1
|
Liu X, Jones PS, Pasternak M, Masellis M, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten J, Jiskoot L, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler C, Le Ber I, Finger E, Tartaglia MC, Synofzik M, Moreno F, Borroni B, Rohrer JD, Tsvetanov KA, Rowe JB. Frontoparietal network integrity supports cognitive function in pre-symptomatic frontotemporal dementia: Multimodal analysis of brain function, structure, and perfusion. Alzheimers Dement 2024; 20:8576-8594. [PMID: 39417382 DOI: 10.1002/alz.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Genetic mutation carriers of frontotemporal dementia can remain cognitively well despite neurodegeneration. A better understanding of brain structural, perfusion, and functional patterns in the pre-symptomatic stage could inform accurate staging and potential mechanisms. METHODS We included 207 pre-symptomatic genetic mutation carriers and 188 relatives without mutations. The gray matter volume, cerebral perfusion, and resting-state functional network maps were co-analyzed using linked independent component analysis (LICA). Multiple regression analysis was used to investigate the relationship of LICA components to genetic status and cognition. RESULTS Pre-symptomatic mutation carriers showed an age-related decrease in the left frontoparietal network integrity, while non-carriers did not. Executive functions of mutation carriers became dependent on the left frontoparietal network integrity in older age. DISCUSSION The frontoparietal network integrity of pre-symptomatic mutation carriers showed a distinctive relationship to age and cognition compared to non-carriers, suggesting a contribution of the network integrity to brain resilience. HIGHLIGHTS A multimodal analysis of structure, perfusion, and functional networks. The frontoparietal network integrity decreases with age in pre-symptomatic carriers only. Executive functions of pre-symptomatic carriers dissociated from non-carriers.
Collapse
Affiliation(s)
- Xulin Liu
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Peter Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Maurice Pasternak
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline Graff
- Karolinska Institute, Department NVS, Centre for Alzheimer Research, Division of Neurogenetics, Stockholm, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Daniela Galimberti
- Fondazione IRCCS Ospedale Policlinico, Milan, Italy
- Centro Dino Ferrari, University of Milan, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, First floor, Core Technology Facility, Manchester, UK
- Department of Nuclear Medicine, Centre for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Firenze, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Firenze, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florence Pasquier
- University Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Chris Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, London, UK
| | - Isabelle Le Ber
- Paris Brain Institute - Institut du Cerveau - ICM, Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Reference center for rare or early-onset dementias, IM2A, Department of Neurology, AP-HP - Pitié-Salpêtrière Hospital, Paris, France
- Department of Neurology, AP-HP - Pitié-Salpêtrière Hospital, Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Centre of Neurology, University of Tübingen, Tübingen, Germany
- Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Science Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Moisseinen N, Särkämö T, Kauramäki J, Kleber B, Sihvonen AJ, Martínez-Molina N. Differential effects of ageing on the neural processing of speech and singing production. Front Aging Neurosci 2023; 15:1236971. [PMID: 37731954 PMCID: PMC10507273 DOI: 10.3389/fnagi.2023.1236971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Understanding healthy brain ageing has become vital as populations are ageing rapidly and age-related brain diseases are becoming more common. In normal brain ageing, speech processing undergoes functional reorganisation involving reductions of hemispheric asymmetry and overactivation in the prefrontal regions. However, little is known about how these changes generalise to other vocal production, such as singing, and how they are affected by associated cognitive demands. Methods The present cross-sectional fMRI study systematically maps the neural correlates of vocal production across adulthood (N=100, age 21-88 years) using a balanced 2x3 design where tasks varied in modality (speech: proverbs / singing: song phrases) and cognitive demand (repetition / completion from memory / improvisation). Results In speech production, ageing was associated with decreased left pre- and postcentral activation across tasks and increased bilateral angular and right inferior temporal and fusiform activation in the improvisation task. In singing production, ageing was associated with increased activation in medial and bilateral prefrontal and parietal regions in the completion task, whereas other tasks showed no ageing effects. Direct comparisons between the modalities showed larger age-related activation changes in speech than singing across tasks, including a larger left-to-right shift in lateral prefrontal regions in the improvisation task. Conclusion The present results suggest that the brains' singing network undergoes differential functional reorganisation in normal ageing compared to the speech network, particularly during a task with high executive demand. These findings are relevant for understanding the effects of ageing on vocal production as well as how singing can support communication in healthy ageing and neurological rehabilitation.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Jaakko Kauramäki
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Boris Kleber
- Centre for Music in the Brain, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- School of Health and Rehabilitation Sciences, Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Noelia Martínez-Molina
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- Department of Information and Communication Technologies, Centre for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Kruse JA, Martin CS, Hamlin N, Slattery E, Moriarty EM, Horne LK, Ozkalp-Poincloux B, Camarda A, White SF, Oleson J, Cassotti M, Doucet GE. Changes of creative ability and underlying brain network connectivity throughout the lifespan. Brain Cogn 2023; 168:105975. [PMID: 37031635 PMCID: PMC10175225 DOI: 10.1016/j.bandc.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
Creativity, or divergent thinking, is essential to and supported by cognitive functions necessary for everyday tasks. The current study investigates divergent thinking and its neural mechanisms from adolescence to late adulthood. To do this, 180 healthy participants completed a creativity task called the egg task including 86 adolescents (mean age (SD) = 13.62 (1.98)), 52 young adults (24.92 (3.60), and 42 older adults (62.84 (7.02)). Additionally, a subsample of 111 participants completed a resting-state fMRI scan. After investigating the impact of age on different divergent thinking metrics, we investigated the impact of age on the association between divergent thinking and resting-state functional connectivity within and between major resting-state brain networks associated with creative thinking: the DMN, ECN, and SN. Adolescents tended to be less creative than both young and older adults in divergent thinking scores related to expansion creativity, and not in persistent creativity, while young and older adults performed relatively similar. We found that adolescents' functional integrity of the executive control network (ECN) was positively associated with expansion creativity, which was significantly different from the negative association in both the young and older adults. These results suggest that creative performance and supporting brain networks change throughout the lifespan.
Collapse
Affiliation(s)
- Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Casey S Martin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Emma Slattery
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Eibhlis M Moriarty
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Anaelle Camarda
- Institut Supérieur Maria Montessori, France; Université Paris Cité and Université Gustave Eiffel, LaPEA, Boulogne-Billancourt, France
| | - Stuart F White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
4
|
Li X, Li Y, Wang X, Hu W. Reduced brain activity and functional connectivity during creative idea generation in individuals with smartphone addiction. Soc Cogn Affect Neurosci 2023; 18:6712258. [PMID: 36149062 PMCID: PMC9619470 DOI: 10.1093/scan/nsac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Since the coronavirus disease 2019 outbreak, the frequency of smartphone use has surged, which has caused an increase in smartphone addiction among individuals. Smartphone addiction can impair various cognitive abilities. However, to date, the impact of smartphone addiction on creative cognition remains unclear. The current functional near-infrared spectroscopy study compared neural differences between smartphone addiction tendency (SAT) and healthy control (HC) individuals during creative idea generation. In particular, by manipulating a key component of creative cognition, that is, overcoming semantic constraints, we explored whether SAT individuals could overcome semantic constraints. Both the SAT and HC groups completed the alternate uses task (AUT) in semantic constraint and unconstraint conditions. The results indicated that the prefrontal cortex (PFC) and temporal regions were less active during AUT in the SAT group than in the HC group. In the SAT group, the PFC was less active under constraint than unconstraint conditions. Moreover, both task-related and resting-state functional connectivity analyses indicated weaker coupling between the PFC and temporal regions in the SAT than in the HC group. Furthermore, the left dorsolateral PFC mediated the effect of smartphone addiction on creative performance. These findings provide unprecedented neuroimaging evidence on the negative impact of smartphone addiction on creative cognition.
Collapse
Affiliation(s)
- Xinyi Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| | - Xuewei Wang
- Centre for Mental Health Education, Xidian University, Xi'an 710126, Shaanxi, China
| | - Weiping Hu
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| |
Collapse
|
5
|
Zhukovsky P, Coughlan G, Buckley R, Grady C, Voineskos AN. Connectivity between default mode and frontoparietal networks mediates the association between global amyloid-β and episodic memory. Hum Brain Mapp 2023; 44:1147-1157. [PMID: 36420978 PMCID: PMC9875925 DOI: 10.1002/hbm.26148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Βeta-amyloid (Aβ) is a neurotoxic protein that deposits early in the pathogenesis of preclinical Alzheimer's disease. We aimed to identify network connectivity that may alter the negative effect of Aβ on cognition. Following assessment of memory performance, resting-state fMRI, and mean cortical PET-Aβ, a total of 364 older adults (286 with clinical dementia rating [CDR-0], 59 with CDR-0.5 and 19 with CDR-1, mean age: 74.0 ± 6.4 years) from the OASIS-3 sample were included in the analysis. Across all participants, a partial least squares regression showed that lower connectivity between posterior medial default mode and frontoparietal networks, higher within-default mode, and higher visual-motor connectivity predict better episodic memory. These connectivities partially mediate the effect of Aβ on episodic memory. These results suggest that connectivity strength between the precuneus cortex and the superior frontal gyri may alter the negative effect of Aβ on episodic memory. In contrast, education was associated with different functional connectivity patterns. In conclusion, functional characteristics of specific brain networks may help identify amyloid-positive individuals with a higher likelihood of memory decline, with implications for AD clinical trials.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada
| |
Collapse
|
6
|
Amer T, Wynn JS, Hasher L. Cluttered memory representations shape cognition in old age. Trends Cogn Sci 2022; 26:255-267. [DOI: 10.1016/j.tics.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
|
7
|
Spreng RN, Turner GR. From exploration to exploitation: a shifting mental mode in late life development. Trends Cogn Sci 2021; 25:1058-1071. [PMID: 34593321 PMCID: PMC8844884 DOI: 10.1016/j.tics.2021.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Changes in cognition, affect, and brain function combine to promote a shift in the nature of mentation in older adulthood, favoring exploitation of prior knowledge over exploratory search as the starting point for thought and action. Age-related exploitation biases result from the accumulation of prior knowledge, reduced cognitive control, and a shift toward affective goals. These are accompanied by changes in cortical networks, as well as attention and reward circuits. By incorporating these factors into a unified account, the exploration-to-exploitation shift offers an integrative model of cognitive, affective, and brain aging. Here, we review evidence for this model, identify determinants and consequences, and survey the challenges and opportunities posed by an exploitation-biased mental mode in later life.
Collapse
Affiliation(s)
- R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Kupis L, Goodman ZT, Kornfeld S, Hoang S, Romero C, Dirks B, Dehoney J, Chang C, Spreng RN, Nomi JS, Uddin LQ. Brain Dynamics Underlying Cognitive Flexibility Across the Lifespan. Cereb Cortex 2021; 31:5263-5274. [PMID: 34145442 PMCID: PMC8491685 DOI: 10.1093/cercor/bhab156] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 11/14/2022] Open
Abstract
The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state fMRI data (n = 601, 6-85 years) and examined the interactions between age and brain dynamics among three neurocognitive networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network, L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions, moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.
Collapse
Affiliation(s)
- Lauren Kupis
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Zachary T Goodman
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Stephanie Hoang
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Celia Romero
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Bryce Dirks
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Joseph Dehoney
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Beaty RE, Cortes RA, Zeitlen DC, Weinberger AB, Green AE. Functional Realignment of Frontoparietal Subnetworks during Divergent Creative Thinking. Cereb Cortex 2021; 31:4464-4476. [PMID: 33895837 DOI: 10.1093/cercor/bhab100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022] Open
Abstract
Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger frontoparietal system-one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork (FPCNb) shows negative default coupling-raising questions about how these networks interact during creative cognition. Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n = 171) who completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb showed overall stronger functional connectivity with the default network-reflecting a reversal of negative connectivity at rest-and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks.
Collapse
Affiliation(s)
- Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, PA 16801, USA
| | - Robert A Cortes
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, PA 16801, USA
| | - Adam B Weinberger
- Department of Psychology, Georgetown University, Washington, DC 20057, USA.,Center for Neuroaesthetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Patil AU, Madathil D, Huang CM. Age-related and individual variations in altered prefrontal and cerebellar connectivity associated with the tendency of developing internet addiction. Hum Brain Mapp 2021; 42:4525-4537. [PMID: 34170056 PMCID: PMC8410527 DOI: 10.1002/hbm.25562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Internet addiction refers to problematic patterns of internet use that continually alter the neural organization and brain networks that control impulsive behaviors and inhibitory functions. Individuals with elevated tendencies to develop internet addiction represent the transition between healthy and clinical conditions and may progress to behavioral addictive disorders. In this network neuroscience study, we used resting‐state functional magnetic resonance imaging (rs‐fMRI) to examine how and whether individual variations in the tendency of developing internet addiction rewire functional connectivity and diminish the amplitude of spontaneous low‐frequency fluctuations in healthy brains. The influence of neurocognitive aging (aged over 60 years) on executive‐cerebellar networks responsible for internet addictive behavior was also investigated. Our results revealed that individuals with an elevated tendency of developing internet addiction had disrupted executive‐cerebellar networks but increased occipital‐putamen connectivity, probably resulting from addiction‐sensitive cognitive control processes and bottom‐up sensory plasticity. Neurocognitive aging alleviated the effects of reduced mechanisms of prefrontal and cerebellar connectivity, suggesting age‐related modulation of addiction‐associated brain networks in response to compulsive internet use. Our findings highlight age‐related and individual differences in altered functional connectivity and the brain networks of individuals at a high risk of developing internet addictive disorders. These results offer novel network‐based preclinical markers of internet addictive behaviors for individuals of different ages.
Collapse
Affiliation(s)
- Abhishek Uday Patil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Deepa Madathil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Fusi G, Crepaldi M, Colautti L, Palmiero M, Antonietti A, Rozzini L, Rusconi ML. Divergent Thinking Abilities in Frontotemporal Dementia: A Mini-Review. Front Psychol 2021; 12:652543. [PMID: 33935913 PMCID: PMC8085258 DOI: 10.3389/fpsyg.2021.652543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
A large number of studies, including single case and case series studies, have shown that patients with different types of frontotemporal dementia (FTD) are characterized by the emergence of artistic abilities. This led to the hypothesis of enhanced creative thinking skills as a function of these pathological conditions. However, in the last years, it has been argued that these brain pathologies lead only to an augmented “drive to produce” rather than to the emergence of creativity. Moreover, only a few studies analyzed specific creative skills, such as divergent thinking (DT), by standardized tests. This Mini-Review aimed to examine the extent to which DT abilities are preserved in patients affected by FTD. Results showed that DT abilities (both verbal and figural) are altered in different ways according to the specific anatomical and functional changes associated with the diverse forms of FTD. On the one hand, patients affected by the behavioral form of FTD can produce many ideas because of unimpaired access to memory stores (i.e., episodic and semantic), but are not able to recombine flexibly the information to produce original ideas because of damages in the pre-frontal cortex. On the other hand, patients affected by the semantic variant are impaired also in terms of fluency because of the degradation of their semantic memory store. Potential implications, limitations, and future research directions are discussed.
Collapse
Affiliation(s)
- Giulia Fusi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maura Crepaldi
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Laura Colautti
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | | | | | - Luca Rozzini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| |
Collapse
|
12
|
Fusi G, Colombo B, Zanetti M, Crepaldi M, Rozzini L, Rusconi ML. The Effect of Psychological Symptoms on Divergent Thinking in Healthy Older Adults. CREATIVITY RESEARCH JOURNAL 2021. [DOI: 10.1080/10400419.2021.1892413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giulia Fusi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | | | - Maura Crepaldi
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Luca Rozzini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| |
Collapse
|
13
|
Patil AU, Madathil D, Huang CM. Healthy Aging Alters the Functional Connectivity of Creative Cognition in the Default Mode Network and Cerebellar Network. Front Aging Neurosci 2021; 13:607988. [PMID: 33679372 PMCID: PMC7929978 DOI: 10.3389/fnagi.2021.607988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Creativity is a higher-order neurocognitive process that produces unusual and unique thoughts. Behavioral and neuroimaging studies of younger adults have revealed that creative performance is the product of dynamic and spontaneous processes involving multiple cognitive functions and interactions between large-scale brain networks, including the default mode network (DMN), fronto-parietal executive control network (ECN), and salience network (SN). In this resting-state functional magnetic resonance imaging (rs-fMRI) study, group independent component analysis (group-ICA) and resting state functional connectivity (RSFC) measures were applied to examine whether and how various functional connected networks of the creative brain, particularly the default-executive and cerebro-cerebellar networks, are altered with advancing age. The group-ICA approach identified 11 major brain networks across age groups that reflected age-invariant resting-state networks. Compared with older adults, younger adults exhibited more specific and widespread dorsal network and sensorimotor network connectivity within and between the DMN, fronto-parietal ECN, and visual, auditory, and cerebellar networks associated with creativity. This outcome suggests age-specific changes in the functional connected network, particularly in the default-executive and cerebro-cerebellar networks. Our connectivity data further elucidate the critical roles of the cerebellum and cerebro-cerebellar connectivity in creativity in older adults. Furthermore, our findings provide evidence supporting the default-executive coupling hypothesis of aging and novel insights into the interactions of cerebro-cerebellar networks with creative cognition in older adults, which suggest alterations in the cognitive processes of the creative aging brain.
Collapse
Affiliation(s)
- Abhishek Uday Patil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Deepa Madathil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.,Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Ren Z, Daker RJ, Shi L, Sun J, Beaty RE, Wu X, Chen Q, Yang W, Lyons IM, Green AE, Qiu J. Connectome-Based Predictive Modeling of Creativity Anxiety. Neuroimage 2020; 225:117469. [PMID: 33099006 DOI: 10.1016/j.neuroimage.2020.117469] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/04/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
While a recent upsurge in the application of neuroimaging methods to creative cognition has yielded encouraging progress toward understanding the neural underpinnings of creativity, the neural basis of barriers to creativity are as yet unexplored. Here, we report the first investigation into the neural correlates of one such recently identified barrier to creativity: anxiety specific to creative thinking, or creativity anxiety (Daker et al., 2019). We employed a machine-learning technique for exploring relations between functional connectivity and behavior (connectome-based predictive modeling; CPM) to investigate the functional connections underlying creativity anxiety. Using whole-brain resting-state functional connectivity data, we identified a network of connections or "edges" that predicted individual differences in creativity anxiety, largely comprising connections within and between regions of the executive and default networks and the limbic system. We then found that the edges related to creativity anxiety identified in one sample generalize to predict creativity anxiety in an independent sample. We additionally found evidence that the network of edges related to creativity anxiety were largely distinct from those found in previous work to be related to divergent creative ability (Beaty et al., 2018). In addition to being the first work on the neural correlates of creativity anxiety, this research also included the development of a new Chinese-language version of the Creativity Anxiety Scale, and demonstrated that key behavioral findings from the initial work on creativity anxiety are replicable across cultures and languages.
Collapse
Affiliation(s)
- Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China
| | - Richard J Daker
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA
| | - Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, State College, PA, 16801, USA
| | - Xinran Wu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China
| | - Ian M Lyons
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA
| | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Spreng RN, Turner GR. The Shifting Architecture of Cognition and Brain Function in Older Adulthood. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2019; 14:523-542. [PMID: 31013206 DOI: 10.1177/1745691619827511] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cognitive aging is often described in the context of loss or decline. Emerging research suggests that the story is more complex, with older adults showing both losses and gains in cognitive ability. With increasing age, declines in controlled, or fluid, cognition occur in the context of gains in crystallized knowledge of oneself and the world. This inversion in cognitive capacities, from greater reliance on fluid abilities in young adulthood to increasingly crystallized or semanticized cognition in older adulthood, has profound implications for cognitive and real-world functioning in later life. The shift in cognitive architecture parallels changes in the functional network architecture of the brain. Observations of greater functional connectivity between lateral prefrontal brain regions, implicated in cognitive control, and the default network, implicated in memory and semantic processing, led us to propose the default-executive coupling hypothesis of aging. In this review we provide evidence that these changes in the functional architecture of the brain serve as a neural mechanism underlying the shifting cognitive architecture from younger to older adulthood. We incorporate findings spanning cognitive aging and cognitive neuroscience to present an integrative model of cognitive and brain aging, describing its antecedents, determinants, and implications for real-world functioning.
Collapse
Affiliation(s)
- R Nathan Spreng
- 1 Department of Neurology and Neurosurgery, McGill University
| | | |
Collapse
|