macrophages in particular. Accumulating evidence from studies involving human participants and experimental animal models suggests that accumulating macrophages in synovial tissue are implicated in peripherally mediated pain sensitization of affected joints in osteoarthritis. Crosstalk between synovial macrophages and the innervating primary nociceptive neurons is thought to contribute to this facilitated pain processing by the peripheral nervous system. Due to high plasticity and complexity of synovial macrophages in the joint, safe therapies targeting single cells or molecules are currently lacking. Using advanced technologies (such as single-cell RNA sequencing and mass cytometry), studies have shown that diverse subpopulations of synovial macrophages exist in the distinct synovial microenvironments of specific osteoarthritis subtypes. Considerable progress has been made in delineating the molecular mechanisms of various subsets of synovial macrophages in the development of osteoarthritis. To develop a novel intra-articular treatment paradigm targeting synovial macrophages, we have summarized in this review the recent advances in identifying the functional consequences of synovial macrophage sub-populations and understanding of the molecular mechanisms driving macrophage-mediated remodeling.
Collapse
Affiliation(s)
- D Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China.
| | - X-Q Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China.
| | - S-S Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, PR China (Anhui Medical University), Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - F Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia.
| |
Collapse
|
28
|
Winitchaikul T, Sawong S, Surangkul D, Srikummool M, Somran J, Pekthong D, Kamonlakorn K, Nangngam P, Parhira S, Srisawang P. Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in colon cancer cells. PLoS One 2021; 16:e0254392. [PMID: 34343190 PMCID: PMC8330925 DOI: 10.1371/journal.pone.0254392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.
Collapse
Affiliation(s)
- Thanwarat Winitchaikul
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Suphunwadee Sawong
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Faculty of Medicine, Department of Pathology, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand
| | - Kittiya Kamonlakorn
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, Phitsanulok, Thailand
| | - Pranee Nangngam
- Faculty of Science, Department of Biology, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| | - Piyarat Srisawang
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| |
Collapse
|
29
|
Lu J, Guan H, Wu D, Hu Z, Zhang H, Jiang H, Yu J, Zeng K, Li H, Zhang H, Pan C, Cai D, Yu X. Pseudolaric acid B ameliorates synovial inflammation and vessel formation by stabilizing PPARγ to inhibit NF-κB signalling pathway. J Cell Mol Med 2021; 25:6664-6678. [PMID: 34117708 PMCID: PMC8278075 DOI: 10.1111/jcmm.16670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF-κB signalling and reduced the production of pro-inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF-κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti-inflammatory effect of PAB and rescue the activation of NF-κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF-κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA.
Collapse
Affiliation(s)
- Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China
| | - Hong Guan
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyao Yu
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chenglong Pan
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China.,Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|