1
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Kang SE, Park JK, Yoo HJ, Kang HS, Park YW, Park BC, Park JE, Lee EY, Lee EB, Song YW. Efficacy of novel bispecific antibody targeting TNF-α/CXCL10 in the treatment of experimental arthritis. Transl Res 2021; 232:75-87. [PMID: 33453429 DOI: 10.1016/j.trsl.2021.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/23/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
This study was aimed at generating and investigating the efficacy of a novel monoclonal bispecific antibody (BsAb) for the combined inhibition of tumor necrosis factor-α (TNF-α) and CXCL10 as a treatment option for rheumatoid arthritis (RA). A novel BsAb targeting TNF-α and CXCL10 was generated by conjugating a single-chain variable fragment (scFv) of the anti-CXCL10 monoclonal antibody to the Fc region of adalimumab (ADA). The effects of the BsAb on the inflammatory response in the in vitro and in vivo development of arthritis and joint destruction were evaluated in human TNF transgenic (hTNF-Tg) mice, and K/BxN serum transfer arthritis models. The BsAb inhibited CXCL10-mediated CD8+ T cell migration. The binding affinity of the BsAb to TNF-α was comparable to that of ADA and suppressed TNF-α induced cell death and inhibited TNF-α induced ICAM-1 and VCAM-1 in RA fibroblast-like synoviocytes (FLSs). The BsAb decreased the expression of TNFSF11 and the production of IL-6 in RA-FLS cells stimulated with TNF-α and CXCL10. Treatment with the BsAb attenuated the development of arthritis in hTNF-Tg mice and suppressed LPS-induced bone erosion. In the K/BxN serum transfer model, BsAb effectively attenuated ankle swelling, synovial inflammation, cartilage damage, and bone destruction, reducing the activation of osteoclasts. The additional neutralization of TNF-α and CXCL10 from treatment with the novel BsAb was more effective than TNF-α inhibition alone in the in vitro and in vivo models of RA. Thus, the BsAb, targeting both TNF-α and CXCL10, may provide a new therapeutic opportunity for RA patients who fail to respond to the blockade of a single cytokine.
Collapse
Affiliation(s)
- Shin Eui Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Jung Yoo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Zhang W, Lim SM, Xu L, Jin JO. Interleukin-10-Producing B Cells Help Suppress Ovariectomy-Mediated Osteoporosis. Immune Netw 2020; 20:e50. [PMID: 33425435 PMCID: PMC7779870 DOI: 10.4110/in.2020.20.e50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is prevalent in elderly women and it may cause dental implant failure. In particular, estrogen deficiency in postmenopausal women leads to higher rates of osteoporosis prevalence. Immune cell-mediated effects involving the development of osteoporosis have been studied previously; however, the role of IL-10-producing regulatory B (B10) cells in osteoporosis is largely unclear. Here, we examined the role of B10 cells in osteoporosis. C57BL/6 mice were subjected to ovariectomy (OVX). Fifteen weeks after OVX surgery, the first molar of the right maxillary was extracted, and twenty-four weeks after OVX surgery, serous progression of osteoporosis was observed in the alveolar bone. Moreover, the proportion of CD19+CD5+CD1dhigh regulatory B cells, B10, and CD4+CD25+FoxP3+ regulatory T cells from the spleen of OVX mice decreased during the progression of osteoporosis, compared to controls. In contrast to regulatory cells, IL-17-producing Th (Th17) cell levels were increased in OVX mice. Adoptive transfer of B10 cells to OVX mice led to a decrease in Th17 cell abundance and inhibited the development of osteoporosis in the alveolar bone from OVX mice. Thus, our results suggest that B10 cells may help suppress osteoporosis development.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Berger SM, Griffin JS, Dent SC. Phenotypes and pathways: Working toward an integrated skeletal biology in biological anthropology. Am J Hum Biol 2020; 33:e23450. [PMID: 32511865 DOI: 10.1002/ajhb.23450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 05/17/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Steph M Berger
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob S Griffin
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sophia C Dent
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Ebersole JL, Graves CL, Gonzalez OA, Dawson D, Morford LA, Huja PE, Hartsfield JK, Huja SS, Pandruvada S, Wallet SM. Aging, inflammation, immunity and periodontal disease. Periodontol 2000 2018; 72:54-75. [PMID: 27501491 DOI: 10.1111/prd.12135] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
The increased prevalence and severity of periodontal disease have long been associated with aging, such that this oral condition affects the majority of the adult population over 50 years of age. Although the immune system is a critical component for maintaining health, aging can be characterized by quantitative and qualitative modifications of the immune system. This process, termed 'immunosenescence', is a progressive modification of the immune system that leads to greater susceptibility to infections, neoplasia and autoimmunity, presumably reflecting the prolonged antigenic stimulation and/or stress responses that occur across the lifespan. Interestingly, the global reduction in the host capability to respond effectively to these challenges is coupled with a progressive increase in the general proinflammatory status, termed 'inflammaging'. Consistent with the definition of immunosenescence, it has been suggested that the cumulative effect of prolonged exposure of the periodontium to microbial challenge is, at least in part, a contributor to the effects of aging on these tissues. Thus, it has also been hypothesized that alterations in the function of resident immune and nonimmune cells of the periodontium contribute to the expression of inflammaging in periodontal disease. Although the majority of aging research has focused on the adaptive immune response, it is becoming increasingly clear that the innate immune compartment is also highly affected by aging. Thus, the phenomenon of immunosenescence and inflammaging, expressed as age-associated changes within the periodontium, needs to be more fully understood in this era of precision and personalized medicine and dentistry.
Collapse
|
6
|
Titanji K. Beyond Antibodies: B Cells and the OPG/RANK-RANKL Pathway in Health, Non-HIV Disease and HIV-Induced Bone Loss. Front Immunol 2017; 8:1851. [PMID: 29312334 PMCID: PMC5743755 DOI: 10.3389/fimmu.2017.01851] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
HIV infection leads to severe B cell dysfunction, which manifests as impaired humoral immune response to infection and vaccinations and is not completely reversed by otherwise effective antiretroviral therapy (ART). Despite its inability to correct HIV-induced B cell dysfunction, ART has led to significantly increased lifespans in people living with HIV/AIDS. This has in turn led to escalating prevalence of non-AIDS complications in aging HIV-infected individuals, including malignancies, cardiovascular disease, bone disease, and other end-organ damage. These complications, typically associated with aging, are a significant cause of morbidity and mortality and occur significantly earlier in HIV-infected individuals. Understanding the pathophysiology of these comorbidities and delineating clinical management strategies and potential cures is gaining in importance. Bone loss and osteoporosis, which lead to increase in fragility fracture prevalence, have in recent years emerged as important non-AIDS comorbidities in patients with chronic HIV infection. Interestingly, ART exacerbates bone loss, particularly within the first couple of years following initiation. The mechanisms underlying HIV-induced bone loss are multifactorial and complicated by the fact that HIV infection is linked to multiple risk factors for osteoporosis and fracture, but a very interesting role for B cells in HIV-induced bone loss has recently emerged. Although best known for their important antibody-producing capabilities, B cells also produce two cytokines critical for bone metabolism: the key osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its physiological inhibitor osteoprotegerin (OPG). Dysregulated B cell production of OPG and RANKL was shown to be a major contributor to increased bone loss and fracture risk in animal models and HIV-infected humans. This review will summarize our current knowledge of the role of the OPG/RANK–RANKL pathway in B cells in health and disease, and the contribution of B cells to HIV-induced bone loss. Data from mouse studies indicate that RANKL and OPG may also play a role in B cell function and the implications of these findings for human B cell biology, as well as therapeutic strategies targeting the OPG/RANK–RANKL pathway, will be discussed.
Collapse
Affiliation(s)
- Kehmia Titanji
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
8
|
Balakrishnan B, Indap MM, Singh SP, Krishna CM, Chiplunkar SV. Turbo methanol extract inhibits bone resorption through regulation of T cell function. Bone 2014; 58:114-25. [PMID: 24140785 DOI: 10.1016/j.bone.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/10/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
Abstract
Marine organisms have bioactive potential which has tremendous pharmaceutical promise. Emerging evidence highlights the importance of the interplay between bone and the immune system of which T lymphocytes and their product act as key regulators of bone resorption. In the present investigation we have analyzed the anti-osteoporotic effect of turbo methanol extract (TME) in the reversal of bone resoprtion. Forty-two female Swiss albino mice were used and randomly assigned into sham-operated group (sham) and six ovariectomized (OVX) subgroups, i.e. OVX with vehicle (OVX) that received daily oral administration of water ad libitum; OVX with estradiol (2mg/kg/day); and OVX with different doses of TME i.e. TME 100mg/kg, TME 50mg/kg, TME 25mg/kg and TME 12.5mg/kg. Oral administration of TME or estradiol started on the second week after ovariectomy for a period of 4weeks. We observed that the administration of TME increased the trabeculation in tibia and reduced the atrophy in the uterus. TME significantly decreased the serum alkaline phosphatase (ALP) and acid phosphatase (ACP) activity in OVX mice. Micro CT analysis revealed that the TME administration preserved the bone volume, connectivity density, trabecular number, trabecular thickness and trabecular separation in OVX mice. Bone mineralization was measured in different groups of mice by Raman spectroscopy. Reversal of bone resorption was observed in TME treated group of mice. To further investigate the mechanism of action of TME, we analyzed the T lymphocyte proliferation and profiles of cytokine TNFα and sRANKL in TME treated ovariectomized mice. Decrease in the elevation of T cell subsets was observed after the supplementation with TME. The extract significantly lowered the T cell proliferation responses to mitogens, phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io) and phytohemagglutinin (PHA). A marked reduction in TNFα and sRANKL secretion in serum and TNFα in cell free supernatants of activated T lymphocytes was observed upon TME administration. TME could significantly inhibit the in vitro osteoclastogenesis and the bone resorption observed using artificial calcium coated slides. Collectively, these results indicate that TME has the potential to inhibit bone resorption and may prove to be a potential candidate for the development of an anti-osteoporosis drug.
Collapse
Affiliation(s)
- Babita Balakrishnan
- Department of Zoology, The D. G. Ruparel College, Mahim, Mumbai 40016, India
| | | | | | | | | |
Collapse
|
9
|
The interaction between CXCL10 and cytokines in chronic inflammatory arthritis. Autoimmun Rev 2013; 12:554-7. [DOI: 10.1016/j.autrev.2012.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022]
|
10
|
Harre U, Derer A, Schorn C, Schett G, Herrmann M. T cells as key players for bone destruction in gouty arthritis? Arthritis Res Ther 2011; 13:135. [PMID: 22136246 PMCID: PMC3334629 DOI: 10.1186/ar3508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The deposition of monosodium urate (MSU) crystals in synovial fluid and tissue leads to gouty arthritis frequently associated with synovial inflammation and bone erosions. The cellular mechanism that links MSU crystals to an increased number of osteoclasts has not yet been fully understood. In a recent issue of Arthritis Research & Therapy Lee and colleagues proposed that bone destruction in chronic gouty arthritis is at least in part dependent on expression by T cells of receptor activator of NF-κB ligand (RANKL). The authors showed that pro-resorptive cytokines such as IL-1β, IL-6, and TNFα are expressed within tophi and stromal infiltrates. In vitro stimulation with MSU crystals revealed monocytes as a source for these cytokines, whereas T cells produce RANKL, the major trigger of osteoclastogenesis.
Collapse
|
11
|
Costa-Rodrigues J, Fernandes A, Fernandes MH. Spontaneous and induced osteoclastogenic behaviour of human peripheral blood mononuclear cells and their CD14(+) and CD14(-) cell fractions. Cell Prolif 2011; 44:410-9. [PMID: 21951284 DOI: 10.1111/j.1365-2184.2011.00768.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES Osteoclasts are descended from the CD14(+) monocyte/macrophage lineage, but influence of other haematopoietic cells on osteoclastic commitment of their precursors has remained poorly understood. In this study, osteoclastogenic behaviour of peripheral blood mononuclear cells (PBMC) and their CD14(+) and CD14(-) subpopulations has been accessed, in the absence or presence of M-CSF and RANKL. MATERIALS AND METHODS Cell cultures were characterized for presence of actin rings and vitronectin and calcitonin receptors, TRAP activity and calcium phosphate resorbing activity, expression of osteoclast-related genes and secretion of M-CSF and RANKL. RESULTS In the absence of growth factors, PBMC and CD14(+) cultures had some degree of cell survival, and some spontaneous osteoclastogenesis was observed, only on cultures of the former. Supplementation with M-CSF and RANKL significantly increased osteoclastogenic behaviour of cell cultures, particularly CD14(+) cell cultures. Nevertheless, PBMC derived a higher degree of osteoclastogenesis, either as absolute values or after normalization by protein content. It was observed that unlike CD14(+) cells, PBMC were able to express M-CSF and RANKL, which increased following growth factor treatment. Also, expression of TNF-α, GM-CSF, IL-1β, IL-6 and IL-17 was higher in PBMC cultures. Finally, CD14(-) cultures exhibited limited cell survival and did not reveal any osteoclast features. CONCLUSIONS Results show that although osteoclastic precursors reside in the CD14(+) cell subpopulation, other populations (such as CD14(-) cells) derived from PBMC, have the ability to modulate osteoclastogenesis positively.
Collapse
Affiliation(s)
- J Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
12
|
Lee EY, Seo M, Juhnn YS, Kim JY, Hong YJ, Lee YJ, Lee EB, Song YW. Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis. Arthritis Res Ther 2011; 13:R104. [PMID: 21708014 PMCID: PMC3218919 DOI: 10.1186/ar3385] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/07/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022] Open
Abstract
Introduction IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10. Methods Synoviocytes derived from RA patients were kept in culture for 24 hours in the presence or absence of TNF-α. CXCL10 expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR) of cultured synoviocytes. Expression of RANKL was measured by RT-PCR and western blot in cultured synoviocytes with or without CXCL10 and also measured in Jurkat/Hut 78 T cells and CD4+ T cells in the presence of CXCL10 or dexamethasone. CXCL10 induced RANKL expression in Jurkat T cells was tested upon the pertussis toxin (PTX), an inhibitor of Gi subunit of G protein coupled receptor (GPCR). The synthetic siRNA for Gαi2 was used to knock down gene expression of respective proteins. Results CXCL10 expression in RA synoviocytes was increased by TNF-α. CXCL10 slightly increased RANKL expression in RA synoviocytes, but markedly increased RANKL expression in Jurkat/Hut 78 T cell or CD4+ T cell. CXCL10 augmented the expression of RANKL by 62.6%, and PTX inhibited both basal level of RANKL (from 37.4 ± 16.0 to 18.9 ± 13.0%) and CXCL10-induced RANKL expression in Jurkat T cells (from 100% to 48.6 ± 27.3%). Knock down of Gαi2 by siRNA transfection, which suppressed the basal level of RANKL (from 61.8 ± 17.9% to 31.1 ± 15.9%) and CXCL10-induced RANKL expression (from 100% to 53.1 ± 27.1%) in Jurkat T cells, is consistent with PTX, which inhibited RANKL expression. Conclusions CXCL10 increased RANKL expression in CD4+ T cells and it was mediated by Gαi subunits of CXCR3. These results indicate that CXCL10 may have a potential role in osteoclastogenesis of RA synovial tissue and subsequent joint erosion.
Collapse
Affiliation(s)
- Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mabilleau G, Sabokbar A. Interleukin-32 promotes osteoclast differentiation but not osteoclast activation. PLoS One 2009; 4:e4173. [PMID: 19137064 PMCID: PMC2613539 DOI: 10.1371/journal.pone.0004173] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022] Open
Abstract
Background Interleukin-32 (IL-32) is a newly described cytokine produced after stimulation by IL-2 or IL-18 and IFN-γ. IL-32 has the typical properties of a pro-inflammatory mediator and although its role in rheumatoid arthritis has been recently reported its effect on the osteoclastogenesis process remains unclear. Methodology/Principal Findings In the present study, we have shown that IL-32 was a potent modulator of osteoclastogenesis in vitro, whereby it promoted the differentiation of osteoclast precursors into TRAcP+ VNR+ multinucleated cells expressing specific osteoclast markers (up-regulation of NFATc1, OSCAR, Cathepsin K), but it was incapable of inducing the maturation of these multinucleated cells into bone-resorbing cells. The lack of bone resorption in IL-32-treated cultures could in part be explain by the lack of F-actin ring formation by the multinucleated cells generated. Moreover, when IL-32 was added to PBMC cultures maintained with soluble RANKL, although the number of newly generated osteoclast was increased, a significant decrease of the percentage of lacunar resorption was evident suggesting a possible inhibitory effect of this cytokine on osteoclast activation. To determine the mechanism by which IL-32 induces such response, we sought to determine the intracellular pathways activated and the release of soluble mediators in response to IL-32. Our results indicated that compared to RANKL, IL-32 induced a massive activation of ERK1/2 and Akt. Moreover, IL-32 was also capable of stimulating the release of IL-4 and IFN-γ, two known inhibitors of osteoclast formation and activation. Conclusions/Significance This is the first in vitro report on the complex role of IL-32 on osteoclast precursors. Further clarification on the exact role of IL-32 in vivo is required prior to the development of any potential therapeutic approach.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK.
| | | |
Collapse
|
14
|
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev 2008; 8:379-83. [PMID: 19105984 DOI: 10.1016/j.autrev.2008.12.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/04/2008] [Indexed: 12/28/2022]
Abstract
CXCL10 is a 10 kDa protein, which is categorized functionally as a Th1-chemokine. It binds to the receptor CXCR3 and regulates immune responses through the activation and recruitment of leukocytes, such as, T cells, eosinophils, and monocytes. Recent reports have shown that serum and/or tissue expressions of CXCL10 are increased in various autoimmune diseases like rheumatoid arthritis (RA), systemic lupus rythematosus (SLE), Sjogren syndrome (SS), systemic sclerosis (SSc), and idiopathic inflammatory myopathy (IIM). Moreover, CXCL10 and CXCR3 may have important roles in leukocyte homing to inflamed tissues and in the perpetuation of inflammation, and therefore, tissue damage. Our recent study shows that CXCL10 also has a pathogenic role in bone destruction via receptor activator of NF-kappaB ligand (RANKL) induction in inflamed synovial tissue of RA. In addition to its chemotactic effect, CXCL10 may have pleiotropic functions. Further research on the function of this chemokine and interactions between CXCL10 and other cytokines and chemokines may provide therapeutic targets in various autoimmune diseases.
Collapse
Affiliation(s)
- Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea
| | | | | |
Collapse
|
15
|
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29:403-40. [PMID: 18451259 PMCID: PMC2528852 DOI: 10.1210/er.2007-0038] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/01/2008] [Indexed: 12/20/2022]
Abstract
Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body's response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don't always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Department of Medicine, The University of Connecticut Health Center, N4054, MC5456, 263 Farmington Avenue, Farmington, Connecticut 06030-5456, USA.
| | | | | |
Collapse
|
16
|
Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, Kenner L, Tschachler E, Wagner EF. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther 2008; 10:201. [PMID: 18226189 PMCID: PMC2374460 DOI: 10.1186/ar2338] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.
Collapse
Affiliation(s)
- Rainer Zenz
- Ludwig Boltzmann Institute for Cancer Research, Währinger Strasse 13a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S, Kim HM, Kim JY, Kim HH, Song YW, Lee ZH. Reciprocal cross-talk between RANKL and interferon-γ–inducible protein 10 is responsible for bone-erosive experimental arthritis. ACTA ACUST UNITED AC 2008; 58:1332-42. [DOI: 10.1002/art.23372] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Olivier BJ, Schoenmaker T, Mebius RE, Everts V, Mulder CJ, van Nieuwkerk KMJ, de Vries TJ, van der Merwe SW. Increased osteoclast formation and activity by peripheral blood mononuclear cells in chronic liver disease patients with osteopenia. Hepatology 2008; 47:259-67. [PMID: 18022900 DOI: 10.1002/hep.21971] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Osteoporosis is a common complication of chronic liver disease, and the underlying mechanisms are not understood. We aimed to determine if osteoclasts develop from osteoclast precursors in peripheral blood mononuclear cells (PBMCs) of chronic liver disease patients with osteopenia compared with controls. PBMCs were isolated and fluorescence-activated cell sorting was performed to quantify the activated T lymphocyte population and receptor activator of nuclear factor kappabeta ligand (RANKL) expression. The activated T lymphocyte populations were comparable for all 3 groups, and RANKL was not detectable. The percentage of CD14+CD11b+ cells containing osteoclast precursors was comparable between the 3 groups. To assess the formation and functional activity of osteoclasts formed from circulating mononuclear cells, PBMCs were cultured (1) without addition of cytokines, (2) with macrophage colony-stimulating factor (M-CSF), (3) with M-CSF and osteoprotegerin, and (4) with M-CSF and RANKL. The number of tartrate-resistant acid phosphatase-positive multinucleated cells and bone resorption was assessed. PBMCs from chronic liver disease patients with osteopenia formed more osteoclast-like cells, which, when cultured in the presence of M-CSF and RANKL resorbed more bone than controls. The number of osteoclast-like cells and the amount of bone resorption correlated with lumbar bone densities. Addition of M-CSF increased numbers of osteoclast-like cells formed in healthy controls; however, this was not observed in either of the chronic liver disease groups. Plasma levels of M-CSF were elevated in both patient groups compared with healthy controls. CONCLUSION Circulating mononuclear cells from chronic liver disease patients with osteopenia have a higher capacity to become osteoclasts than healthy controls or chronic liver disease patients without osteopenia. This could partially be due to priming with higher levels of M-CSF in the circulation.
Collapse
Affiliation(s)
- Brenda J Olivier
- Hepatology Research Laboratory, Department of Immunology and Internal Medicine, University of Pretoria, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, Sabokbar A. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:1451-62. [PMID: 16649193 DOI: 10.1002/art.21821] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. LIGHT is a transmembrane protein expressed and shed from the surface of activated T cells. Since activated T cells have been implicated in osteoclastogenesis in rheumatoid arthritis (RA), this study sought to determine whether LIGHT can regulate RANKL/cytokine-induced osteoclast formation, to identify the mechanism by which LIGHT influences osteoclastogenesis, and to investigate the presence of LIGHT in the serum of RA patients. METHODS The effect of LIGHT on human and murine osteoclast formation was assessed in the presence and absence of neutralizing reagents to known osteoclastogenic factors. Serum levels of LIGHT in RA patients were measured by enzyme-linked immunosorbent assay. RESULTS In the presence and absence of RANKL, LIGHT induced osteoclast formation from both human peripheral blood mononuclear cells and murine macrophage precursors, in a dose-dependent manner, whereas no inhibition was observed by adding osteoprotegerin, RANK:Fc, TNFalpha, or interleukin-8 or by blocking the LIGHT receptors herpesvirus entry mediator or lymphotoxin beta receptor. However, formation of osteoclasts was significantly decreased by the soluble decoy receptor for LIGHT, DcR3, and by blocking antibodies to the p75 component of the TNF receptor. A significant increase in LIGHT levels in the serum of RA patients compared with normal controls was also noted. CONCLUSION Our results indicate that LIGHT promotes RANKL-mediated osteoclastogenesis and that it can induce osteoclast formation by a mechanism independent of RANKL. The increased concentration of LIGHT in patients with RA raises the possibility that LIGHT may play a role in immunopathogenic conditions that are associated with localized or systemic bone loss.
Collapse
Affiliation(s)
- J R Edwards
- Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Shead EF, Haworth CS, Gunn E, Bilton D, Scott MA, Compston JE. Osteoclastogenesis during Infective Exacerbations in Patients with Cystic Fibrosis. Am J Respir Crit Care Med 2006; 174:306-11. [PMID: 16675777 DOI: 10.1164/rccm.200512-1943oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Adults with cystic fibrosis (CF) are at increased risk of developing osteoporosis. During infective exacerbations, increased production of proinflammatory cytokines and markers of bone resorption have been reported. OBJECTIVE The aim of this study is to investigate the growth and proliferation of potential osteoclast precursor cells before, during, and after intravenous antibiotic treatment of infective exacerbations in patients with CF. METHODS Hematopoietic precursor cell growth was examined using colony formation assays using Methocult culture medium. Circulating potential osteoclast precursors were identified using four-color flow cytometry by CD14, CD33, CD34, and CD45 expression. RESULTS At the start of an infective exacerbation increases in hematopoietic precursor colony formation (15.42 colonies/10(5) cells plated, p = 0.025), proliferation (28.5%, p < 0.001), and the numbers of circulating potential osteoclast precursors (6.5%, p < 0.001) were seen in comparison with baseline levels. These increases declined after treatment with intravenous antibiotics to a level close to baseline. CONCLUSIONS The results demonstrate an increase in the production of potential osteoclast precursors in the peripheral blood during CF infective exacerbations. This may result in increased bone resorption and contribute to bone loss in patients with CF.
Collapse
Affiliation(s)
- Elizabeth F Shead
- Department of Haematology, NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Zaldivar F, Wang-Rodriguez J, Nemet D, Schwindt C, Galassetti P, Mills PJ, Wilson LD, Cooper DM. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J Appl Physiol (1985) 2006; 100:1124-33. [PMID: 16357073 DOI: 10.1152/japplphysiol.00562.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leukocytosis following exercise is a well-described phenomenon of stress/inflammatory activation in healthy humans. We hypothesized that, despite this increase in circulating inflammatory cells, exercise would paradoxically induce expression of both pro- and anti-inflammatory cytokines and growth factors within these cells. To test this hypothesis, 11 healthy adult men, 18–30 yr old, performed a 30-min bout of heavy cycling exercise; blood sampling was at baseline, end-exercise, and 60 min into recovery. The percentage of leukocytes positive for intracellular cytokines and growth factors and mean fluorescence intensity was obtained by flow cytometry. Proinflammatory cytokines (IL-1α, IL-2, IFN-γ, and TNF-α), a pleiotropic cytokine (IL-6), and anti-inflammatory cytokines and growth factors [IL-4, IL-10, growth hormone (GH), and IGF-I] were examined. Median fluorescence intensity was not affected by exercise; however, we found a number of significant changes ( P < 0.05 by mixed linear model and modified t-test) in the numbers of circulating cells positive for particular mediators. The pattern of expression reflected both pro- and anti-inflammatory functions. In T-helper lymphocytes, TNF-α, but also IL-6, and IL-4 were significantly increased. In monocytes, both IFN-γ and IL-4 increased. B-lymphocytes positive for GH and IGF-I increased significantly. GH-positive granulocytes also significantly increased. Collectively, these observations indicate that exercise primes an array of pro- and anti-inflammatory and growth factor expression within circulating leukocytes, perhaps preparing the organism to effectively respond to a variety of stressors imposed by exercise.
Collapse
Affiliation(s)
- Frank Zaldivar
- Department of Pediatrics, Pediatric Exercise Research Center, University Children's Hospital, University of California, Irvine, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. OSTEOIMMUNOLOGY: Interplay Between the Immune System and Bone Metabolism. Annu Rev Immunol 2006; 24:33-63. [PMID: 16551243 DOI: 10.1146/annurev.immunol.24.021605.090646] [Citation(s) in RCA: 486] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies of bone and the immune system have converged in recent years under the banner of osteoimmunology. The immune system is spawned in the bone marrow reservoir, and investigators now recognize that important niches also exist there for memory lymphocytes. At the same time, various factors produced during immune responses are capable of profoundly affecting regulation of bone. Mechanisms have evolved to prevent excessive interference by the immune system with bone homeostasis, yet pathologic bone loss is a common sequela associated with autoimmunity and cancer. There are also developmental links, or parallels, between bone and the immune system. Cells that regulate bone turnover share a common precursor with inflammatory immune cells and may restrict themselves anatomically, in part by utilizing a signaling network analogous to lymphocyte costimulation. Efforts are currently under way to further characterize how these two organ systems overlap and to develop therapeutic strategies that benefit from this understanding.
Collapse
Affiliation(s)
- Matthew C Walsh
- 1Department of Pathology and Laboratory Medicine, AFCRI, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.
Collapse
Affiliation(s)
- Erwin F Wagner
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | | |
Collapse
|