1
|
Shen X, Tao L, Chen X, Song S, Liu Q, Zhang D. Contrastive learning of shared spatiotemporal EEG representations across individuals for naturalistic neuroscience. Neuroimage 2024; 301:120890. [PMID: 39419424 DOI: 10.1016/j.neuroimage.2024.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
Neural representations induced by naturalistic stimuli offer insights into how humans respond to stimuli in daily life. Understanding neural mechanisms underlying naturalistic stimuli processing hinges on the precise identification and extraction of the shared neural patterns that are consistently present across individuals. Targeting the Electroencephalogram (EEG) technique, known for its rich spatial and temporal information, this study presents a framework for Contrastive Learning of Shared SpatioTemporal EEG Representations across individuals (CL-SSTER). CL-SSTER utilizes contrastive learning to maximize the similarity of EEG representations across individuals for identical stimuli, contrasting with those for varied stimuli. The network employs spatial and temporal convolutions to simultaneously learn the spatial and temporal patterns inherent in EEG. The versatility of CL-SSTER was demonstrated on three EEG datasets, including a synthetic dataset, a natural speech comprehension EEG dataset, and an emotional video watching EEG dataset. CL-SSTER attained the highest inter-subject correlation (ISC) values compared to the state-of-the-art ISC methods. The latent representations generated by CL-SSTER exhibited reliable spatiotemporal EEG patterns, which can be explained by properties of the naturalistic stimuli. CL-SSTER serves as an interpretable and scalable framework for the identification of inter-subject shared neural representations in naturalistic neuroscience.
Collapse
Affiliation(s)
- Xinke Shen
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lingyi Tao
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xuyang Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Sen Song
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China; Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
3
|
Deng X, Chen Y, Chen K, Ludyga S, Zhang Z, Cheval B, Zhu W, Chen J, Ishihara T, Hou M, Gao Y, Kamijo K, Yu Q, Hillman CH, Kramer AF, Erickson KI, Delli Paoli AG, McMorris T, Gerber M, Kuang J, Cheng Z, Pindus D, Dupuy O, Heath M, Herold F, Zou L. A friend in need is a friend indeed: Acute tandem rope skipping enhances inter-brain synchrony of socially avoidant individuals. Brain Cogn 2024; 180:106205. [PMID: 39053200 DOI: 10.1016/j.bandc.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Team-based physical activity (PA) can improve social cognition; however, few studies have investigated the neurobiological mechanism underlying this benefit. Accordingly, a hyper-scanning protocol aimed to determine whether the interbrain synchrony (IBS) is influenced by an acute bout of team-based PA (i.e., tandem rope skipping). Specifically, we had socially avoidant participants (SOA, N=15 dyads) and their age-matched controls (CO, N=16 dyads) performed a computer-based cooperative task while EEG was recorded before and after two different experimental conditions (i.e., 30-min of team-based PA versus sitting). Phase locking value (PLV) was used to measure IBS. Results showed improved frontal gamma band IBS after the team-based PA compared to sitting when participants received successful feedback in the task (Mskipping = 0.016, Msittting = -0.009, p = 0.082, ηp2 = 0.387). The CO group showed a larger change in frontal and central gamma band IBS when provided failure feedback in the task (Mskipping = 0.017, Msittting = -0.009, p = 0.075, ηp2 = 0.313). Thus, results suggest that socially avoidant individuals may benefit from team-based PA via improved interbrain synchrony. Moreover, our findings deepen our understanding of the neurobiological mechanism by which team-based PA may improve social cognition among individuals with or without social avoidance.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China; The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Yangdi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Kexin Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Zhihao Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Boris Cheval
- Department of Sport Sciences and Physical Education, Ecole Normale Supérieure Rennes, Bruz, France; Laboratory VIPS2, University of Rennes, Rennes, France
| | - Weijia Zhu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Jianyu Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Meijun Hou
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yangping Gao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Qian Yu
- Faculty of Education, University of Macau, Macau
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Department of Psychology, Northeastern University, Boston, MA, 02115, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Department of Psychology, Northeastern University, Boston, MA, 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, FL, 32101; Department of Psychology, University of Pittsburgh, Pittsburgh 15260
| | | | - Terry McMorris
- Department Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jin Kuang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Zhihui Cheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Dominika Pindus
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Kinesiology and Community Health, University of Illinois at Chicago, Chicago, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Olivier Dupuy
- Laboratory MOVE (EA 6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France; School of Kinesiology and Physical Activity Science (EKSAP), Faculty of Medicine. University of Montreal, Montreal, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Fabian Herold
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, 14476 Potsdam, Germany
| | - Liye Zou
- School of Psychology, Shenzhen University, Shenzhen, China; Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Tamburro G, Bruña R, Fiedler P, De Fano A, Raeisi K, Khazaei M, Zappasodi F, Comani S. An Analytical Approach for Naturalistic Cooperative and Competitive EEG-Hyperscanning Data: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2995. [PMID: 38793851 PMCID: PMC11125252 DOI: 10.3390/s24102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience (C3N), Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, IdISSC, 28040 Madrid, Spain
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Antonio De Fano
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Filippo Zappasodi
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
- Institute for Advanced Biomedical Technologies, University “Gabriele d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy
| | - Silvia Comani
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| |
Collapse
|
5
|
Réveillé C, Vergotte G, Perrey S, Bosselut G. Using interbrain synchrony to study teamwork: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105593. [PMID: 38373643 DOI: 10.1016/j.neubiorev.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
It has been proposed that interbrain synchrony (IBS) may help to elucidate the neural mechanisms underpinning teamwork. As hyperscanning studies have provided abundant findings on IBS in team environments, the current review aims to synthesize the findings of hyperscanning studies in a way that is relevant to the teamwork research. A systematic review was conducted. Included studies were classified according to the IPO (i.e. input, process, output) model of teamwork. Three multi-level meta-analyses were performed to quantify the associations between IBS and the three IPO variables. The methodology followed PRISMA guidelines and the protocol was pre-registered (https://osf.io/7h8sa/). Of the 229 studies, 41 were included, representing 1326 teams. The three meta-analyses found statistically significant positive effects, indicating a positive association between IBS and the three IPO teamwork variables. This study provides evidence that IBS is a relevant measure of the teamwork process and argues for the continued use of IBS to study teamwork.
Collapse
Affiliation(s)
- Coralie Réveillé
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France.
| | - Grégoire Vergotte
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Grégoire Bosselut
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| |
Collapse
|
6
|
Xu X, Kong Q, Zhang D, Zhang Y. An evaluation of inter-brain EEG coupling methods in hyperscanning studies. Cogn Neurodyn 2024; 18:67-83. [PMID: 38406199 PMCID: PMC10881924 DOI: 10.1007/s11571-022-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
EEG-based hyperscanning technology has been increasingly applied to analyze interpersonal interactions in social neuroscience in recent years. However, different methods are employed in various of studies without a complete investigation of the suitability of these methods. Our study aimed to systematically compare typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data. In particular, two critical metrics of noise level and time delay were manipulated, and three different coupling models were tested. The results revealed that: (1) under certain conditions, various methods were leveraged by noise level and time delay, leading to different performances; (2) most algorithms achieved better experimental results and performance under high coupling degree; (3) with our simulation process, temporal and spectral models showed relatively good results, while data simulated with phase coupling model performed worse. This is the first systematic comparison of typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data from different subjects. Existing methods mainly focused on intra-brain coupling. To our knowledge, there was only one previous study that compared five inter-brain EEG coupling methods (Burgess in Front Human Neurosci 7:881, 2013). However, the simulated data used in this study were generated time series with varied degrees of phase coupling without considering any EEG characteristics. For future research, appropriate methods need to be selected based on possible underlying mechanisms (temporal, spectral and phase coupling model hypothesis) of a specific study, as well as the expected coupling degree and conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09911-1.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Institute of Education, Tsinghua University, Beijing, China
| | - Qiuyue Kong
- School of Public Health, Harvard University, Cambridge, MA USA
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Chuang TM, Peng PC, Su YK, Lin SH, Tseng YL. Exploring Inter-Brain Electroencephalogram Patterns for Social Cognitive Assessment During Jigsaw Puzzle Solving. IEEE Trans Neural Syst Rehabil Eng 2024; 32:422-430. [PMID: 38198273 DOI: 10.1109/tnsre.2024.3352036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Social interaction enables the smooth progression of our daily lives. Mounting evidence from recent hyperscanning neuroimaging studies indicates that key components of social behavior can be evaluated using inter-brain oscillations and connectivity. However, mapping out inter-brain networks and developing neurocognitive theories that explain how humans co-create and share information during social interaction remains challenging. In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.
Collapse
|
8
|
Deng X, Yang M, Chen X, Zhan Y. The role of mindfulness on theta inter-brain synchrony during cooperation feedback processing: An EEG-based hyperscanning study. Int J Clin Health Psychol 2023; 23:100396. [PMID: 37521502 PMCID: PMC10372402 DOI: 10.1016/j.ijchp.2023.100396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Mindfulness appears to improve empathy and understanding in relationships, which are necessary for successful cooperation. However, the impact of mindfulness on cooperation has not been fully studied. This study used hyperscanning technique to examine the effect of mindfulness on the inter-brain synchrony of interacting individuals during the cooperative tasks. Forty-one dyads were randomly assigned to a mindfulness group or a non-mindfulness group. Dyads of the mindfulness group performed a short mindfulness exercise following a 15-minute mindfulness audio guidance. Dyads of the non-mindfulness group were instructed to rest quietly with their eyes closed. Then, simultaneously and continuously EEG was recorded from all dyads when they completed a computer-based cooperative game task. Reaction times (RTs) and success rates were used to indicate the behavioral performance, and phase locking value (PLV) was used to indicate the inter-brain synchrony. The results showed that (1) Greater theta inter-brain synchrony during the cooperative computer game tasks was observed in the mindfulness group than in the non-mindfulness group; (2) Greater theta inter-brain synchrony was observed in the successful cooperation conditions as compared to those in the failure cooperation conditions; (3) Greater theta inter-brain synchrony was observed at the frontal region as compared to those at the parietal-occipital region in the successful cooperation condition. The results expand the neural basis of the effects of mindfulness on cooperation feedback processing.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Meng Yang
- School of Psychology, Shenzhen University, Shenzhen, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaomin Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yong Zhan
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Koul A, Ahmar D, Iannetti GD, Novembre G. Spontaneous dyadic behaviour predicts the emergence of interpersonal neural synchrony. Neuroimage 2023:120233. [PMID: 37348621 DOI: 10.1016/j.neuroimage.2023.120233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Synchronization of neural activity across brains - interpersonal neural synchrony (INS) - is emerging as a powerful marker of social interaction that predicts success of multi-person coordination, communication, and cooperation. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements and facial expressions) while dyads of participants were instructed to look at each other without speaking or making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three notable social behavioral cues - body movement, eye contact, and smiling - and demonstrated that these behaviors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social behaviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an entrainment phenomenon, promoted by real-time dyadic behavior.
Collapse
Affiliation(s)
- Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| | - Davide Ahmar
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy
| | - Gian Domenico Iannetti
- Neuroscience and Behavior Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| |
Collapse
|
10
|
Si Y, Chen X, Guo W, Wang B. The Effects of Cooperative and Competitive Situations on Statistical Learning. Brain Sci 2022; 12:brainsci12081059. [PMID: 36009122 PMCID: PMC9405654 DOI: 10.3390/brainsci12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Devising cooperative or competitive situations is an important teaching strategy in educational practices. Nevertheless, there is still controversy regarding which situation is better for learning. This study was conducted to explore the effects of cooperative and competitive situations on statistical learning, through the alternating serial reaction time (ASRT) task. Individual cooperative and competitive situations were devised in this study, in which individual situation served as the control condition. Ninety recruited participants were randomly assigned to a cooperative, competitive, or individual group to perform the ASRT task. For general learning, cooperative and competitive situations could indeed make learners respond faster, and there was no significant difference in the RT between the cooperative and competitive groups. Moreover, statistical learning was observed in all three groups. An additional analysis of the early stage of the experiment showed that the learning effect of the competitive group was greater than those of the cooperative and individual groups, in terms of statistical learning. However, the final learning effect was not significantly different among the three groups. Overall, the cooperative and competitive situations had a positive impact on learning and enabled the students to acquire approximately the same learning effect in a shorter time period, compared with the individual situation. Specifically, the competitive situation accelerated the statistical learning process but not the general learning process.
Collapse
Affiliation(s)
- Yajie Si
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Wei Guo
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Biye Wang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Correspondence:
| |
Collapse
|
11
|
Wikström V, Saarikivi K, Falcon M, Makkonen T, Martikainen S, Putkinen V, Cowley BU, Tervaniemi M. Inter-brain synchronization occurs without physical co-presence during cooperative online gaming. Neuropsychologia 2022; 174:108316. [PMID: 35810882 DOI: 10.1016/j.neuropsychologia.2022.108316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022]
Abstract
Inter-brain synchronization during social interaction has been linked with several positive phenomena, including closeness, cooperation, prosociality, and team performance. However, the temporal dynamics of inter-brain synchronization during collaboration are not yet fully understood. Furthermore, with collaboration increasingly happening online, the dependence of inter-brain phase synchronization of oscillatory activity on physical presence is an important but understudied question. In this study, physically isolated participants performed a collaborative coordination task in the form of a cooperative multiplayer game. We measured EEG from 42 subjects working together as pairs in the task. During the measurement, the only interaction between the participants happened through on-screen movement of a racing car, controlled by button presses of both participants working with distinct roles, either controlling the speed or the direction of the car. Pairs working together in the task were found to have elevated neural coupling in the alpha, beta, and gamma frequency bands, compared to performance matched false pairs. Higher gamma synchrony was associated with better momentary performance within dyads and higher alpha synchrony was associated with better mean performance across dyads. These results are in line with previous findings of increased inter-brain synchrony during interaction, and show that phase synchronization of oscillatory activity occurs during online real-time joint coordination without any physical co-presence or video and audio connection. Synchrony decreased during a playing session, but was found to be higher during the second session compared to the first. The novel paradigm, developed for the measurement of real-time collaborative performance, demonstrates that changes in inter-brain EEG phase synchrony can be observed continuously during interaction.
Collapse
Affiliation(s)
- Valtteri Wikström
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland; Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland.
| | - Katri Saarikivi
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland; Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland
| | - Mari Falcon
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland; Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland
| | - Tommi Makkonen
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland
| | - Silja Martikainen
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland; Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland
| | - Vesa Putkinen
- Turku PET Centre, University of Turku, P.O. Box 52, Turku, 20521, Finland; Turku University Hospital, P.O. Box 52, Turku, 20521, Finland
| | - Benjamin Ultan Cowley
- Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland; Cognitive Science, Department of Digital Humanities, Faculty of Arts, University of Helsinki, P.O. Box 24, Helsinki, 00014, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland; Department of Education, Faculty of Educational Sciences, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland
| |
Collapse
|
12
|
Alterations in Cortical Activation among Soccer Athletes with Chronic Ankle Instability during Drop-Jump Landing: A Preliminary Study. Brain Sci 2022; 12:brainsci12050664. [PMID: 35625050 PMCID: PMC9139920 DOI: 10.3390/brainsci12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic ankle instability (CAI) is a common peripheral joint injury and there is still no consensus on the mechanisms. It is necessary to investigate electrocortical parameters to provide clinical insight into the functional alterations of brain activity after an ankle sprain, which would greatly affect the implementation of rehabilitation plans. The purpose of this study was to assess cortical activation characteristics during drop-jump landing among soccer athletes with CAI. Methods: A total of 24 participants performed the drop-jump landing task on a force platform while wearing a 64-channel EEG system. The differences of power spectral density (PSD) in theta and alpha (alpha-1 and alpha-2) bands were analyzed between two groups (CAI vs. CON) and between two limbs (injured vs. healthy). Results: CAI participants demonstrated significantly higher theta power at the frontal electrode than that in healthy control individuals (F(1,22) = 7.726, p = 0.011, η2p = 0.260). No difference in parietal alpha-1 and alpha-2 power was found between groups (alpha-1: F(1,22) = 0.297, p = 0.591, η2p = 0.013; alpha-2: F(1,22) = 0.118, p = 0.734, η2p = 0.005). No limb differences were presented for any frequency band in selected cortical areas (alpha-1: F(1,22) = 0.149, p = 0.703, η2p = 0.007; alpha-2: F(1,22) = 0.166, p = 0.688, η2p = 0.007; theta: F(1,22) = 2.256, p = 0.147, η2p = 0.093). Conclusions: Theta power at the frontal cortex was higher in soccer athletes with CAI during drop-jump landing. Differences in cortical activation provided evidence for an altered neural mechanism of postural control among soccer athletes with CAI.
Collapse
|
13
|
Holroyd CB. Interbrain synchrony: on wavy ground. Trends Neurosci 2022; 45:346-357. [PMID: 35236639 DOI: 10.1016/j.tins.2022.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
In recent years the study of dynamic, between-brain coupling mechanisms has taken social neuroscience by storm. In particular, interbrain synchrony (IBS) is a putative neural mechanism said to promote social interactions by enabling the functional integration of multiple brains. In this article, I argue that this research is beset with three pervasive and interrelated problems. First, the field lacks a widely accepted definition of IBS. Second, IBS wants for theories that can guide the design and interpretation of experiments. Third, a potpourri of tasks and empirical methods permits undue flexibility when testing the hypothesis. These factors synergistically undermine IBS as a theoretical construct. I finish by recommending measures that can address these issues.
Collapse
Affiliation(s)
- Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Gent, Belgium.
| |
Collapse
|
14
|
Perrey S. Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports (Basel) 2022; 10:56. [PMID: 35447866 PMCID: PMC9028378 DOI: 10.3390/sports10040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Appropriate training burden monitoring is still a challenge for the support staff, athletes, and coaches. Extensive research has been done in recent years that proposes several external and internal indicators. Among all measurements, the importance of cognitive factors has been indicated but has never been really considered in the training monitoring process. While there is strong evidence supporting the use of cognitive demand indicators in cognitive neuroscience, their importance in training monitoring for multiple sports settings must be better emphasized. The aims of this scoping review are to (1) provide an overview of the cognitive demand concept beside the physical demand in training; (2) highlight the current methods for assessing cognitive demand in an applied setting to sports in part through a neuroergonomics approach; (3) show how cognitive demand metrics can be exploited and applied to our better understanding of fatigue, sport injury, overtraining and individual performance capabilities. This review highlights also the potential new ways of brain imaging approaches for monitoring in situ. While assessment of cognitive demand is still in its infancy in sport, it may represent a very fruitful approach if applied with rigorous protocols and deep knowledge of both the neurobehavioral and cognitive aspects. It is time now to consider the cognitive demand to avoid underestimating the total training burden and its management.
Collapse
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France
| |
Collapse
|
15
|
Maÿe A, Wang T, Engel AK. Neuronal Oscillatory Signatures of Joint Attention and Intersubjectivity in Arrhythmic Coaction. Front Hum Neurosci 2021; 15:767208. [PMID: 34803642 PMCID: PMC8603840 DOI: 10.3389/fnhum.2021.767208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Hyper-brain studies analyze the brain activity of two or more individuals during some form of interaction. Several studies found signs of inter-subject brain activity coordination, such as power and phase synchronization or information flow. This hyper-brain coordination is frequently studied in paradigms which induce rhythms or even synchronization, e.g., by mirroring movements, turn-based activity in card or economic games, or joint music making. It is therefore interesting to figure out in how far coordinated brain activity may be induced by a rhythmicity in the task and/or the sensory feedback that the partners receive. We therefore studied the EEG brain activity of dyads in a task that required the smooth pursuit of a target and did not involve any extrinsic rhythms. Partners controlled orthogonal axes of the two-dimensional motion of an object that had to be kept on the target. Using several methods for analyzing hyper-brain coupling, we could not detect signs of coordinated brain activity. However, we found several brain regions in which the frequency-specific activity significantly correlated with the objective task performance, the subjective experience thereof, and of the collaboration. Activity in these regions has been linked to motor control, sensorimotor integration, executive control and emotional processing. Our results suggest that neural correlates of intersubjectivity encompass large parts of brain areas that are considered to be involved in sensorimotor control without necessarily coordinating their activity across agents.
Collapse
Affiliation(s)
- Alexander Maÿe
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tiezhi Wang
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|