1
|
Krendl AC, Hughes CS. Mindsets over matter: priming theory of mind improves older adults' mental state attributions about naturalistic social interactions. Aging Ment Health 2024:1-9. [PMID: 39244679 DOI: 10.1080/13607863.2024.2399091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Aging is associated with declines in theory of mind - the ability to infer the mental states of others. We examined whether priming theory of mind mindsets actively (Study 1) and passively (Study 2) improved older adults' performance. METHOD Across two studies, participants completed a novel question-and-answer theory of mind task using the television show Nathan for You® in a mindset or no mindset condition. In Study 1, participants (N = 324, 18-84 years) completed a similar task related to a different show prior to the Nathan for You task (active mindset). In Study 2, young (N = 235; MAge = 20.47) and older (N = 193, MAge = 74.48) adults made continuous ratings of awkwardness of different episodes of Nathan for You before completing the question-and-answer task (passive mindset). We also measured executive function and episodic memory. In both studies, the same tasks were performed in reverse order for the control conditions (no mindset). RESULTS Mindsets were associated with small-to-medium increases in theory of mind performance. Cognitive ability did not explain these improvements. CONCLUSION These findings suggest that theory of mind performance can be improved through motivation (e.g. mindsets); cognitive function (e.g. ability) does not moderate this relationship.
Collapse
Affiliation(s)
- Anne C Krendl
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Colleen S Hughes
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
2
|
Tanner J, Faskowitz J, Kennedy DP, Betzel RF. Dynamic adaptation to novelty in the brain is related to arousal and intelligence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606380. [PMID: 39149315 PMCID: PMC11326181 DOI: 10.1101/2024.08.02.606380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
How does the human brain respond to novelty? Here, we address this question using fMRI data wherein human participants watch the same movie scene four times. On the first viewing, this movie scene is novel, and on later viewings it is not. We find that brain activity is lower-dimensional in response to novelty. At a finer scale, we find that this reduction in the dimensionality of brain activity is the result of increased coupling in specific brain systems, most specifically within and between the control and dorsal attention systems. Additionally, we found that novelty induced an increase in between-subject synchronization of brain activity in the same brain systems. We also find evidence that adaptation to novelty, herein operationalized as the difference between baseline coupling and novelty-response coupling, is related to fluid intelligence. Finally, using separately collected out-of-sample data, we find that the above results may be linked to psychological arousal.
Collapse
Affiliation(s)
- Jacob Tanner
- Luddy School of Informatics, Computing, and Engineering
- Cognitive Science Program
| | | | - Daniel P. Kennedy
- Cognitive Science Program
- Department of Psychological and Brain Sciences
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
| | - Richard F. Betzel
- Luddy School of Informatics, Computing, and Engineering
- Cognitive Science Program
- Department of Psychological and Brain Sciences
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
| |
Collapse
|
3
|
Isernia S, Pirastru A, Rossetto F, Cacciatore DM, Cazzoli M, Blasi V, Baksh RA, MacPherson SE, Baglio F. Human reasoning on social interactions in ecological contexts: insights from the theory of mind brain circuits. Front Neurosci 2024; 18:1420122. [PMID: 39176386 PMCID: PMC11339883 DOI: 10.3389/fnins.2024.1420122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The relationship between neural social cognition patterns and performance on social cognition tasks in daily life is a topic of debate, with key consideration given to the extent to which theory of mind (ToM) brain circuits share properties reflecting everyday social functioning. To test the efficacy of ecological stimuli in eliciting brain activation within the ToM brain circuits, we adapted the Edinburgh Social Cognition test social scenarios, consisting of dynamic ecological contextually embedded social stimuli, to a fMRI paradigm. Methods Forty-two adults (21 men, mean age ± SD = 34.19 years ±12.57) were enrolled and underwent an fMRI assessment which consisted of a ToM task using the Edinburgh Social Cognition test scenarios. We used the same stimuli to prompt implicit (movie viewing) and explicit (silent and two-choice answers) reasoning on cognitive and affective mental states. The fMRI analysis was based on the classical random effect analysis. Group inferences were complemented with supplemental analyses using overlap maps to assess inter-subject variability. Results We found that explicit mentalizing reasoning yielded wide neural activations when two-choice answers were used. We also observed that the nature of ToM reasoning, that is, affective or cognitive, played a significant role in activating different neural circuits. Discussion The ESCoT stimuli were particularly effective in evoking ToM core neural underpinnings and elicited executive frontal loops. Future work may employ the task in a clinical setting to investigate ToM network reorganization and plasticity.
Collapse
Affiliation(s)
- Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Alice Pirastru
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - R. Asaad Baksh
- Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
- The LonDownS Consortium, London, United Kingdom
| | - Sarah E. MacPherson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
4
|
Fry R, Li X, Evans TC, Esterman M, Tanaka J, DeGutis J. Investigating the Influence of Autism Spectrum Traits on Face Processing Mechanisms in Developmental Prosopagnosia. J Autism Dev Disord 2023; 53:4787-4808. [PMID: 36173532 PMCID: PMC10812037 DOI: 10.1007/s10803-022-05705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 10/14/2022]
Abstract
Autism traits are common exclusionary criteria in developmental prosopagnosia (DP) studies. We investigated whether autism traits produce qualitatively different face processing in 43 DPs with high vs. low autism quotient (AQ) scores. Compared to controls (n = 27), face memory and perception were similarly deficient in the high- and low-AQ DPs, with the high-AQ DP group additionally showing deficient face emotion recognition. Task-based fMRI revealed reduced occipito-temporal face selectivity in both groups, with high-AQ DPs additionally demonstrating decreased posterior superior temporal sulcus selectivity. Resting-state fMRI showed similar reduced face-selective network connectivity in both DP groups compared with controls. Together, this demonstrates that high- and low-AQ DP groups have very similar face processing deficits, with additional facial emotion deficits in high-AQ DPs.
Collapse
Affiliation(s)
- Regan Fry
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Xian Li
- Psychological and Brain Science Department, Johns Hopkins University, Baltimore, MD, USA
| | - Travis C Evans
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - James Tanaka
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Liloia D, Cauda F, Uddin LQ, Manuello J, Mancuso L, Keller R, Nani A, Costa T. Revealing the Selectivity of Neuroanatomical Alteration in Autism Spectrum Disorder via Reverse Inference. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1075-1083. [PMID: 35131520 DOI: 10.1016/j.bpsc.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies. METHODS Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD. RESULTS We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network. CONCLUSIONS The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
6
|
Sun B, Wang B, Wei Z, Feng Z, Wu ZL, Yassin W, Stone WS, Lin Y, Kong XJ. Identification of diagnostic markers for ASD: a restrictive interest analysis based on EEG combined with eye tracking. Front Neurosci 2023; 17:1236637. [PMID: 37886678 PMCID: PMC10598595 DOI: 10.3389/fnins.2023.1236637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Electroencephalography (EEG) functional connectivity (EFC) and eye tracking (ET) have been explored as objective screening methods for autism spectrum disorder (ASD), but no study has yet evaluated restricted and repetitive behavior (RRBs) simultaneously to infer early ASD diagnosis. Typically developing (TD) children (n = 27) and ASD (n = 32), age- and sex-matched, were evaluated with EFC and ET simultaneously, using the restricted interest stimulus paradigm. Network-based machine learning prediction (NBS-predict) was used to identify ASD. Correlations between EFC, ET, and Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) were performed. The Area Under the Curve (AUC) of receiver-operating characteristics (ROC) was measured to evaluate the predictive performance. Under high restrictive interest stimuli (HRIS), ASD children have significantly higher α band connectivity and significantly more total fixation time (TFT)/pupil enlargement of ET relative to TD children (p = 0.04299). These biomarkers were not only significantly positively correlated with each other (R = 0.716, p = 8.26e-4), but also with ADOS total scores (R = 0.749, p = 34e-4) and RRBs sub-score (R = 0.770, p = 1.87e-4) for EFC (R = 0.641, p = 0.0148) for TFT. The accuracy of NBS-predict in identifying ASD was 63.4%. ROC curve demonstrated TFT with 91 and 90% sensitivity, and 78.7% and 77.4% specificity for ADOS total and RRB sub-scores, respectively. Simultaneous EFC and ET evaluation in ASD is highly correlated with RRB symptoms measured by ADOS-2. NBS-predict of EFC offered a direct prediction of ASD. The use of both EFC and ET improve early ASD diagnosis.
Collapse
Affiliation(s)
- Binbin Sun
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bryan Wang
- Martinos Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of English and Creative Writing, Brandeis University, Waltham, MA, United States
| | - Zhen Wei
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhe Feng
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhi-Liu Wu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Walid Yassin
- Martinos Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- McLean Hospital, Harvard Medical School, Belmont, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - William S. Stone
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yan Lin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xue-Jun Kong
- Martinos Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Hartman LM, Farahani M, Moore A, Manzoor A, Hartman BL. Organizational benefits of neurodiversity: Preliminary findings on autism and the bystander effect. Autism Res 2023; 16:1989-2001. [PMID: 37615342 DOI: 10.1002/aur.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Although the bystander effect is one of the most important findings in the psychological literature, researchers have not explored whether autistic individuals are prone to the bystander effect. The present research examines whether autistic employees are more likely to report issues or concerns in an organization's systems and practices that are inefficient or dysfunctional. By bringing attention to these issues, autistic employees may foster opportunities to improve organizational performance, leading to the development of a more adaptive, high performing, and ethical culture. Thirty-three autistic employees and 34 nonautistic employees completed an online survey to determine whether employees on the autism spectrum (1) are more likely to report they would voice concerns about organizational dysfunctions, (2) are less likely to report they were influenced by the number of other witnesses to the dysfunction, (3) if they do not voice concerns, are more likely to acknowledge the influence of other people on the decision, (4) are less likely to formulate "elaborate rationales" for their decisions to intervene or not, and (5) whether any differences between autistic and nonautistic employees with regards to the first two hypotheses, intervention likelihood and degree of influence, are moderated by individual differences in camouflaging. Results indicate that autistic employees may be less susceptible to the bystander effect than nonautistic employees. As a result, autistic employees may contribute to improvements in organizational performance because they are more likely to identify and report inefficient processes and dysfunctional practices when they witness them. These preliminary findings suggesting potential benefits of neurodiversity in the workplace are promising. However, further research is required.
Collapse
Affiliation(s)
- Lorne M Hartman
- Organization Studies, Schulich School of Business, York University, Toronto, Ontario, Canada
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mehrdad Farahani
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Moore
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ateeya Manzoor
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Xiu B, Paul BT, Chen JM, Le TN, Lin VY, Dimitrijevic A. Neural responses to naturalistic audiovisual speech are related to listening demand in cochlear implant users. Front Hum Neurosci 2022; 16:1043499. [DOI: 10.3389/fnhum.2022.1043499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
There is a weak relationship between clinical and self-reported speech perception outcomes in cochlear implant (CI) listeners. Such poor correspondence may be due to differences in clinical and “real-world” listening environments and stimuli. Speech in the real world is often accompanied by visual cues, background environmental noise, and is generally in a conversational context, all factors that could affect listening demand. Thus, our objectives were to determine if brain responses to naturalistic speech could index speech perception and listening demand in CI users. Accordingly, we recorded high-density electroencephalogram (EEG) while CI users listened/watched a naturalistic stimulus (i.e., the television show, “The Office”). We used continuous EEG to quantify “speech neural tracking” (i.e., TRFs, temporal response functions) to the show’s soundtrack and 8–12 Hz (alpha) brain rhythms commonly related to listening effort. Background noise at three different signal-to-noise ratios (SNRs), +5, +10, and +15 dB were presented to vary the difficulty of following the television show, mimicking a natural noisy environment. The task also included an audio-only (no video) condition. After each condition, participants subjectively rated listening demand and the degree of words and conversations they felt they understood. Fifteen CI users reported progressively higher degrees of listening demand and less words and conversation with increasing background noise. Listening demand and conversation understanding in the audio-only condition was comparable to that of the highest noise condition (+5 dB). Increasing background noise affected speech neural tracking at a group level, in addition to eliciting strong individual differences. Mixed effect modeling showed that listening demand and conversation understanding were correlated to early cortical speech tracking, such that high demand and low conversation understanding occurred with lower amplitude TRFs. In the high noise condition, greater listening demand was negatively correlated to parietal alpha power, where higher demand was related to lower alpha power. No significant correlations were observed between TRF/alpha and clinical speech perception scores. These results are similar to previous findings showing little relationship between clinical speech perception and quality-of-life in CI users. However, physiological responses to complex natural speech may provide an objective measure of aspects of quality-of-life measures like self-perceived listening demand.
Collapse
|
9
|
Keles U, Kliemann D, Byrge L, Saarimäki H, Paul LK, Kennedy DP, Adolphs R. Atypical gaze patterns in autistic adults are heterogeneous across but reliable within individuals. Mol Autism 2022; 13:39. [PMID: 36153629 PMCID: PMC9508778 DOI: 10.1186/s13229-022-00517-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Across behavioral studies, autistic individuals show greater variability than typically developing individuals. However, it remains unknown to what extent this variability arises from heterogeneity across individuals, or from unreliability within individuals. Here, we focus on eye tracking, which provides rich dependent measures that have been used extensively in studies of autism. Autistic individuals have an atypical gaze onto both static visual images and dynamic videos that could be leveraged for diagnostic purposes if the above open question could be addressed. METHODS We tested three competing hypotheses: (1) that gaze patterns of autistic individuals are less reliable or noisier than those of controls, (2) that atypical gaze patterns are individually reliable but heterogeneous across autistic individuals, or (3) that atypical gaze patterns are individually reliable and also homogeneous among autistic individuals. We collected desktop-based eye tracking data from two different full-length television sitcom episodes, at two independent sites (Caltech and Indiana University), in a total of over 150 adult participants (N = 48 autistic individuals with IQ in the normal range, 105 controls) and quantified gaze onto features of the videos using automated computer vision-based feature extraction. RESULTS We found support for the second of these hypotheses. Autistic people and controls showed equivalently reliable gaze onto specific features of videos, such as faces, so much so that individuals could be identified significantly above chance using a fingerprinting approach from video epochs as short as 2 min. However, classification of participants into diagnostic groups based on their eye tracking data failed to produce clear group classifications, due to heterogeneity in the autistic group. LIMITATIONS Three limitations are the relatively small sample size, assessment across only two videos (from the same television series), and the absence of other dependent measures (e.g., neuroimaging or genetics) that might have revealed individual-level variability that was not evident with eye tracking. Future studies should expand to larger samples across longer longitudinal epochs, an aim that is now becoming feasible with Internet- and phone-based eye tracking. CONCLUSIONS These findings pave the way for the investigation of autism subtypes, and for elucidating the specific visual features that best discriminate gaze patterns-directions that will also combine with and inform neuroimaging and genetic studies of this complex disorder.
Collapse
Affiliation(s)
- Umit Keles
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, USA.
| | - Dorit Kliemann
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, USA.,Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, USA
| | - Lisa Byrge
- Department of Psychology, University of North Florida, Jacksonville, USA
| | - Heini Saarimäki
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, USA
| | - Daniel P Kennedy
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA.,Chen Neuroscience Institute, California Institute of Technology, Pasadena, USA
| |
Collapse
|
10
|
Byrge L, Kliemann D, He Y, Cheng H, Tyszka JM, Adolphs R, Kennedy DP. Video-evoked fMRI BOLD responses are highly consistent across different data acquisition sites. Hum Brain Mapp 2022; 43:2972-2991. [PMID: 35289976 PMCID: PMC9120552 DOI: 10.1002/hbm.25830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Naturalistic imaging paradigms, in which participants view complex videos in the scanner, are increasingly used in human cognitive neuroscience. Videos evoke temporally synchronized brain responses that are similar across subjects as well as within subjects, but the reproducibility of these brain responses across different data acquisition sites has not yet been quantified. Here, we characterize the consistency of brain responses across independent samples of participants viewing the same videos in functional magnetic resonance imaging (fMRI) scanners at different sites (Indiana University and Caltech). We compared brain responses collected at these different sites for two carefully matched datasets with identical scanner models, acquisition, and preprocessing details, along with a third unmatched dataset in which these details varied. Our overall conclusion is that for matched and unmatched datasets alike, video-evoked brain responses have high consistency across these different sites, both when compared across groups and across pairs of individuals. As one might expect, differences between sites were larger for unmatched datasets than matched datasets. Residual differences between datasets could in part reflect participant-level variability rather than scanner- or data- related effects. Altogether our results indicate promise for the development and, critically, generalization of video fMRI studies of individual differences in healthy and clinical populations alike.
Collapse
Affiliation(s)
- Lisa Byrge
- Department of PsychologyUniversity of North FloridaJacksonvilleFloridaUSA
- Biomedical Sciences ProgramUniversity of North FloridaJacksonvilleFloridaUSA
| | - Dorit Kliemann
- Department of Psychological and Brain SciencesThe University of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowaIAUSA
- Department of PsychiatryUniversity of IowaIowa CityIAUSA
| | - Ye He
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Hu Cheng
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceBloomingtonIndianaUSA
| | - Julian Michael Tyszka
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Caltech Brain Imaging CenterCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Ralph Adolphs
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Chen Neuroscience InstituteCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Daniel P. Kennedy
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceBloomingtonIndianaUSA
- Cognitive Science ProgramIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
11
|
Eddy CM. The Transdiagnostic Relevance of Self-Other Distinction to Psychiatry Spans Emotional, Cognitive and Motor Domains. Front Psychiatry 2022; 13:797952. [PMID: 35360118 PMCID: PMC8960177 DOI: 10.3389/fpsyt.2022.797952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Self-other distinction refers to the ability to distinguish between our own and other people's physical and mental states (actions, perceptions, emotions etc.). Both the right temporo-parietal junction and brain areas associated with the human mirror neuron system are likely to critically influence self-other distinction, given their respective contributions to theory of mind and embodied empathy. The degree of appropriate self-other distinction will vary according to the exact social situation, and how helpful it is to feel into, or remain detached from, another person's mental state. Indeed, the emotional resonance that we can share with others affords the gift of empathy, but over-sharing may pose a downside, leading to a range of difficulties from personal distress to paranoia, and perhaps even motor tics and compulsions. The aim of this perspective paper is to consider how evidence from behavioral and neurophysiological studies supports a role for problems with self-other distinction in a range of psychiatric symptoms spanning the emotional, cognitive and motor domains. The various signs and symptoms associated with problematic self-other distinction comprise both maladaptive and adaptive (compensatory) responses to dysfunction within a common underlying neuropsychological mechanism, compelling the adoption of more holistic transdiagnostic therapeutic approaches within Psychiatry.
Collapse
Affiliation(s)
- Clare M Eddy
- Birmingham and Solihull Mental Health NHS Foundation Trust, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Aykan S, Puglia MH, Kalaycıoğlu C, Pelphrey KA, Tuncalı T, Nalçacı E. Right Anterior Theta Hypersynchrony as a Quantitative Measure Associated with Autistic Traits and K-Cl Cotransporter KCC2 Polymorphism. J Autism Dev Disord 2022; 52:61-72. [PMID: 33635423 DOI: 10.1007/s10803-021-04924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to use theta coherence as a quantitative trait to investigate the relation of the polymorphisms in NKCC1 (rs3087889) and KCC2 (rs9074) channel protein genes to autistic traits (AQ) in neurotypicals. Coherence values for candidate connection regions were calculated from eyes-closed resting EEGs in two independent groups. Hypersynchrony within the right anterior region was related to AQ in both groups (p < 0.05), and variability in this hypersynchrony was related to the rs9074 polymorphism in the total group (p < 0.05). In conclusion, theta hypersynchrony within the right anterior region during eyes-closed rest can be considered a quantitative measure for autistic traits. Replicating our findings in two independent populations with different backgrounds strengthens the validity of the current study.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Canan Kalaycıoğlu
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Erhan Nalçacı
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Quiñones-Camacho LE, Fishburn FA, Belardi K, Williams DL, Huppert TJ, Perlman SB. Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder. Autism Res 2021; 14:1585-1596. [PMID: 33847461 PMCID: PMC11413982 DOI: 10.1002/aur.2513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023]
Abstract
Social deficits in autism spectrum disorder (ASD) have been linked to atypical activation of the mentalizing network. This work, however, has been limited by a focus on the brain activity of a single person during computerized social tasks rather than exploring brain activity during in vivo interactions. The current study assessed neural synchronization during a conversation as a mechanism for social impairment in adults with ASD (n = 24) and matched controls (n = 26). Functional near-infrared spectroscopy (fNIRS) data were collected from the prefrontal cortex (PFC) and tempoparietal junction (TPJ). Participants self-reported on their social communication and videos of the interaction were coded for utterances and conversational turns. As expected, controls showed more neural synchrony than participants with ASD in the TPJ. Also as expected, controls showed less social communication impairment than participants with ASD. However, participants with ASD did not have fewer utterances compared with control subjects. Overall, less neural synchrony in the TPJ was associated with higher social impairment and marginally fewer utterances. Our findings advance our understanding of social difficulties in ASD by linking them to decreased neural synchronization of the TPJ. LAY SUMMARY: The coordination of brain responses is important for efficient social interactions. The current study explored the coordination of brain responses in neurotypical adults and adults with ASD to investigate if difficulties in social interactions are related to difficulties coordinating brain responses in ASD. We found that participants with ASD had more difficulties coordinating brain responses during a conversation with an interacting partner. Additionally, we found that the level of coordination in brain responses was linked to problems with social communication.
Collapse
Affiliation(s)
| | - Frank A. Fishburn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Belardi
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane L. Williams
- Department of Communication Sciences and Disorders, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan B. Perlman
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Wu Y, Hu S, Wang Y, Dong T, Wu H, Zhang Y, Qu Q, Wang A, Yang Y, Li C, Kan H. The degeneration changes of basal forebrain are associated with prospective memory impairment in patients with Wilson's disease. Brain Behav 2021; 11:e2239. [PMID: 34124853 PMCID: PMC8413803 DOI: 10.1002/brb3.2239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Degeneration changes of the basal forebrain (BF) are suggested to play an important role in cognitive impairment and memory loss in patients with Alzheimer's disease and Parkinson's disease. However, little is known about if and how the structure and function of BF are abnormal in Wilson's disease (WD). METHODS Here, we employed the structural and resting-state functional magnetic resonance imaging (fMRI) data from 19 WD individuals and 24 healthy controls (HC). Voxel-based morphometry (VBM) and functional connectivity analysis were applied to investigate the structural and functional degeneration changes of BF in WD. Moreover, the linear regression analyses were performed in the patient group to depict the correlations between the aberrant gray volume and functional connectivity of the BF and clinical performances, such as the prospective memory (PM) and mini-mental state examination (MMSE). RESULTS VBM analysis showed that compared with HC, the volume of overlapping cell groups of BF termed CH1-3 and CH4 was significantly reduced in WD. Additionally, the decreased functional connectivity of the CH4 was distributed in the bilateral temporal-parietal junction (TPJ), right thalamus, orbitofrontal gyrus (ORB), and left middle cingulate cortex (MCC). The performances of the time-based prospective memory (TBPM) and event-based prospective memory (EBPM) were related to reduced functional connectivity between CH4 and right ORB. Besides, the functional connectivity of left TPJ was also significantly correlated with EBPM in WD. CONCLUSION These findings indicated that the degenerative changes of BF may affect PM through the innervation brain function and may help to understand the neural mechanisms underlying cognitive impairment in WD.
Collapse
Affiliation(s)
- Yutong Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Sheng Hu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yi Wang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ting Dong
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongli Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yumei Zhang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianqian Qu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anqin Wang
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanfu Li
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongxing Kan
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
15
|
Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere. Brain Sci 2021; 11:brainsci11080965. [PMID: 34439583 PMCID: PMC8392565 DOI: 10.3390/brainsci11080965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 01/08/2023] Open
Abstract
Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres (e.g., left and right temporo-parietal junction). Yet the necessary roles of these networks, and the broader roles of the left and right cerebral hemispheres in socioemotional functioning, remains debated. Here, we investigated these questions in four rare adults whose right (three cases) or left (one case) cerebral hemisphere had been surgically removed (to a large extent) to treat epilepsy. We studied four closely matched healthy comparison participants, and also compared the patient findings to data from a previously published larger healthy comparison sample (n = 33). Participants completed standardized socioemotional and cognitive assessments to investigate social cognition. Functional magnetic resonance imaging (fMRI) data were obtained during passive viewing of a short, animated movie that distinctively recruits two social brain networks: one engaged when thinking about other agents’ internal mental states (e.g., beliefs, desires, emotions; so-called Theory of Mind or ToM network), and the second engaged when thinking about bodily states (e.g., pain, hunger; so-called PAIN network). Behavioral assessments demonstrated remarkably intact general cognitive functioning in all individuals with hemispherectomy. Social-emotional functioning was somewhat variable in the hemispherectomy participants, but strikingly, none of these individuals had consistently impaired social-emotional processing and none of the assessment scores were consistent with a psychiatric disorder. Using inter-region correlation analyses, we also found surprisingly typical ToM and PAIN networks, as well as typical differentiation of the two networks (in the intact hemisphere of patients with either right or left hemispherectomy), based on idiosyncratic reorganization of cortical activation. The findings argue that compensatory brain networks can process social and emotional information following hemispherectomy across different age levels (from 3 months to 20 years old), and suggest that social brain networks typically distributed across midline and lateral brain regions in this domain can be reorganized, to a substantial degree.
Collapse
|
16
|
Halder S, Bruyere SM. Self-reported impediments at home, school, and community: autistic adults' first-person accounts of their life trajectories and derived pathways. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2021; 68:900-912. [PMID: 37113660 PMCID: PMC10127941 DOI: 10.1080/20473869.2021.1917111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/19/2023]
Abstract
Objectives: Despite suggestions of strengths and abilities of autistic people, it has been an underexplored area in autism research, the primary focus of which has been on examining differences and atypicalities as deficits rather than strengths. Understanding the self-reported impediments via first-person accounts of autistic adults for facilitating the strengths is an important prerequisite for an in-depth comprehension of the unique diversities and potentialities of autistic people, and roadmap development. Methods: The study is based on qualitative phenomenological inductive thematic analysis through in-depth interviews with 10 verbally- and cognitively-able autistic adults, following purposive and snowball sampling. Results: The impediments at home, school, and communities are presented through the five inductively extracted themes. Additionally, the study proposes future pathways for fostering an effective environment to nurture the innate potentialities of autistic people via a strength-focused lens. Conclusion: The study endorses the paradox of strength and atypicalities and advocates a shift from a deficit-focused approach to a strength-focused approach of support, and promotes the neurodiverse model of acceptance and embrace.
Collapse
Affiliation(s)
- Santoshi Halder
- Fulbright Academic and Professional Excellence Fellow, YTI, ILR, Cornell University, Ithaca, NY, USA
- Department of Education, University of Calcutta, Kolkata, India
| | - Susanne Marie Bruyere
- K. Lisa Yang and Hock E. Tan Institute on Employment and Disability, Ithaca, NY, USA
- Disability Studies, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|
18
|
Bathelt J, Geurts HM. Difference in default mode network subsystems in autism across childhood and adolescence. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:556-565. [PMID: 33246376 PMCID: PMC7874372 DOI: 10.1177/1362361320969258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Neuroimaging research has identified a network of brain regions that are more active when we daydream compared to when we are engaged in a task. This network has been named the default mode network. Furthermore, differences in the default mode network are the most consistent findings in neuroimaging research in autism. Recent studies suggest that the default mode network is composed of subnetworks that are tied to different functions, namely memory and understanding others' minds. In this study, we investigated if default mode network differences in autism are related to specific subnetworks of the default mode network and if these differences change across childhood and adolescence. Our results suggest that the subnetworks of the default mode network are less differentiated in autism in middle childhood compared to neurotypicals. By late adolescence, the default mode network subnetwork organisation was similar in the autistic and neurotypical groups. These findings provide a foundation for future studies to investigate if this developmental pattern relates to improvements in the integration of memory and social understanding as autistic children grow up.
Collapse
|
19
|
Dickinson A, Daniel M, Marin A, Gaonkar B, Dapretto M, McDonald NM, Jeste S. Multivariate Neural Connectivity Patterns in Early Infancy Predict Later Autism Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:59-69. [PMID: 32798139 PMCID: PMC7736067 DOI: 10.1016/j.bpsc.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Functional brain connectivity is altered in children and adults with autism spectrum disorder (ASD). Functional disruption during infancy could provide earlier markers of ASD, thus providing a crucial opportunity to improve developmental outcomes. Using a whole-brain multivariate approach, we asked whether electroencephalography measures of neural connectivity at 3 months of age predict autism symptoms at 18 months. METHODS Spontaneous electroencephalography data were collected from 65 infants with and without familial risk for ASD at 3 months of age. Neural connectivity patterns were quantified using phase coherence in the alpha range (6-12 Hz). Support vector regression analysis was used to predict ASD symptoms at age 18 months, with ASD symptoms quantified by the Toddler Module of the Autism Diagnostic Observation Schedule, Second Edition. RESULTS Autism Diagnostic Observation Schedule scores predicted by support vector regression algorithms trained on 3-month electroencephalography data correlated highly with Autism Diagnostic Observation Schedule scores measured at 18 months (r = .76, p = .02, root-mean-square error = 2.38). Specifically, lower frontal connectivity and higher right temporoparietal connectivity at 3 months predicted higher ASD symptoms at 18 months. The support vector regression model did not predict cognitive abilities at 18 months (r = .15, p = .36), suggesting specificity of these brain patterns to ASD. CONCLUSIONS Using a data-driven, unbiased analytic approach, neural connectivity across frontal and temporoparietal regions at 3 months predicted ASD symptoms at 18 months. Identifying early neural differences that precede an ASD diagnosis could promote closer monitoring of infants who show signs of neural risk and provide a crucial opportunity to mediate outcomes through early intervention.
Collapse
Affiliation(s)
- Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Manjari Daniel
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Andrew Marin
- Department of Psychology, University of California, San Diego, San Diego, California
| | - Bilwaj Gaonkar
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, California
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California
| | - Nicole M McDonald
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shafali Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
20
|
Right Temporoparietal Junction Underlies Avoidance of Moral Transgression in Autism Spectrum Disorder. J Neurosci 2020; 41:1699-1715. [PMID: 33158960 DOI: 10.1523/jneurosci.1237-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a core difference in theory-of-mind (ToM) ability, which extends to alterations in moral judgment and decision-making. Although the function of the right temporoparietal junction (rTPJ), a key neural marker of ToM and morality, is known to be atypical in autistic individuals, the neurocomputational mechanisms underlying its specific changes in moral decision-making remain unclear. Here, we addressed this question by using a novel fMRI task together with computational modeling and representational similarity analysis (RSA). ASD participants and healthy control subjects (HCs) decided in public or private whether to incur a personal cost for funding a morally good cause (Good Context) or receive a personal gain for benefiting a morally bad cause (Bad Context). Compared with HC, individuals with ASD were much more likely to reject the opportunity to earn ill gotten money by supporting a bad cause than were HCs. Computational modeling revealed that this resulted from heavily weighing benefits for themselves and the bad cause, suggesting that ASD participants apply a rule of refusing to serve a bad cause because they evaluate the negative consequences of their actions more severely. Moreover, RSA revealed a reduced rTPJ representation of the information specific to moral contexts in ASD participants. Together, these findings indicate the contribution of rTPJ in representing information concerning moral rules and provide new insights for the neurobiological basis underpinning moral behaviors illustrated by a specific difference of rTPJ in ASD participants.SIGNIFICANCE STATEMENT Previous investigations have found an altered pattern of moral behaviors in individuals with autism spectrum disorder (ASD), which is closely associated with functional changes in the right temporoparietal junction (rTPJ). However, the specific neurocomputational mechanisms at play that drive the altered function of the rTPJ in moral decision-making remain unclear. Here, we show that ASD individuals are more inflexible when following a moral rule although an immoral action can benefit themselves, and experience an increased concern about their ill-gotten gains and the moral cost. Moreover, a selectively reduced rTPJ representation of information concerning moral rules was observed in ASD participants. These findings deepen our understanding of the neurobiological roots that underlie atypical moral behaviors in ASD individuals.
Collapse
|
21
|
Ilzarbe D, Lukito S, Moessnang C, O'Daly OG, Lythgoe DJ, Murphy CM, Ashwood K, Stoencheva V, Rubia K, Simonoff E. Neural Correlates of Theory of Mind in Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, and the Comorbid Condition. Front Psychiatry 2020; 11:544482. [PMID: 33240117 PMCID: PMC7677232 DOI: 10.3389/fpsyt.2020.544482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Theory of mind (ToM) or mentalizing difficulties is reported in attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), but the mechanism underpinning these apparently shared deficits is relatively unknown. Eighty-three young adult males, 19 with ASD alone, 21 with ADHD alone, 18 with dual diagnosis of ASD and ADHD, and 25 typically developing (TD) controls completed the functional magnetic resonance imaging version of the Frith-Happé animated-triangle ToM task. We compared neural function during ToM with two non-ToM conditions, random and goal directed motions, using whole-brain and region-of-interest analysis of brain activation and functional connectivity analyses. The groups showed comparable ToM task performance. All three clinical groups lacked local connectivity increase shown by TD controls during ToM in the right temporoparietal cortex, a key mentalizing region, with a differentially increased activation pattern in both ASD and comorbid groups relative to ADHD. Both ASD groups also showed reduced connectivity between right inferior lateral prefrontal and posterior cingulate cortices that could reflect an atypical information transmission to the mentalizing network. In contrast, with mentalizing both ADHD groups showed decreasing connectivity between the medial prefrontal and left temporoparietal cortices when compared to TD controls. Therefore, despite the complex pattern of atypical brain function underpinning ToM across the three disorders, some neurofunctional abnormalities during ToM are associated with ASD and appeared differentiable from those associated with ADHD, with the comorbid group displaying combined abnormalities found in each condition.
Collapse
Affiliation(s)
- Daniel Ilzarbe
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic de Barcelona, Institute of Neuroscience, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Steve Lukito
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Owen G. O'Daly
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - David J. Lythgoe
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - Clodagh M. Murphy
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Ashwood
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vladimira Stoencheva
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| |
Collapse
|
22
|
Loued-Khenissi L, Preuschoff K. A Bird's eye view from below: Activity in the temporo-parietal junction predicts from-above Necker Cube percepts. Neuropsychologia 2020; 149:107654. [PMID: 33069790 DOI: 10.1016/j.neuropsychologia.2020.107654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
The temporo-parietal junction (TPJ) consistently emerges in other-regarding behavior, including tasks probing affective phenomena such as morality and empathy. Yet the TPJ is also recruited in processes with no affective or social component, such as visuo-spatial processing and mathematical cognition. We present serendipitous findings from a perceptual decision-making task on a bistable stimulus, the Necker Cube, performed in an MRI scanner. The stimulus in question is a transparent, wire-frame cube that evokes spontaneous switches in perception. Individuals can view the cube from below or from above, though a consistent bias is shown towards seeing the cube from above. We replicate this bias, finding participants spend more time in the from-above percept. However, in testing for BOLD differences between percept orientations, we found robust responses in bilateral TPJ for the from-above > from-below perceptual state. We speculate that this neural response comes from the sensory incongruence of viewing an object from above while lying supine in the scanner. We further speculate that the TPJ resolves this incongruence by facilitating an egocentric projection. Such a function would explain the TPJ's ubiquitous response to other-regarding, visuo-spatial and mathematical cognition, as all these phenomena demand an ability to ambulate through the coordinate space. Our findings suggest the TPJ may not play a specific role in social or moral components of other-regarding behavior, such as altruism, and further indirectly suggest that "pure", allocentric altruism may not correlate with the TPJ. Results further have implications on how the TPJ may be modulated by activities such as flight or drone operation. Finally, this study highlights the possible need for congruence between stimuli and body position in neuroimaging studies.
Collapse
Affiliation(s)
- Leyla Loued-Khenissi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| | - Kerstin Preuschoff
- Geneva Finance Research Institute, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Redcay E, Moraczewski D. Social cognition in context: A naturalistic imaging approach. Neuroimage 2020; 216:116392. [PMID: 31770637 PMCID: PMC7244370 DOI: 10.1016/j.neuroimage.2019.116392] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Social processing occurs within dynamic, complex, and multimodal contexts, but the study of social cognition typically involves static, artificial stimuli. Naturalistic approaches (e.g., movie viewing) can recapture the richness and complexity of real-world interactions. Novel analytic approaches allow for the investigation of functional brain organization in response to contextually embedded and extended events with a complex temporal structure during movie viewing or narrative processing. In addition to these within-brain measures, movies afford between-brain analyses such as inter-subject correlation, which allows for identification of stimulus-specific brain response through the correlation of brain activity between participants' brains. Research using these approaches offers both practical and theoretical advantages in understanding how we navigate our social world. Practically, movies are engaging stimuli that allow for more rapid presentation of multiple event types and improve compliance even in very young populations. Theoretically, studies have validated the use of these measures by demonstrating functional selectivity to contextually embedded stimuli. Naturalistic approaches also allow for novel insights. For example, regions associated with social cognition have longer temporal receptive windows, making them well suited to social-cognitive processes that require integration of information over longer timescales. Furthermore, the similarity in the temporal and spatial brain response between individuals during naturalistic viewing is related to age, predictive of friendships, and reduced in autism spectrum disorder. These findings offer first glimpses into the power of using these naturalistic, dynamic approaches to understand how we perceive, reason about, and interact with others.
Collapse
Affiliation(s)
- Elizabeth Redcay
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA.
| | - Dustin Moraczewski
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA; Computation and Mathematics for Biological Networks, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Yuk V, Anagnostou E, Taylor MJ. Altered Connectivity During a False-Belief Task in Adults With Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:901-912. [PMID: 32600899 DOI: 10.1016/j.bpsc.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Deficits in social communication are one of the main features of autism spectrum disorder (ASD). Adults with ASD show atypical brain activity during false-belief understanding, an aspect of social communication involving the ability to infer that an individual can have an incorrect belief about a situation. Our study is the first to investigate whether adults with ASD exhibit differences in frequency-specific functional connectivity patterns during false-belief reasoning. METHODS We used magnetoencephalography to contrast functional connectivity underlying false-belief understanding between 40 adults with ASD and 39 control adults. We examined whole-brain phase synchrony measures during a false-belief task in 3 frequency bands: theta (4-7 Hz), alpha (8-14 Hz), and beta (15-30 Hz). RESULTS Adults with ASD demonstrated reduced theta-band connectivity compared with control adults between several right-lateralized and midline regions such as the medial prefrontal cortex, right temporoparietal junction, right inferior frontal gyrus, and right superior temporal gyrus. During false-belief trials, they also recruited a network in the beta band that included primary visual regions such as the bilateral inferior occipital gyri and the left anterior temporoparietal junction. CONCLUSIONS Reduced theta-band synchrony between areas associated with mentalizing, inhibition, and visual processing implies some difficulty in communication among these functions in ASD. This impairment in top-down control in the theta band may be counterbalanced by their engagement of a beta-band network because both the left anterior temporoparietal junction and beta-band oscillations are associated with attentional processes. Thus, adults with ASD demonstrate alternative neural mechanisms for successful false-belief reasoning.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | - Evdokia Anagnostou
- Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Evaluación e intervención Neuropsicológica en un caso de trastorno del espectro autista (TEA) severo. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2020. [DOI: 10.33881/2027-1786.rip.13210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
El presente estudio se dedica a la propuesta de evaluación e intervención neuropsicológica en el caso de un niño con características del Trastorno del Espectro Autista (TEA). El niño fue evaluado por presentar retraso en el lenguaje, conductas estereotipadas, además de dificultades cognoscitivas y motoras. El diagnóstico de la evaluación neuropsicológica permitió precisar los aspectos fuertes y débiles del desarrollo psicológico del niño. La propuesta de programa de intervención fue elaborada de acuerdo con la postura teórico metodológica histórico cultural y la teoría de la actividad, que consideran la localización sistémica y dinámica de los mecanismos cerebrales, así como, las características esenciales de la edad psicológica. El periodo de intervención fue de 24 meses, dividiéndose en 180 sesiones individuales y 160 sesiones grupales de 60 minutos cada una. Después de la intervención se realizó una revaloración neuropsicológica del paciente, encontrando cambios favorables principalmente en el desarrollo de la función reguladora, comprensión del lenguaje oral e integración social.
Collapse
|
26
|
Brain and behavioral alterations in subjects with social anxiety dominated by empathic embarrassment. Proc Natl Acad Sci U S A 2020; 117:4385-4391. [PMID: 32041879 PMCID: PMC7049137 DOI: 10.1073/pnas.1918081117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
People are increasingly affected by social anxiety that includes emotional hypersensitivity and inaccurate interpretation of social encounters, and varies markedly in its subjective manifestations. We searched for insights into the underlying neurocognitive mechanisms of Taijin-kyofusho (TKS), a specific subtype of social-anxiety disorder common in East Asia and dominated by empathic or other-oriented embarrassment. We found TKS to be characterized by enhanced affective and reduced cognitive empathy. Moreover, analysis of functional MRI data—collected while subjects viewed videos of badly singing people—revealed disruption of the cognitive–empathy network, possibly obstructing flexible inference of others’ perspective or augmenting maladaptive feelings of embarrassment. Our findings shed light on how altered affective and cognitive processing can contribute to the development of imaginary fears. Social-anxiety disorder involves a fear of embarrassing oneself in the presence of others. Taijin-kyofusho (TKS), a subtype common in East Asia, additionally includes a fear of embarrassing others. TKS individuals are hypersensitive to others’ feelings and worry that their physical or behavioral defects humiliate others. To explore the underlying neurocognitive mechanisms, we compared TKS ratings with questionnaire-based empathic disposition, cognitive flexibility (set-shifting), and empathy-associated brain activity in 23 Japanese adults. During 3-tesla functional MRI, subjects watched video clips of badly singing people who expressed either authentic embarrassment (EMBAR) or hubristic pride (PRIDE). We expected the EMBAR singers to embarrass the viewers via emotion-sharing involving affective empathy (affEMP), and the PRIDE singers to embarrass via perspective-taking involving cognitive empathy (cogEMP). During affEMP (EMBAR > PRIDE), TKS scores correlated positively with dispositional affEMP (personal-distress dimension) and with amygdala activity. During cogEMP (EMBAR < PRIDE), TKS scores correlated negatively with cognitive flexibility and with activity of the posterior superior temporal sulcus/temporoparietal junction (pSTS/TPJ). Intersubject correlation analysis implied stronger involvement of the anterior insula, inferior frontal gyrus, and premotor cortex during affEMP than cogEMP and stronger involvement of the medial prefrontal cortex, posterior cingulate cortex, and pSTS/TPJ during cogEMP than affEMP. During cogEMP, the whole-brain functional connectivity was weaker the higher the TKS scores. The observed imbalance between affEMP and cogEMP, and the disruption of functional brain connectivity, likely deteriorate cognitive processing during embarrassing situations in persons who suffer from other-oriented social anxiety dominated by empathic embarrassment.
Collapse
|
27
|
Jun E, Kang E, Choi J, Suk HI. Modeling regional dynamics in low-frequency fluctuation and its application to Autism spectrum disorder diagnosis. Neuroimage 2019; 184:669-686. [PMID: 30248456 DOI: 10.1016/j.neuroimage.2018.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023] Open
|
28
|
Kliemann D, Adolphs R. The social neuroscience of mentalizing: challenges and recommendations. Curr Opin Psychol 2018; 24:1-6. [PMID: 29529497 PMCID: PMC6110997 DOI: 10.1016/j.copsyc.2018.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 01/19/2023]
Abstract
Our ability to understand and think about the mental states of other people is referred to as 'mentalizing' or 'theory of mind'. It features prominently in all social behavior, is essential for maintaining relationships, and shows pronounced individual differences. Here we review new approaches to study the underlying psychological mechanisms and discuss how they could best be investigated using modern tools from social neuroscience. We list key desiderata for the field, such as validity, specificity, and reproducibility, and link them to specific recommendations for the future. We also discuss new computational modeling approaches, and the application to psychopathology.
Collapse
Affiliation(s)
- Dorit Kliemann
- California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, CA 91125, USA
| | - Ralph Adolphs
- California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Gianotti LRR, Lobmaier JS, Calluso C, Dahinden FM, Knoch D. Theta resting EEG in TPJ/pSTS is associated with individual differences in the feeling of being looked at. Soc Cogn Affect Neurosci 2018; 13:216-223. [PMID: 29228358 PMCID: PMC5827341 DOI: 10.1093/scan/nsx143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Direct eye gaze is a powerful stimulus in social interactions, yet people vary considerably in the range of gaze lines that they accept as being direct (cone of direct gaze, CoDG). Here, we searched for a possible neural trait marker of these individual differences. We measured the width of the CoDG in 137 healthy participants and related their individual CoDG to their neural baseline activation as measured with resting electroencephalogram. Using a source-localization technique, we found that resting theta current density in the left temporo-parietal junction (TPJ) and adjacent posterior superior temporal sulcus (pSTS) was associated with the width of CoDG. Our findings suggest that the higher the baseline cortical activation in the left TPJ/pSTS, the wider the CoDG and thus the more liberal the individuals’ judgments were in deciding whether a looker stimulus was making eye contact or not. This is a first demonstration of the neural signatures underlying individual differences in the feeling of being looked at.
Collapse
Affiliation(s)
- Lorena R R Gianotti
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, CH-3012 Bern, Switzerland
| | - Janek S Lobmaier
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, CH-3012 Bern, Switzerland
| | - Cinzia Calluso
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, CH-3012 Bern, Switzerland.,Department of Business and Management, LUISS Guido Carli University, Rome 00197, Italy
| | - Franziska M Dahinden
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, CH-3012 Bern, Switzerland
| | - Daria Knoch
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
30
|
Cheng C, Fan L, Xia X, Eickhoff SB, Li H, Li H, Chen J, Jiang T. Rostro-caudal organization of the human posterior superior temporal sulcus revealed by connectivity profiles. Hum Brain Mapp 2018; 39:5112-5125. [PMID: 30273447 DOI: 10.1002/hbm.24349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
The posterior superior temporal sulcus (pSTS) plays an important role in biological motion perception but is also thought to be essential for speech and facial processing. However, although there are many previous investigations of distinct functional modules within the pSTS, the functional organization of the pSTS in its full functional heterogeneity has not yet been established. Here we applied a connectivity-based parcellation strategy to delineate the human pSTS subregions based on distinct anatomical connectivity profiles and divided it into rostral and caudal subregions using diffusion tensor imaging. Subsequent multimodal connection pattern analyses revealed distinct subregional connectivity profiles. From this we inferred that the two subregions are involved in distinct functional circuits, the language processing loop and the cognition attention network. These results indicate a convergent functional architecture of the pSTS that can be revealed based on different types of connectivity and is reflected in different functions and interactions. In addition, when the subregions were performing their processing in the different functional circuits, we found asymmetry in the bilateral pSTS. Our findings may improve the understanding of the functional organization of the pSTS and provide new insights into its interactions and integration of information at the subregional level.
Collapse
Affiliation(s)
- Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Hai Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Yuk V, Urbain C, Pang EW, Anagnostou E, Buchsbaum D, Taylor MJ. Do you know what I'm thinking? Temporal and spatial brain activity during a theory-of-mind task in children with autism. Dev Cogn Neurosci 2018; 34:139-147. [PMID: 30415185 PMCID: PMC6969351 DOI: 10.1016/j.dcn.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/31/2023] Open
Abstract
First MEG study of neural underpinnings of theory of mind differences in autism. Children with autism show decreased LTPJ activity from 300 to 375 and 425 to 500 ms. Children with autism also show increased RIFG activity from 325 to 375 ms. Co-incident lower LTPJ and higher RIFG activity implies compensatory use of RIFG. Executive functions may augment impaired theory of mind in autism.
The social impairments observed in children with autism spectrum disorder are thought to arise in part from deficits in theory of mind, the ability to understand other people’s thoughts and feelings. To determine the temporal-spatial dynamics of brain activity underlying these atypical theory-of-mind processes, we used magnetoencephalography to characterize the sequence of functional brain patterns (i.e. when and where) related to theory-of-mind reasoning in 19 high-functioning children with autism compared to 22 age- and sex-matched typically-developing children aged 8–12 during a false-belief (theory-of-mind) task. While task performance did not differ between the two groups, children with autism showed reduced activation in the left temporoparietal junction between 300–375 and 425–500 ms, as well as increased activation in the right inferior frontal gyrus from 325 to 375 ms compared to controls. The overlap in decreased temporoparietal junction activity and increased right inferior frontal gyrus activation from 325 to 375 ms suggests that in children with autism, the right inferior frontal gyrus may compensate for deficits in the temporoparietal junction, a neural theory-of-mind network hub. As the right inferior frontal gyrus is involved in inhibitory control, this finding suggests that children with autism rely on executive functions to bolster their false-belief understanding.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Charline Urbain
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Daphna Buchsbaum
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Gianotti LRR, Dahinden FM, Baumgartner T, Knoch D. Understanding Individual Differences in Domain-General Prosociality: A Resting EEG Study. Brain Topogr 2018; 32:118-126. [PMID: 30267176 PMCID: PMC6327080 DOI: 10.1007/s10548-018-0679-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
Abstract
Prosocial behavior is of vital importance for the smooth functioning of society. However, the propensity to behave in a prosocial manner is characterized by vast individual differences. In order to reveal the sources of these differences, some studies have used objective, task-independent neural traits, for instance resting electroencephalography (EEG). Despite providing valuable insights into the neural signatures of several domains of prosociality, each of these studies has only focused on one single domain. Here, we exposed 137 participants to different social dilemma situations in order to obtain a measure of the individuals’ domain-general prosociality and recorded multi-channel task-independent, resting EEG. Using a source-localization technique, we found that resting current density within the temporo-parietal junction in two beta bands (beta2 and beta3) was positively associated with domain-general prosociality. This is the first demonstration of neural signatures underlying individual differences in the propensity to behave in a prosocial manner across different social situations.
Collapse
Affiliation(s)
- Lorena R R Gianotti
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| | - Franziska M Dahinden
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Thomas Baumgartner
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Daria Knoch
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
33
|
Genetic risk for schizophrenia and autism, social impairment and developmental pathways to psychosis. Transl Psychiatry 2018; 8:204. [PMID: 30258131 PMCID: PMC6158250 DOI: 10.1038/s41398-018-0229-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
While psychotic experiences (PEs) are assumed to represent psychosis liability, general population studies have not been able to establish significant associations between polygenic risk scores (PRS) and PEs. Previous work suggests that PEs may only represent significant risk when accompanied by social impairment. Leveraging data from the large longitudinal IMAGEN cohort, including 2096 14-year old adolescents that were followed-up to age 18, we tested whether the association between polygenic risk and PEs is mediated by (increasing) impairments in social functioning and social cognitive processes. Using structural equation modeling (SEM) for the subset of participants (n = 643) with complete baseline and follow-up data, we examined pathways to PEs. We found that high polygenic risk for schizophrenia (p = 0.014), reduced brain activity to emotional stimuli (p = 0.009) and social impairments in late adolescence (p < 0.001; controlling for functioning in early adolescence) each independently contributed to the severity of PEs at age 18. The pathway between polygenic risk for autism spectrum disorder and PEs was mediated by social impairments in late adolescence (indirect pathway; p = 0.025). These findings point to multiple direct and indirect pathways to PEs, suggesting that different processes are in play, depending on genetic loading, and environment. Our results suggest that treatments targeting prevention of social impairment may be particularly promising for individuals at genetic risk for autism in order to minimize risk for psychosis.
Collapse
|
34
|
Joshi G, Arnold Anteraper S, Patil KR, Semwal M, Goldin RL, Furtak SL, Chai XJ, Saygin ZM, Gabrieli JDE, Biederman J, Whitfield-Gabrieli S. Integration and Segregation of Default Mode Network Resting-State Functional Connectivity in Transition-Age Males with High-Functioning Autism Spectrum Disorder: A Proof-of-Concept Study. Brain Connect 2018; 7:558-573. [PMID: 28942672 DOI: 10.1089/brain.2016.0483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions). RsFc data analysis was performed using a seed-driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra-DMN-positive and -negative RsFc correlations, respectively. In ASD, the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrus regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of subgrouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of DMN RsFc. Future studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Gagan Joshi
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Sheeba Arnold Anteraper
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kaustubh R Patil
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Meha Semwal
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Rachel L Goldin
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Stephannie L Furtak
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | | | - Zeynep M Saygin
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - John D E Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Joseph Biederman
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
35
|
Kliemann D, Richardson H, Anzellotti S, Ayyash D, Haskins AJ, Gabrieli JDE, Saxe RR. Cortical responses to dynamic emotional facial expressions generalize across stimuli, and are sensitive to task-relevance, in adults with and without Autism. Cortex 2018; 103:24-43. [PMID: 29554540 PMCID: PMC5988954 DOI: 10.1016/j.cortex.2018.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Individuals with Autism Spectrum Disorders (ASD) report difficulties extracting meaningful information from dynamic and complex social cues, like facial expressions. The nature and mechanisms of these difficulties remain unclear. Here we tested whether that difficulty can be traced to the pattern of activity in "social brain" regions, when viewing dynamic facial expressions. In two studies, adult participants (male and female) watched brief videos of a range of positive and negative facial expressions, while undergoing functional magnetic resonance imaging (Study 1: ASD n = 16, control n = 21; Study 2: ASD n = 22, control n = 30). Patterns of hemodynamic activity differentiated among facial emotional expressions in left and right superior temporal sulcus, fusiform gyrus, and parts of medial prefrontal cortex. In both control participants and high-functioning individuals with ASD, we observed (i) similar responses to emotional valence that generalized across facial expressions and animated social events; (ii) similar flexibility of responses to emotional valence, when manipulating the task-relevance of perceived emotions; and (iii) similar responses to a range of emotions within valence. Altogether, the data indicate that there was little or no group difference in cortical responses to isolated dynamic emotional facial expressions, as measured with fMRI. Difficulties with real-world social communication and social interaction in ASD may instead reflect differences in initiating and maintaining contingent interactions, or in integrating social information over time or context.
Collapse
Affiliation(s)
- Dorit Kliemann
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Hilary Richardson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefano Anzellotti
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dima Ayyash
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda J Haskins
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca R Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Jia H, Li Y, Yu D. Normalized spatial complexity analysis of neural signals. Sci Rep 2018; 8:7912. [PMID: 29784971 PMCID: PMC5962588 DOI: 10.1038/s41598-018-26329-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/08/2018] [Indexed: 01/12/2023] Open
Abstract
The spatial complexity of neural signals, which was traditionally quantified by omega complexity, varies inversely with the global functional connectivity level across distinct region-of-interests, thus provides a novel approach in functional connectivity analysis. However, the measures in omega complexity are sensitive to the number of neural time-series. Here, normalized spatial complexity was suggested to overcome the above limitation, and was verified by the functional near-infrared spectroscopy (fNIRS) data from a previous published autism spectrum disorder (ASD) research. By this new method, several conclusions consistent with traditional approaches on the pathological mechanisms of ASD were found, i.e., the prefrontal cortex made a major contribution to the hypo-connectivity of young children with ASD. Moreover, some novel findings were also detected (e.g., significantly higher normalized regional spatial complexities of bilateral prefrontal cortices and the variability of normalized local complexity differential of right temporal lobe, and the regional differences of measures in normalized regional spatial complexity), which could not be successfully detected via traditional approaches. These results confirmed the value of this novel approach, and extended the methodology system of functional connectivity. This novel technique could be applied to the neural signal of other neuroimaging techniques and other neurological and cognitive conditions.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner MG, Kinard JL, Stuber GD, Chandrasekhar T, Politte LC, Sikich L, Dichter GS. The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J Neurodev Disord 2018; 10:12. [PMID: 29587625 PMCID: PMC5870086 DOI: 10.1186/s11689-018-9228-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intranasal oxytocin (OT) has been shown to improve social communication functioning of individuals with autism spectrum disorder (ASD) and, thus, has received considerable interest as a potential ASD therapeutic agent. Although preclinical research indicates that OT modulates the functional output of the mesocorticolimbic dopamine system that processes rewards, no clinical brain imaging study to date has examined the effects of OT on this system using a reward processing paradigm. To address this, we used an incentive delay task to examine the effects of a single dose of intranasal OT, versus placebo (PLC), on neural responses to social and nonsocial rewards in children with ASD. METHODS In this placebo-controlled double-blind study, 28 children and adolescents with ASD (age: M = 13.43 years, SD = 2.36) completed two fMRI scans, one after intranasal OT administration and one after PLC administration. During both scanning sessions, participants completed social and nonsocial incentive delay tasks. Task-based neural activation and connectivity were examined to assess the impact of OT relative to PLC on mesocorticolimbic brain responses to social and nonsocial reward anticipation and outcomes. RESULTS Central analyses compared the OT and PLC conditions. During nonsocial reward anticipation, there was greater activation in the right nucleus accumbens (NAcc), left anterior cingulate cortex (ACC), bilateral orbital frontal cortex (OFC), left superior frontal cortex, and right frontal pole (FP) during the OT condition relative to PLC. Alternatively, during social reward anticipation and outcomes, there were no significant increases in brain activation during the OT condition relative to PLC. A Treatment Group × Reward Condition interaction revealed relatively greater activation in the right NAcc, right caudate nucleus, left ACC, and right OFC during nonsocial relative to social reward anticipation during the OT condition relative to PLC. Additionally, these analyses revealed greater activation during nonsocial reward outcomes during the OT condition relative to PLC in the right OFC and left FP. Finally, functional connectivity analyses generally revealed changes in frontostriatal connections during the OT condition relative to PLC in response to nonsocial, but not social, rewards. CONCLUSIONS The effects of intranasal OT administration on mesocorticolimbic brain systems that process rewards in ASD were observable primarily during the processing of nonsocial incentive salience stimuli. These findings have implications for understanding the effects of OT on neural systems that process rewards, as well as for experimental trials of novel ASD treatments developed to ameliorate social communication impairments in ASD.
Collapse
Affiliation(s)
- R K Greene
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - M Spanos
- Duke Clinical Research Institute, Duke University, Durham, NC, 27705, USA.,Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27705, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27705, USA
| | - C Alderman
- Duke Clinical Research Institute, Duke University, Durham, NC, 27705, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - E Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - J Bizzell
- Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27705, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - M G Mosner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - J L Kinard
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - G D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - T Chandrasekhar
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27705, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - L C Politte
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - L Sikich
- Duke Clinical Research Institute, Duke University, Durham, NC, 27705, USA.,Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27705, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27705, USA
| | - G S Dichter
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA. .,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA. .,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB 7155, Chapel Hill, NC, 27599-7155, USA.
| |
Collapse
|
38
|
Rosenblau G, Kliemann D, Dziobek I, Heekeren HR. Emotional prosody processing in autism spectrum disorder. Soc Cogn Affect Neurosci 2017; 12:224-239. [PMID: 27531389 PMCID: PMC5390729 DOI: 10.1093/scan/nsw118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
Individuals with Autism Spectrum Disorder (ASD) are characterized by severe deficits in social communication, whereby the nature of their impairments in emotional prosody processing have yet to be specified. Here, we investigated emotional prosody processing in individuals with ASD and controls with novel, lifelike behavioral and neuroimaging paradigms. Compared to controls, individuals with ASD showed reduced emotional prosody recognition accuracy on a behavioral task. On the neural level, individuals with ASD displayed reduced activity of the STS, insula and amygdala for complex vs basic emotions compared to controls. Moreover, the coupling between the STS and amygdala for complex vs basic emotions was reduced in the ASD group. Finally, groups differed with respect to the relationship between brain activity and behavioral performance. Brain activity during emotional prosody processing was more strongly related to prosody recognition accuracy in ASD participants. In contrast, the coupling between STS and anterior cingulate cortex (ACC) activity predicted behavioral task performance more strongly in the control group. These results provide evidence for aberrant emotional prosody processing of individuals with ASD. They suggest that the differences in the relationship between the neural and behavioral level of individuals with ASD may account for their observed deficits in social communication.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,Yale Child Study Center, Yale University, 230 S. Frontage Road, New Haven, CT 06519, USA
| | - Dorit Kliemann
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.,Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Isabel Dziobek
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Hauke R Heekeren
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,Dahlem Institute for Neuroimaging of Emotion, Freie Universität, Berlin, Germany
| |
Collapse
|
39
|
Liu T, Liu X, Yi L, Zhu C, Markey PS, Pelowski M. Assessing autism at its social and developmental roots: A review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. Neuroimage 2017; 185:955-967. [PMID: 28966083 DOI: 10.1016/j.neuroimage.2017.09.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
We review a relatively new method for studying the developing brain in children and infants with Autism Spectrum Disorder (ASD). Despite advances in behavioral screening and brain imaging, due to paradigms that do not easily allow for testing of awake, very young, and socially-engaged children-i.e., the social and the baby brain-the biological underpinnings of this disorder remain a mystery. We introduce an approach based on functional near-infrared spectroscopy (fNIRS), which offers a noninvasive imaging technique for studying functional activations by measuring changes in the brain's hemodynamic properties. This further enables measurement of brain activation in upright, interactive settings, while maintaining general equivalence to fMRI findings. We review the existing studies that have used fNIRS for ASD, discussing their promise, limitations, and their technical aspects, gearing this study to the researcher who may be new to this technique and highlighting potential targets for future research.
Collapse
Affiliation(s)
- Tao Liu
- School of Management, Zhejiang University, Hangzhou, China.
| | - Xingchen Liu
- College of Education and Psychology, Hainan Normal University, Haikou, China
| | - Li Yi
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | | | |
Collapse
|
40
|
Padmanabhan A, Lynch CJ, Schaer M, Menon V. The Default Mode Network in Autism. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:476-486. [PMID: 29034353 PMCID: PMC5635856 DOI: 10.1016/j.bpsc.2017.04.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in social communication and interaction. Since its discovery as a major functional brain system, the default mode network (DMN) has been implicated in a number of psychiatric disorders, including ASD. Here we review converging multimodal evidence for DMN dysfunction in the context of specific components of social cognitive dysfunction in ASD: 'self-referential processing' - the ability to process social information relative to oneself and 'theory of mind' or 'mentalizing' - the ability to infer the mental states such as beliefs, intentions, and emotions of others. We show that altered functional and structural organization of the DMN, and its atypical developmental trajectory, are prominent neurobiological features of ASD. We integrate findings on atypical cytoarchitectonic organization and imbalance in excitatory-inhibitory circuits, which alter local and global brain signaling, to scrutinize putative mechanisms underlying DMN dysfunction in ASD. Our synthesis of the extant literature suggests that aberrancies in key nodes of the DMN and their dynamic functional interactions contribute to atypical integration of information about the self in relation to 'other', as well as impairments in the ability to flexibly attend to socially relevant stimuli. We conclude by highlighting open questions for future research.
Collapse
Affiliation(s)
- Aarthi Padmanabhan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | | | - Marie Schaer
- University of Geneva, Department of Psychiatry, Geneva, Switzerland
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
- Program in Neuroscience, Stanford University School of Medicine, Stanford, CA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
41
|
Etkin A. Is the boss watching? Nat Neurosci 2017; 20:1039-1040. [PMID: 28745724 DOI: 10.1038/nn.4603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Etkin
- Department of Psychiatry and Behavioral Sciences and the Stanford Neurosciences Institute, Stanford University, Stanford, California, USA, and with the Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California, USA
| |
Collapse
|
42
|
Karim HT, Perlman SB. Neurodevelopmental maturation as a function of irritable temperament: Insights From a Naturalistic Emotional Video Viewing Paradigm. Hum Brain Mapp 2017; 38:5307-5321. [PMID: 28737296 DOI: 10.1002/hbm.23742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the neural systems involved in decreasing behavioral reactivity to emotional stimuli as children age. It has been suggested that this process may interact with temperament-linked variations in neurodevelopment to better explain individual differences in the maturation of emotion regulation. In this investigation, children ages 4 to 12 (n = 30, mean age = 7.62 years, SD = 1.71 years) and adults (n = 21, mean age = 26.67 years) watched clips from popular children's films containing positive, negative, or neutral emotional content during functional magnetic resonance imaging. Compared to adults, children demonstrated greater activation in subcortical and visual regions (hippocampus, thalamus, visual cortex, fusiform) during negative clips and greater activation of subcortical and prefrontal regions during positive clips (hippocampus, thalamus, caudate, ACC, OFC, superior frontal cortex). In children only, we found an age by temperament interaction in frontal and subcortical regions indicating that activation increased as a function of age in the most irritable children, but decreased as a function of age in the least irritable children. Findings were not present in the temperament domain of fear. Findings replicate and extend the existing irritability literature, indicating that healthy children highest in irritability may develop comparatively greater activation of the lateral prefrontal cortex in order to support adaptive regulation during emotional challenges. These results are discussed within the context of the emerging literature on the utility of complex, multidimensional, and naturalistic stimuli, which present a complementary alternative to understanding ecologically valid and sustained neural responses to emotionally evocative stimuli. Hum Brain Mapp 38:5307-5321, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helmet T Karim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan B Perlman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Lahnakoski JM, Jääskeläinen IP, Sams M, Nummenmaa L. Neural mechanisms for integrating consecutive and interleaved natural events. Hum Brain Mapp 2017; 38:3360-3376. [PMID: 28379608 DOI: 10.1002/hbm.23591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 11/07/2022] Open
Abstract
To understand temporally extended events, the human brain needs to accumulate information continuously across time. Interruptions that require switching of attention to other event sequences disrupt this process. To reveal neural mechanisms supporting integration of event information, we measured brain activity with functional magnetic resonance imaging (fMRI) from 18 participants while they viewed 6.5-minute excerpts from three movies (i) consecutively and (ii) as interleaved segments of approximately 50-s in duration. We measured inter-subject reliability of brain activity by calculating inter-subject correlations (ISC) of fMRI signals and analyzed activation timecourses with a general linear model (GLM). Interleaving decreased the ISC in posterior temporal lobes, medial prefrontal cortex, superior precuneus, medial occipital cortex, and cerebellum. In the GLM analyses, posterior temporal lobes were activated more consistently by instances of speech when the movies were viewed consecutively than as interleaved segments. By contrast, low-level auditory and visual stimulus features and editing boundaries caused similar activity patterns in both conditions. In the medial occipital cortex, decreases in ISC were seen in short bursts throughout the movie clips. By contrast, the other areas showed longer-lasting differences in ISC during isolated scenes depicting socially-relevant and suspenseful content, such as deception or inter-subject conflict. The areas in the posterior temporal lobes also showed sustained activity during continuous actions and were deactivated when actions ended at scene boundaries. Our results suggest that the posterior temporal and dorsomedial prefrontal cortices, as well as the cerebellum and dorsal precuneus, support integration of events into coherent event sequences. Hum Brain Mapp 38:3360-3376, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juha M Lahnakoski
- Department of Neuroscience and Biomedical Engineering (NBE), School of Science, Aalto University, Espoo, FI-00076, Finland.,Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, School of Science, Aalto University, Espoo, FI-00076, Finland.,Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, DE-80804, Germany
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering (NBE), School of Science, Aalto University, Espoo, FI-00076, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering (NBE), School of Science, Aalto University, Espoo, FI-00076, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, FI-20521, Finland.,Department of Psychology, University of Turku, Turku, FI-20521, Finland
| |
Collapse
|
44
|
Schumann CM, Sharp FR, Ander BP, Stamova B. Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 2017; 8:4. [PMID: 28184278 PMCID: PMC5294827 DOI: 10.1186/s13229-017-0117-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate. Findings After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes. Conclusions Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA.,MIND Institute, University of California, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
45
|
Gedek HM, Pantelis PC, Kennedy DP. The influence of presentation modality on the social comprehension of naturalistic scenes in adults with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2016; 22:205-215. [PMID: 27899707 DOI: 10.1177/1362361316671011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The comprehension of dynamically unfolding social situations is made possible by the seamless integration of multimodal information merged with rich intuitions about the thoughts and behaviors of others. We examined how high-functioning adults with autism spectrum disorder and neurotypical controls made a complex social judgment (i.e. rating the social awkwardness of scenes from a television sitcom) across three conditions that manipulated presentation modality-visual alone, transcribed text alone, or visual and auditory together. The autism spectrum disorder and control groups collectively assigned similar mean awkwardness ratings to individual scenes. However, individual participants with autism spectrum disorder tended to respond more idiosyncratically than controls, assigning ratings that were less correlated with the ratings of the other participants in the sample. We found no evidence that this group difference was isolated to any specific presentation modality. In a comparison condition, we found no group differences when participants instead rated the happiness of characters (a more basic social judgment) in full audiovisual format. Thus, although we observed differences in the manner with which high-functioning adults with autism spectrum disorder make social judgments compared to controls, these group differences may be dependent on the social dimension being judged, rather than the specific modality of presentation.
Collapse
Affiliation(s)
- Haley M Gedek
- 1 Indiana University Bloomington, USA.,2 University of Notre Dame, USA
| | | | | |
Collapse
|
46
|
Yang J, Lee J. Different aberrant mentalizing networks in males and females with autism spectrum disorders: Evidence from resting-state functional magnetic resonance imaging. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2016; 22:134-148. [PMID: 29490484 DOI: 10.1177/1362361316667056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have found that individuals with autism spectrum disorders show impairments in mentalizing processes and aberrant brain activity compared with typically developing participants. However, the findings are mainly from male participants and the aberrant effects in autism spectrum disorder females and sex differences are still unclear. To address these issues, this study analyzed intrinsic functional connectivity of mentalizing regions using resting-state functional magnetic resonance imaging data of 48 autism spectrum disorder males and females and 48 typically developing participants in autism brain imaging data exchange. Whole-brain analyses showed that autism spectrum disorder males had hyperconnectivity in functional connectivity of the bilateral temporal-parietal junction, whereas autism spectrum disorder females showed hypoconnectivity in functional connectivity of the medial prefrontal cortex, precuneus, and right temporal-parietal junction. Interaction between sex and autism was found in both short- and long-distance functional connectivity effects, confirming that autism spectrum disorder males showed overconnectivity, while autism spectrum disorder females showed underconnectivity. Furthermore, a regression analysis revealed that in autism spectrum disorder, males and females demonstrated different relations between the functional connectivity effects of the mentalizing regions and the core autism spectrum disorder deficits. These results suggest sex differences in the mentalizing network in autism spectrum disorder individuals. Future work is needed to examine how sex interacts with other factors such as age and the sex differences during mentalizing task performance.
Collapse
|
47
|
Lombardo MV, Lai MC, Auyeung B, Holt RJ, Allison C, Smith P, Chakrabarti B, Ruigrok ANV, Suckling J, Bullmore ET, Ecker C, Craig MC, Murphy DGM, Happé F, Baron-Cohen S. Unsupervised data-driven stratification of mentalizing heterogeneity in autism. Sci Rep 2016; 6:35333. [PMID: 27752054 PMCID: PMC5067562 DOI: 10.1038/srep35333] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC adults show evidence for large impairments (Cohen's d = -1.03 to -11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.
Collapse
Affiliation(s)
- Michael V. Lombardo
- Center for Applied Neuroscience, Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Rosemary J. Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Amber N. V. Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Child & Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe-University, Frankfurt am Main, Germany
| | - Michael C. Craig
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Autism Unit, Bethlem Royal Hospital, SLAM NHS Foundation Trust, UK
| | - Declan G. M. Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Francesca Happé
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
48
|
Eddy CM. The junction between self and other? Temporo-parietal dysfunction in neuropsychiatry. Neuropsychologia 2016; 89:465-477. [PMID: 27457686 DOI: 10.1016/j.neuropsychologia.2016.07.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Clare M Eddy
- Department of Neuropsychiatry, BSMHFT The Barberry, National Centre for Mental Health, Birmingham, UK; School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
49
|
Brauer J, Xiao Y, Poulain T, Friederici AD, Schirmer A. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain. Cereb Cortex 2016; 26:3544-52. [PMID: 27230216 PMCID: PMC4961023 DOI: 10.1093/cercor/bhw137] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing.
Collapse
Affiliation(s)
- Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaqiong Xiao
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tanja Poulain
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annett Schirmer
- Department of Psychology and LSI Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore Duke/NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
50
|
Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U, Nummenmaa L, Leppämäki S, Nieminen-von Wendt T, Tani P, Saramäki J, Sams M, Jääskeläinen IP. Reorganization of functionally connected brain subnetworks in high-functioning autism. Hum Brain Mapp 2015; 37:1066-79. [PMID: 26686668 DOI: 10.1002/hbm.23084] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.
Collapse
Affiliation(s)
- Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Raj K Pan
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Rainer Kujala
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Juha M Lahnakoski
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulrika Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Lauri Nummenmaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Turku PET Centre and Department of Psychology, University of Turku, Turku, Finland
| | - Sami Leppämäki
- Finnish Institute of Occupational Health, Helsinki, Finland.,Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Pekka Tani
- Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|